CN115224191A - A ferroelectric superlattice multivalued memory device and method of making the same - Google Patents
A ferroelectric superlattice multivalued memory device and method of making the same Download PDFInfo
- Publication number
- CN115224191A CN115224191A CN202210765689.1A CN202210765689A CN115224191A CN 115224191 A CN115224191 A CN 115224191A CN 202210765689 A CN202210765689 A CN 202210765689A CN 115224191 A CN115224191 A CN 115224191A
- Authority
- CN
- China
- Prior art keywords
- ferroelectric
- ferroelectric superlattice
- layer
- memory device
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 16
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical group S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 13
- HACVPBPJHIPGHT-UHFFFAOYSA-K P(=S)([O-])([O-])[O-].[In+3].[Cu+2] Chemical group P(=S)([O-])([O-])[O-].[In+3].[Cu+2] HACVPBPJHIPGHT-UHFFFAOYSA-K 0.000 claims description 9
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052582 BN Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 86
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910052581 Si3N4 Inorganic materials 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 11
- 238000000231 atomic layer deposition Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 230000005684 electric field Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- -1 Si 3 N 4 Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/253—Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8822—Sulfides, e.g. CuS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8836—Complex metal oxides, e.g. perovskites, spinels
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Non-Volatile Memory (AREA)
Abstract
本发明公开了一种铁电超晶格多值存储器及其制作方法,包括一衬底,在衬底上具有源极、漏极以及由源极和漏极组成的栅窗口;在栅窗口中具有铁电超晶格结构,铁电超晶格结构由多层铁电层和沟道层组成,源极和漏极与铁电超晶格结构为端式接触;铁电超晶格结构上具有栅介质层,栅介质层上具有栅极。本发明通过采用二维铁电超晶格实现的多值存储器,实现了多值存储器,提高数据的运算效率,进而实现数据的高密度存储,具有广泛的应用前景。
The invention discloses a ferroelectric superlattice multi-value memory and a manufacturing method thereof, comprising a substrate with a source electrode, a drain electrode and a gate window composed of the source electrode and the drain electrode on the substrate; It has a ferroelectric superlattice structure. The ferroelectric superlattice structure is composed of multiple layers of ferroelectric layers and channel layers. The source and drain electrodes are in terminal contact with the ferroelectric superlattice structure; on the ferroelectric superlattice structure A gate dielectric layer is provided, and a gate electrode is provided on the gate dielectric layer. The invention realizes the multi-value memory by adopting the multi-value memory realized by the two-dimensional ferroelectric superlattice, improves the operation efficiency of the data, and further realizes the high-density storage of the data, and has a wide application prospect.
Description
技术领域technical field
本发明涉及一种铁电超晶格存储器件,尤其涉及一种铁电超晶格多值存储器件及其制作方法。The invention relates to a ferroelectric superlattice storage device, in particular to a ferroelectric superlattice multi-value storage device and a manufacturing method thereof.
背景技术Background technique
多值存储可以存放多数值,提高权值矩阵网络中的权值参数调节范围,便于在人工神经网络中实现复杂计算,为实现非冯架构存算一体的底层硬件单元。由于二维过渡金属二卤族化合物(TMDs)具有无悬挂键,原子级厚度,出色的静电控制能力,而硫化钼(MoS2)作为典型代表,它带隙合适(单层为1.2ev),高开关比(ION/IOFF≈108),便于器件尺寸缩减集成化(scaling down),是低功耗存储和逻辑电路的有力选择。Multi-value storage can store multiple values, improve the adjustment range of weight parameters in the weight matrix network, and facilitate the realization of complex calculations in artificial neural networks. Since 2D transition metal dichalcogenides (TMDs) have no dangling bonds, atomic thickness, and excellent electrostatic control ability, and molybdenum sulfide (MoS 2 ) is a typical representative, it has a suitable band gap (1.2ev for monolayer), The high switching ratio (I ON /I OFF ≈ 10 8 ) facilitates scaling down of device size and is a powerful choice for low-power storage and logic circuits.
