CN115224999A - 基于脉振高频注入法的永磁电机转子位置和速度估算方法 - Google Patents

基于脉振高频注入法的永磁电机转子位置和速度估算方法 Download PDF

Info

Publication number
CN115224999A
CN115224999A CN202210750391.3A CN202210750391A CN115224999A CN 115224999 A CN115224999 A CN 115224999A CN 202210750391 A CN202210750391 A CN 202210750391A CN 115224999 A CN115224999 A CN 115224999A
Authority
CN
China
Prior art keywords
frequency
rotor position
permanent magnet
magnet motor
omega
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210750391.3A
Other languages
English (en)
Inventor
张蔚
金华洋
王家乐
凡昊洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202210750391.3A priority Critical patent/CN115224999A/zh
Publication of CN115224999A publication Critical patent/CN115224999A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • H02P25/026Synchronous motors controlled by supply frequency thereby detecting the rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/11Determination or estimation of the rotor position or other motor parameters based on the analysis of high frequency signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种基于脉振高频注入法的永磁电机转子位置和速度估算方法,基于脉振高频注入法原理,利用准比例谐振滤波器、广义二阶积分器(SOGI)对转子位置误差信号进行提取,然后利用软件锁相环估算出转子位置和速度信息。与现有的转子位置和速度估算方法相比,本发明提供的估算方法可以很好地解决转子位置角延迟和转子位置辨识精度不高的问题,同时提高了控制系统的动态和稳态性能。