铁电存储和Flash(业界)相比,最大优势在于速度有三个量级提升。铁电存储器优势:(1)高速擦写(纳秒级别),非破坏性读取(2)耐久性(10年以上),高可靠性(极化稳定),低功耗,便于高密度集成。目前铁电存储器的存储容量,集成度不高,未能够达到与Flash闪存媲美的商用级别。而且结构功能较为单一,只能进行低容量数据的存储;且目前铁电存储器单一器件只能存储一位二进制数据,不能够实现多值存储。Compared with Flash (industry), the biggest advantage of ferroelectric storage is that the speed is improved by three orders of magnitude. Ferroelectric memory advantages: (1) high-speed erasing and writing (nanosecond level), non-destructive reading (2) durability (more than 10 years), high reliability (polarization stability), low power consumption, easy for high-density integration . At present, the storage capacity of ferroelectric memory is not high, and the integration level is not high, and it cannot reach the commercial level comparable to Flash flash memory. Moreover, the structure and function are relatively simple, and can only store low-capacity data; and at present, a single device of ferroelectric memory can only store one bit of binary data, and cannot realize multi-value storage.
发明内容SUMMARY OF THE INVENTION
本发明实施例提出一种采用二维铁电超晶格实现的多值存储器。本发明第一方面提出了一种铁电超晶格多值存储器件:The embodiment of the present invention proposes a multi-value memory realized by using a two-dimensional ferroelectric superlattice. A first aspect of the present invention provides a ferroelectric superlattice multi-value storage device:
具有一衬底,在上述衬底上具有源极、漏极以及由上述源极和上述漏极组成的栅窗口;There is a substrate with a source electrode, a drain electrode and a gate window composed of the source electrode and the drain electrode on the substrate;
在上述栅窗口中具有铁电超晶格结构,上述铁电超晶格结构由多层铁电层和沟道层组成,上述源极和上述漏极与上述铁电超晶格结构为端式接触;The above-mentioned gate window has a ferroelectric superlattice structure, the above-mentioned ferroelectric superlattice structure is composed of multiple layers of ferroelectric layers and a channel layer, and the above-mentioned source electrode and the above-mentioned drain electrode and the above-mentioned ferroelectric superlattice structure are terminal type touch;
上述铁电超晶格结构上具有栅介质层,上述栅介质层上具有栅极。The ferroelectric superlattice structure has a gate dielectric layer thereon, and the gate dielectric layer has a gate electrode.
在本发明第一方面的实施例中,上述铁电层选自硫代磷酸铜铟(CIPS)或铪锆氧化物(HZO)。In an embodiment of the first aspect of the present invention, the ferroelectric layer is selected from copper indium thiophosphate (CIPS) or hafnium zirconium oxide (HZO).
在本发明第一方面的实施例中,上述沟道层选自硫化钼或碳纳米管。In an embodiment of the first aspect of the present invention, the channel layer is selected from molybdenum sulfide or carbon nanotubes.
在本发明第一方面的实施例中,上述栅介质层选自SiO2、Si3N4、HfO2或六方氮化硼。In an embodiment of the first aspect of the present invention, the gate dielectric layer is selected from SiO 2 , Si 3 N 4 , HfO 2 or hexagonal boron nitride.
第二方面,本发明提出了一种铁电超晶格多值存储器件的制作方法,包含以下步骤:提供一衬底,在上述衬底上生长铁电超晶格结构;In a second aspect, the present invention provides a method for fabricating a ferroelectric superlattice multi-value memory device, comprising the following steps: providing a substrate, and growing a ferroelectric superlattice structure on the substrate;
对上述铁电超晶格结构进行图案化,定义出有源区;patterning the above-mentioned ferroelectric superlattice structure to define an active region;
在上述有源区两侧分别形成源极和漏极;A source electrode and a drain electrode are respectively formed on both sides of the above-mentioned active region;
在上述有源区上方形成高k栅氧化层和栅极。A high-k gate oxide layer and gate are formed over the above-mentioned active regions.
在本发明第二方面的实施例中,通过多次交替生长沟道层和铁电层形成上述铁电超晶格结构。In an embodiment of the second aspect of the present invention, the above-mentioned ferroelectric superlattice structure is formed by alternately growing the channel layer and the ferroelectric layer multiple times.
在本发明第二方面的实施例中,通过CVD、ALD或MBE生长1-5层的硫化钼形成上述沟道层。In an embodiment of the second aspect of the present invention, the above-mentioned channel layer is formed by growing 1-5 layers of molybdenum sulfide by CVD, ALD or MBE.
在本发明第二方面的实施例中,通过CVD、ALD或MBE生长1-20nm的硫代磷酸铜铟(CIPS)形成上述铁电层。In an embodiment of the second aspect of the present invention, the ferroelectric layer is formed by growing 1-20 nm of copper indium thiophosphate (CIPS) by CVD, ALD or MBE.
在本发明第二方面的实施例中,通过ALD生长1-10nm高k栅介质层。In an embodiment of the second aspect of the present invention, a 1-10 nm high-k gate dielectric layer is grown by ALD.
在本发明第二方面的实施例中,通过PVD形成上述源极和上述漏极。In an embodiment of the second aspect of the present invention, the above-mentioned source electrode and the above-mentioned drain electrode are formed by PVD.
本发明通过二维铁电超晶格结构实现了多值存储器,提高数据的运算效率,进而实现数据的高密度存储;并且也可以作为存算一体神经网络中的底层单元。The invention realizes the multi-value memory through the two-dimensional ferroelectric superlattice structure, improves the operation efficiency of the data, and realizes the high-density storage of the data; and can also be used as the underlying unit in the memory-computing integrated neural network.
附图说明Description of drawings
从下面结合附图对本发明的具体实施方式的描述中可以更好地理解本发明,其中,相同或相似的附图标记表示相同或相似的特征。The present invention can be better understood from the following description of specific embodiments of the invention in conjunction with the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar features.
图1为本发明实施例的铁电超晶格多值存储器示意图;1 is a schematic diagram of a ferroelectric superlattice multi-value memory according to an embodiment of the present invention;
图2为本发明实施例的铁电超晶格多值存储器转移特性曲线;2 is a transfer characteristic curve of a ferroelectric superlattice multi-valued memory according to an embodiment of the present invention;
图3为本发明实施例的铁电超晶格多值存储器原理示意图;3 is a schematic diagram of the principle of a ferroelectric superlattice multi-valued memory according to an embodiment of the present invention;
图4为在衬底上形成铁电超晶格结构和氮化硅层;Figure 4 is a ferroelectric superlattice structure and a silicon nitride layer formed on a substrate;
图5为通过光刻并且ICP刻蚀定义有源区;Figure 5 is the active region defined by photolithography and ICP etching;
图6为形成源漏金属层;FIG. 6 is for forming a source-drain metal layer;
图7为形成氧化硅层;Fig. 7 is the formation of silicon oxide layer;
图8为CMP氧化硅层;8 is a CMP silicon oxide layer;
图9为去除氮化硅,露出铁电超晶格有源层;FIG. 9 is the removal of silicon nitride to expose the ferroelectric superlattice active layer;
图10为高k栅介质层;Figure 10 is a high-k gate dielectric layer;
图11为光刻图形化栅极;Figure 11 is a photolithography patterned gate;
图12为形成氮化硅掩膜层;FIG. 12 is the formation of a silicon nitride mask layer;
图13为形成图形化钨柱,并完成外围连接;Figure 13 shows the formation of a patterned tungsten column and the completion of peripheral connections;
具体实施方式Detailed ways
下面将参照附图详细描述本发明的实施方式。在各附图中,相同的元件采用相同的附图标记来表示,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the various figures, the same elements are designated by the same reference numerals, and the various parts of the figures are not drawn to scale. Additionally, some well-known parts may not be shown. For the sake of simplicity, the semiconductor structure obtained after several steps can be depicted in one figure.