Description

基于脉振高频注入法的永磁电机转子位置和速度估算方法
技术领域
本发明涉及机电控制领域,尤其涉及一种基于脉振高频注入法的永磁电机转子位置和速度估算方法。
背景技术
无位置传感器控制技术采样电机中相关电信号用以估算转子位置和速度信息,除去了机械式位置传感器,从而减小了系统体积和重量,降低了成本和硬件复杂度,提高了系统运行性能。
在零低速工况下,脉振高频电压注入法可以很好地跟踪转子位置,该方法不依赖电机参数信息,鲁棒性较好,位置估计精度较高,而且适用于隐极式电机和凸极式电机,具有突出的工业应用价值。现有的高频脉振电压注入法在信号处理过程中采用基于带通滤波器(BandPass Filter,简称BPF)与低通滤波器(LowPass Filter,简称LPF)相结合的策略,从而导致了系统存在滤波精度与动态性能无法同时兼顾的问题。因此,研究一种能够有效减小转子位置估计误差、提高转速跟踪精确、稳态性能好和结构简单的无位置传感器控制算法有着广阔的发展前景。
发明内容
发明目的:针对上述现有技术,提出一种基于脉振高频注入法的永磁电机转子位置和速度估算方法,能够有效解决转子位置角延迟和转子位置辨识精度不高的问题,同时提高控制系统的动态和稳态性能。
技术方案:基于脉振高频注入法的永磁电机转子位置和速度估算方法,包括:基于脉振高频注入法原理,向估计的
Figure BDA0003718064800000011
轴中注入高频正弦电压
Figure BDA0003718064800000012
然后用准比例谐振滤波器提取高频响应电流
Figure BDA0003718064800000013
再将
Figure BDA0003718064800000014
与2sinωh t相乘进行信号调制并用广义二阶积分器提取调制信号中的转子位置误差信号f(Δθ),最后将位置误差信号f(Δθ)输入到软件锁相环中,得到估计的转子角速度
Figure BDA0003718064800000015
和转子位置
Figure BDA0003718064800000016
进一步的,所述方法包括如下具体步骤:
步骤1:在估计的
Figure BDA0003718064800000017
同步旋转坐标系的
Figure BDA0003718064800000018
轴,注入高频正弦电压
Figure BDA0003718064800000019
Figure BDA0003718064800000021
式中,
Figure BDA0003718064800000022
为注入
Figure BDA0003718064800000023
轴的高频电压;Uh为高频电压幅值;ωh为高频电压的角频率;
在高频激励下,永磁电机的电压方程为:
Figure BDA0003718064800000024
式中,
Figure BDA0003718064800000025
分别为
Figure BDA0003718064800000026
轴高频响应电流;Ld、Lq分别为d、q轴电感;
步骤2:检测出永磁电机的三相电流ia、ib和ic,对永磁电机的三相电流进行坐标变换,得到永磁电机定子电流在估计的
Figure BDA0003718064800000027
同步旋转坐标系中的电流
Figure BDA0003718064800000028
Figure BDA0003718064800000029
在估计的
Figure BDA00037180648000000210
同步旋转坐标系中,高频电压和电流的关系为:
Figure BDA00037180648000000211
式中,Δθ为转子实际位置θe与估计的转子位置
Figure BDA00037180648000000212
之差,即
Figure BDA00037180648000000213
将式(1)带入式(3)得到:
Figure BDA00037180648000000214
式中,
Figure BDA00037180648000000215
为半差电感;
Figure BDA00037180648000000216
为平均电感;
步骤3:利用准比例谐振滤波器提取
Figure BDA00037180648000000217
中频率为ω的高频响应电流
Figure BDA00037180648000000218
Figure BDA00037180648000000219
与2sinωht相乘进行信号调制,再通过广义二阶积分器去除掉调制信号中的频率为2ω的高频信号,提取出转子位置误差信号f(Δθ);
Figure BDA0003718064800000031
Figure BDA0003718064800000032
式中,kpr为比例系数;kr为积分系数;ω为谐振频率;ωcr带宽截止频率;
Figure BDA0003718064800000033
Figure BDA0003718064800000034
Figure BDA0003718064800000035
的误差信号,即
Figure BDA0003718064800000036
s为复变量;k为广义二阶积分器的增益系数;
将转子位置误差信号f(Δθ)作为软件锁相环的输入,得到估计的转子角速度
Figure BDA0003718064800000037
对估计的转子角速度
Figure BDA0003718064800000038
进行积分得到估计的转子位置
Figure BDA0003718064800000039
Figure BDA00037180648000000310
Figure BDA00037180648000000311
式中,Kp、Ki分别为比例、积分系数。
进一步的,步骤3中,kpr=0.1,kr=15,ωcr=2,k=1。
有益效果:本发明提出了一种基于脉振高频注入法的永磁电机转子位置和速度估算方法,利用准比例谐振滤波器、广义二阶积分器对转子位置误差信号进行提取,然后利用软件锁相环估算出转子位置和速度信息。本发明中的准比例谐振滤波器使信号在谐振频率处无相移,能够较好的跟踪交流信号并抑制交流谐波,同时广义二阶积分器实现简单,运算负担低,以及滤波效果好的优点,保持对高频电流谐波的抑制能力,从而达到位置观测环带宽与滤波能力强并存的效果。本发明提供的转子位置和速度估算方法可以很好地解决现有的转子位置和速度估算方法中转子位置角延迟的问题,同时提高了整体控制系统的动稳态性能。
附图说明
图1是本发明实施的转子位置和速度估算方法的矢量控制系统框图;
图2是本发明实施的准比例谐振滤波器;其中,(a)为准比例谐振滤波器结构图;(b)为准比例谐振滤波器在不同参数下系统的Bode图;
图3是本发明实施的广义二阶积分器;其中,(a)为广义二阶积分器结构图;(b)为广义二阶积分器在不同参数下系统的Bode图;
图4是基于BPF和LPF相结合的转子位置和速度估算方法的矢量系统控制框图;
图5是基于BPF和LPF相结合的转子位置和速度估算方法转速从35r/min突变到75r/min动态仿真结果;其中,(a)为转速波形;(b)为估计转子位置和实际转子位置波形;(c)为转子位置误差;