应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。It will be understood that, in describing the structure of a device, when a layer or region is referred to as being "on" or "over" another layer or region, it can be directly on the other layer or region, or Other layers or regions are also included between it and another layer, another region. And, if the device is turned over, the layer, one region, will be "under" or "under" another layer, another region.
如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“A直接在B上面”或“A在B上面并与之邻接”的表述方式。在本申请中,“A直接位于B中”表示A位于B中,并且A与B直接邻接,而非A位于B中形成的掺杂区中。In order to describe the situation directly above another layer, another area, the expression "A is directly above B" or "A is above and adjacent to B" will be used herein. In this application, "A is located directly in B" means that A is located in B, and A is directly adjacent to B, rather than A located in a doped region formed in B.
图1是本发明实施例的铁电超晶格多值存储器示意图。从图中可见,具有一衬底(图中未示出),在上述衬底上具有源极1、漏极2以及由源极1和漏极2组成的栅窗口;在栅窗口中具有铁电超晶格结构,铁电超晶格结构由多层沟道层3和铁电层4组成,其中沟道层3可以选自硫化钼或碳纳米管,在本实施例中采用硫化钼(MoS2)作为沟道层。其中铁电层选自硫代磷酸铜铟(CIPS)或铪锆氧化物(HZO),在本实施例中采用硫代磷酸铜铟(CIPS)作为铁电层。铁电超晶格具有至少3个周期的MoS2/CIPS结构,在本实施例中采用3个周期。通常金属与半导体的接触分为侧面接触(Side-Contact)和端式接触(End-Contact),侧面接触的金属电极和半导体材料平行,端式接触的金属电极和半导体材料垂直。源极1和漏极2与上述铁电超晶格结构为端式接触。其中源极和漏极金属可以采用Ti、Pd、Au、TiN等。在铁电超晶格结构上形成有高k栅介质层5和栅极6,其中高k栅介质层5可以是任何高介电常数介质,例如可以选自SiO2、Si3N4、HfO2或六方氮化硼(h-bn),在本实施例中采用六方氮化硼(h-bn)。栅极6可以为Ti或Au电极。FIG. 1 is a schematic diagram of a ferroelectric superlattice multi-valued memory according to an embodiment of the present invention. It can be seen from the figure that there is a substrate (not shown in the figure), on the substrate there is a
通过在本发明实施例的铁电超晶格多值存储器的栅极上施加电压,使得不同层数的CIPS铁电材料极化翻转,不同配偶对MoS2的形成反型层或耗尽层,反型层越多,导通电流或者电导值越大,从而实现多值存储。下面结合图2和图3以具有三层沟道的NMOS器件为例详细说明本发明实施例的铁电超晶格多值存储器工作原理。图2为本器件的多值存储的电学特性示意图,横坐标表示器件所施加的栅极电压,纵坐标表示漏极电流。图3-a至图3-g详细示出了本发明实施例中数据写入和数据擦除的工作原理,其中图3-a为器件初始状态,假设铁电层CIPS初始极化方向全部向上,由于栅极未施加电压,故三层硫化钼均为耗尽层,器件不通,电流为“0”,未写入数据,对应于图2中的曲线状态(1)。在数据写入时,如图3-b所示,当在栅极施加小的正电压,电场强度只够让最上层CIPS翻转,进而只达到对应下层的MoS2形成反型层,写入一份数据“1”,对应图2中的曲线状态(2);如图3-c所示,当在栅极增加施加的正电压,电场强度让两层CIPS翻转,进而达到对应两层的MoS2形成反型层,进而写入数据“2”,电流上升为“2”,对应于图2中的曲线状态(3)。如图3-d所示,当在栅极继续增加施加的正电压,最终让所有CIPS极化翻转,对应的所有层MoS2形成反型层,写入数据“3”,电流上升为“3”,对应于图2中的曲线状态(4),存储器空间全满。当进行数据擦除时,假设初始状态存储器存储空间全满,存储数据为“3”,如图3-d中所示,在此基础上进行数据擦除。如图3-e所示,通过在栅极施加小的负电压,电场强度只够让最上层CIPS翻转,进而只达到对应下层的MoS2形成耗尽层,部分擦除后,数据变成“2”,对应图2中的曲线状态(5)。如图3-f所示,当在栅极加大施加的负电压,电场强度够两层的CIPS翻转,进而达到对应下层的MoS2形成耗尽层,擦除后数据变成“1”,对应图2中的曲线状态(6)。进一步如图3-g所示,当在栅极足够大的负电压,电场强度够使得所有CIPS极化翻转,进而达到所有的MoS2层形成耗尽层,数据完全擦除,电流下降为0,回归初始曲线状态(7)。By applying a voltage to the gate of the ferroelectric superlattice multi-value memory of the embodiment of the present invention, the polarization of CIPS ferroelectric materials with different layers is reversed, and different partners form inversion layers or depletion layers of MoS 2 , The more inversion layers, the larger the on-current or the conductance value, thereby realizing multi-value storage. The working principle of the ferroelectric superlattice multi-value memory according