图6是本发明实施例转速从35r/min突变到75r/min动态仿真结果;其中,(a)为转速波形;(b)为估计转子位置和实际转子位置波形;(c)为转子位置误差。
具体实施方式
下面结合附图对本发明做更进一步的解释。
图1是本发明实施的转子位置和速度估算方法的矢量控制系统框图,其由速度PI调节器、d和q轴电流PI调节器、反Park坐标变换、SVPWM(空间矢量脉冲宽度调制)、三相逆变器、永磁同步电机、Clark坐标变换、Park坐标变换、准比例谐振滤波器、广义二阶积分器(SOGI)、软件锁相环(SPLL)环节构成。该系统为速度(外环)和电流(内环)双闭环结构。基于脉振高频注入法原理,向估计的
Figure BDA0003718064800000041
轴中注入高频正弦电压
Figure BDA0003718064800000042
然后用准比例谐振滤波器提取高频响应电流
Figure BDA0003718064800000043
再将
Figure BDA0003718064800000044
与2sinωht相乘进行信号调制并用广义二阶积分器提取调制信号中的转子位置误差信号f(Δθ),最后将位置误差信号f(Δθ)输入到软件锁相环中,得到估计的转子角速度
Figure BDA0003718064800000045
和转子位置
Figure BDA0003718064800000046
本发明方法具体包括以下步骤:
步骤1:在估计的
Figure BDA0003718064800000047
同步旋转坐标系的
Figure BDA0003718064800000048
轴,注入高频正弦电压
Figure BDA0003718064800000049
Figure BDA00037180648000000410
式中,
Figure BDA00037180648000000411
为注入
Figure BDA00037180648000000412
轴的高频电压;Uh为高频电压幅值;ωh为高频电压的角频率,ωh取6280rad/s。
在高频激励下,由于高频信号角频率ωh远高于转子旋转角频率ωe,将电机等效为简单的R-L串联电路,且高频时电阻相对于电抗小很多,可以忽略不计,因此高频激励下三相永磁电机的电压方程可简化为:
Figure BDA0003718064800000051
式中,
Figure BDA0003718064800000052
分别为
Figure BDA0003718064800000053
轴高频响应电流;Ld、Lq分别为d、q轴电感。
步骤2:检测出永磁电机的三相电流ia、ib和ic,对永磁同步电机的三相电流进行坐标变换,得到永磁电机定子电流在估计的
Figure BDA0003718064800000054
同步旋转坐标系中的电流
Figure BDA0003718064800000055
Figure BDA0003718064800000056
在估计的
Figure BDA0003718064800000057
同步旋转坐标系中,高频电压和电流的关系为:
Figure BDA0003718064800000058
式中,Δθ为转子实际位置θe与估计的转子位置
Figure BDA0003718064800000059
之差,即
Figure BDA00037180648000000510
将式(1)带入式(3)可得:
Figure BDA00037180648000000511
式中,
Figure BDA00037180648000000512
为半差电感;
Figure BDA00037180648000000513
为平均电感。
步骤3:利用准比例谐振滤波器提取
Figure BDA00037180648000000514
中频率为ω的高频响应电流分量
Figure BDA00037180648000000515
Figure BDA00037180648000000516
与2sinωht相乘进行信号调制,再通过广义二阶积分器去除掉调制信号中的频率为2ω的高频信号并提取出转子位置误差信号f(Δθ)。
Figure BDA00037180648000000517
Figure BDA00037180648000000518
式中,kpr为比例系数;kr为积分系数;ω为谐振频率,ω取6280rad/s;ωcr带宽截止频率;
Figure BDA0003718064800000061
Figure BDA0003718064800000062
Figure BDA0003718064800000063
的误差信号,即
Figure BDA0003718064800000064
s为复变量;k为广义二阶积分器的增益系数。
其中,准比例谐振滤波器的结构框图如图2的(a)所示,其输入
Figure BDA0003718064800000065
其输出为高频响应电流
Figure BDA0003718064800000066
由图2的(b)所示,系统在谐振频率点处存在较大的增益,而在增益带之外的区域增益急剧衰减,可见比例谐振滤波器可以有效抑制谐振频率点附近的谐波,同时不会改变系统在谐振频率ω处的相位值,因而该滤波器在理论上不会因为相移而导致延迟问题,使系统具有更好的响应能力。当保持kr和ωcr两个量不变,增大kpr时,系统将拥有更好的动态响应能力,但整个频段的增益都会增大,从而减弱比例谐振滤波器的滤波效果;当保持kpr和ωcr两个量不变,增大kr时,谐振增益带将会扩大,降低滤波器的选择性,削弱滤波效果;当保持kr和kpr两个量不变,减小ωcr时,可以减小滤波器的增益范围,提升滤波器的滤波效果,但会降低系统的抗干扰能力,增加系统的响应时间。因此,兼顾系统滤波性能与动态性能,选取kpr=0.1、kr=15和ωcr=2。
广义二阶积分器的结构图如图3的(a)所示,其输入为调制的电流信号
Figure BDA0003718064800000067
其输出为转子位置误差信号f(Δθ)。由图3的(b)所示,k越小,增益带越窄,对特定次频率附近的噪声抑制效果越好,但k太小会导致带宽过窄,当高频信号的频率因外部扰动而与所设置的频率有偏差,出现在增益带之外时,将会直接导致转子位置估计失败,降低系统的可靠性。因此,兼顾噪声抑制和系统可靠性,选取k=1。
将转子位置误差信号f(Δθ)作为软件锁相环的输入,得到估计的转子角速度
Figure BDA0003718064800000068
对估计转子角速度
Figure BDA0003718064800000069
进行积分得到估计的转子位置
Figure BDA00037180648000000610
Figure BDA00037180648000000611
Figure BDA00037180648000000612
式中,Kp、Ki分别为比例、积分系数。
为了进一步说明本发明所提出的转子位置和速度估算方法的优势,本发明将所实施的与现有的进行对比。其中,现有的转子位置和速度估算方法的矢量系统控制框图如图4所示。