to the embodiment of the present invention will be described in detail below with reference to FIG. 2 and FIG. 3 , taking an NMOS device having a three-layer channel as an example. FIG. 2 is a schematic diagram of the electrical characteristics of the multi-value storage of the device, the abscissa represents the gate voltage applied to the device, and the ordinate represents the drain current. Fig. 3-a to Fig. 3-g show in detail the working principles of data writing and data erasing in the embodiment of the present invention, wherein Fig. 3-a is the initial state of the device, assuming that the initial polarization directions of the ferroelectric layer CIPS are all upward , because no voltage is applied to the gate, the three layers of molybdenum sulfide are all depletion layers, the device is blocked, the current is "0", and no data is written, which corresponds to the curve state (1) in Figure 2. During data writing, as shown in Figure 3-b, when a small positive voltage is applied to the gate, the electric field strength is only enough to flip the uppermost CIPS, and then only reaches the corresponding lower MoS 2 to form an inversion layer. The data "1" corresponds to the curve state (2) in Figure 2; as shown in Figure 3-c, when the positive voltage applied to the gate is increased, the electric field strength makes the two layers of CIPS flip, and then the MoS corresponding to the two layers is reached. 2 forms an inversion layer, and then writes data "2", and the current rises to "2", which corresponds to the curve state (3) in FIG. 2 . As shown in Figure 3-d, when the positive voltage applied to the gate continues to increase, the polarization of all CIPS is finally reversed, and all the corresponding layers of MoS 2 form an inversion layer, the data "3" is written, and the current rises to "3" ”, corresponding to the curve state (4) in Figure 2, the memory space is full. When erasing data, it is assumed that the initial state memory storage space is full and the stored data is "3", as shown in Figure 3-d, and data erasing is performed on this basis. As shown in Figure 3-e, by applying a small negative voltage to the gate, the electric field strength is only enough to flip the uppermost layer of CIPS, and then only reaches the corresponding lower layer of MoS 2 to form a depletion layer. After partial erasing, the data becomes "2", corresponding to the curve state (5) in Figure 2. As shown in Figure 3-f, when the negative voltage applied to the gate is increased, the electric field strength is enough to flip the two layers of CIPS, and then reach the corresponding lower layer of MoS 2 to form a depletion layer. After erasing, the data becomes "1", Corresponds to the curve state (6) in FIG. 2 . Further as shown in Fig. 3-g, when the negative voltage at the gate is large enough, the electric field strength is enough to make all CIPS polarizations flip, and then reach all MoS 2 layers to form a depletion layer, the data is completely erased, and the current drops to 0 , return to the initial curve state (7).
在本发明另一实施例中描述了本发明铁电超晶格多值存储器的工艺步骤,如图4-图13所示。首先如图4所示,提供一晶圆101作为衬底,衬底可以采用蓝宝石,氧化硅,氮化硅等,在本实施例中采用氧化硅衬底。然后通过化学气相沉积在晶圆101上生长1-5层左右的硫化钼(MoS2)沟道层102,在其他的实施例中,也可以通过原子层沉积(ALD)或分子束外延(MBE)来生长上述硫化钼沟道层。然后进一步通过化学气相沉积(CVD)在硫化钼沟道层上生长一层1-20nm的硫代磷酸铜铟(CIPS)铁电层103,在其他实施例中,也可以通过原子层沉积(ALD)或分子束外延(MBE)来生长上述CIPS铁电层。通过交替多次生长上述硫化钼沟道层102和硫代磷酸铜铟(CIPS)铁电层103形成铁电超晶格结构。在本实施例中,硫化钼沟道层102和硫代磷酸铜铟(CIPS)铁电层103为3层。然后通过化学气相沉积或等离子体化学气相沉积在上述铁电超晶格结构上沉积形成一层氮化硅层104。In another embodiment of the present invention, the process steps of the ferroelectric superlattice multi-value memory of the present invention are described, as shown in FIGS. 4-13 . First, as shown in FIG. 4 , a
进一步如图5所示,通过光刻对氮化硅层104进行图案化定义出有源区,然后进一步以氮化硅为掩膜对铁电超晶格进行IPC刻蚀形成有源区。随后如图6所示,在有源区上通过PVD沉积一层源漏接触金属层105,在本实施例中,采用Ti作为源漏接触金属,在其它的实施例中,可以采用Pd、Au、TiN等金属。进一步通过CVD在源漏接触金属层105上沉积氧化硅层106,并进行热退火,以改善源漏金属的端式接触。接着对氧化硅106进行CMP露出有源层顶部的氮化硅层104,然后用热磷酸去除氮化硅层104,露出铁电超晶格结构。进一步通过ALD在上述结构上沉积1-10nm的高k栅介质层107,在本实施例中高k栅介质层107为氧化铪,在其他的实施例中,可以采用氧化铝、氮化硅等作为高k栅介质层。然后进一步对高k栅介质层107进行光刻图形化,并通过沉积金属+刻蚀图形化工艺在高k栅介质层107上形成金属栅极108,在本实施例中金属栅极108为Ti金属栅极。Further as shown in FIG. 5 , the
进一步,通过CVD或PECVD在上述步骤形成的结构上形成一层氮化硅掩膜层109,并定义出通孔图案,然后通过ICP刻蚀出连接通孔,通过PVD在通孔中溅射形成钨柱110,并完成外围连接线,从而形成本发明实施例的铁电超晶格多值存储器。Further, a layer of silicon
本发明实施例中的铁电超晶格多值存储器制作工艺过程与传统的集成电路工艺兼容,同时,超晶格结构中所需的铁电材料,沟道材料可通过CVD/ALD/MBE方式进行生长,便于器件集成以及进行大规模生产。在工艺中CVD的氧化硅掩膜,有利于保护端式核心接触金属,并维持器件制作过程中超晶格结构的稳定性。The manufacturing process of the ferroelectric superlattice multi-value memory in the embodiment of the present invention is compatible with the traditional integrated circuit process. At the same time, the ferroelectric materials and channel materials required in the superlattice structure can be obtained by CVD/ALD/MBE methods. growth for ease of device integration and mass production