图5是基于BPF和LPF相结合的转子位置和速度估算方法在0.5s时给定转速从35r/min突变至75r/min的动态仿真结果,(a)为转速波形;(b)为估计转子位置和实际转子位置波形;(c)为转子位置误差波形。由图5的(a)可知,在给定转速为35r/min时,转速误差约为±3r/min,转速波动较大,系统稳定性较差;在0.5s时转速突变时,转速经过0.015s达到稳定。由图5的(b)和(c)可知,该方法存在转子估计误差,跟踪精度较差的问题。图6是本发明实施例在0.5s时给定转速从35r/min突变至75r/min的动态仿真结果,(a)为转速波形;(b)为估计转子位置和实际转子位置波形;(c)为转子位置误差波形。由图6的(a)可知,在给定转速为35r/min时,转速误差约为±0.6r/min;在0.5s时转速突变时,转速经过0.01s达到稳定。由图6的(b)和(c)可知,本发明实施的转子位置和速度估算方法消除了转子位置误差,提高了系统的控制精度。对比图5和图6,本发明所实施的转子位置和速度估算方法有效地降低了转速脉动82.3%左右,动态响应时间提高了33.3%,使系统具备良好的动稳态性能,进一步地解决了转子位置和速度估算方法中转子位置角延迟的问题,提高了系统的控制精度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.基于脉振高频注入法的永磁电机转子位置和速度估算方法,其特征在于,包括:基于脉振高频注入法原理,向估计的
Figure FDA0003718064790000011
轴中注入高频正弦电压
Figure FDA0003718064790000012
然后用准比例谐振滤波器提取高频响应电流
Figure FDA0003718064790000013
再将
Figure FDA0003718064790000014
与2sinωht相乘进行信号调制并用广义二阶积分器提取调制信号中的转子位置误差信号f(Δθ),最后将位置误差信号f(Δθ)输入到软件锁相环中,得到估计的转子角速度
Figure FDA0003718064790000015
和转子位置
Figure FDA0003718064790000016
2.根据权利要求1所述的基于脉振高频注入法的永磁电机转子位置和速度估算方法,其特征在于,所述方法包括如下具体步骤:
步骤1:在估计的
Figure FDA0003718064790000017
同步旋转坐标系的
Figure FDA0003718064790000018
轴,注入高频正弦电压
Figure FDA0003718064790000019
Figure FDA00037180647900000110
式中,
Figure FDA00037180647900000111
为注入
Figure FDA00037180647900000112
轴的高频电压;Uh为高频电压幅值;ωh为高频电压的角频率;
在高频激励下,永磁电机的电压方程为:
Figure FDA00037180647900000113
式中,
Figure FDA00037180647900000114
分别为
Figure FDA00037180647900000115
轴高频响应电流;Ld、Lq分别为d、q轴电感;
步骤2:检测出永磁电机的三相电流ia、ib和ic,对永磁电机的三相电流进行坐标变换,得到永磁电机定子电流在估计的
Figure FDA00037180647900000116
同步旋转坐标系中的电流
Figure FDA00037180647900000117
Figure FDA00037180647900000118
在估计的
Figure FDA00037180647900000119
同步旋转坐标系中,高频电压和电流的关系为:
Figure FDA00037180647900000120
式中,Δθ为转子实际位置θe与估计的转子位置
Figure FDA00037180647900000121
之差,即
Figure FDA00037180647900000122
将式(1)带入式(3)得到:
Figure FDA0003718064790000021
式中,
Figure FDA0003718064790000022
为半差电感;
Figure FDA0003718064790000023
为平均电感;
步骤3:利用准比例谐振滤波器提取
Figure FDA0003718064790000024
中频率为ω的高频响应电流
Figure FDA0003718064790000025
Figure FDA0003718064790000026
与2sinωht相乘进行信号调制,再通过广义二阶积分器去除掉调制信号中的频率为2ω的高频信号,提取出转子位置误差信号f(Δθ);
Figure FDA0003718064790000027
Figure FDA0003718064790000028
式中,kpr为比例系数;kr为积分系数;ω为谐振频率;ωcr带宽截止频率;
Figure FDA0003718064790000029
Figure FDA00037180647900000210
Figure FDA00037180647900000211
的误差信号,即
Figure FDA00037180647900000212
s为复变量;k为广义二阶积分器的增益系数;
将转子位置误差信号f(Δθ)作为软件锁相环的输入,得到估计的转子角速度
Figure FDA00037180647900000213
对估计的转子角速度
Figure FDA00037180647900000214
进行积分得到估计的转子位置
Figure FDA00037180647900000215
Figure FDA00037180647900000216
Figure FDA00037180647900000217
式中,Kp、Ki分别为比例、积分系数。
3.根据权利要求2所述的基于脉振高频注入法的永磁电机转子位置和速度估算方法,其特征在于,步骤3中,kpr=0.1,kr=15,ωcr=2,k=1。
CN202210750391.3A 2022-06-28 2022-06-28 基于脉振高频注入法的永磁电机转子位置和速度估算方法 Pending CN115224999A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210750391.3A CN115224999A (zh) 2022-06-28 2022-06-28 基于脉振高频注入法的永磁电机转子位置和速度估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210750391.3A CN115224999A (zh) 2022-06-28 2022-06-28 基于脉振高频注入法的永磁电机转子位置和速度估算方法

Publications (1)

Publication Number Publication Date
CN115224999A true CN115224999A (zh) 2022-10-21

Family

ID=83609138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210750391.3A Pending CN115224999A (zh) 2022-06-28 2022-06-28 基于脉振高频注入法的永磁电机转子位置和速度估算方法

Country Status (1)

Country Link
CN (1) CN115224999A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512475A (zh) * 2018-04-24 2018-09-07 湘潭大学 一种基于脉振高频电压注入法的转子位置检测方法
CN109245647A (zh) * 2018-09-05 2019-01-18 合肥工业大学 基于脉振高频注入的永磁同步电机无传感器控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512475A (zh) * 2018-04-24 2018-09-07 湘潭大学 一种基于脉振高频电压注入法的转子位置检测方法
CN109245647A (zh) * 2018-09-05 2019-01-18 合肥工业大学 基于脉振高频注入的永磁同步电机无传感器控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张云: "永磁同步电机电流谐波抑制及无位置传感器控制技术研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑, no. 01, 15 January 2022 (2022-01-15) *

Similar Documents

Publication Publication Date Title
CN109245647B (zh) 基于脉振高频注入的永磁同步电机无传感器控制方法
CN106788071A (zh) 一种提高永磁同步电机转子位置估计精度的方法
CN107508521B (zh) 一种永磁同步电机的无速度传感器控制方法和系统
CN112737450A (zh) 一种用于spmsm转子位置估计的高频注入补偿方法
CN114598206B (zh) 永磁同步电机宽速域转子位置观测器设计方法
CN114301355A (zh) 一种永磁同步电机电流谐波扰动抑制方法
Bui et al. A hybrid sensorless controller of an interior permanent magnet synchronous machine using current derivative measurements and a sliding mode observer
Shuang et al. A novel sensorless initial position estimation and startup method
Bisheimer et al. Full speed range permanent magnet synchronous motor control without mechanical sensors
Wu et al. An Enhanced Sensorless Control Scheme for PMSM Drives Considering Self-inductance Asymmetry
Messali et al. Estimation procedure based on less filtering and robust tracking for a self-sensing control of IPMSM
CN115224999A (zh) 基于脉振高频注入法的永磁电机转子位置和速度估算方法
Lei et al. Research on novel high frequency signal extraction method based on extended Kalman filter theory
CN113783494B (zh) 无位置传感器内置式永磁同步电机的最大转矩电流比控制
Messali et al. A robust observer of rotor position and speed for ipmsm hfi sensorless drives
CN111817617B (zh) 一种车用永磁同步电机低速无位置传感器控制方法
CN113437914B (zh) 一种新的异步电机的转子磁链估计方法
CN114337416A (zh) 电机控制方法、装置、压缩机、存储介质及空调器
Peng et al. Vibration analysis and dynamic performance improvement of high-frequency injection method
Shimamoto Estimation of dq-axis mutual inductances for vibration reduction of encoderless control
Galati et al. Modelling of a Rotating Signal Injection-Based Position Observer for Sensorless Synchronous Electric Drives
CN115208251A (zh) 一种具有参数辨识的自适应准比例谐振无传感器控制方法
Nandhan et al. A Parameter Insensitive Rotor Angle Extraction Approach using Carrier Frequency Components by Phase Shifted Carrier PWM for PMSM Drives
CN113904606B (zh) 相位自适应补偿式永磁同步电机转子位置和速度估计方法
CN113904604B (zh) 三级式同步电机转子位置估计的直接解调计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination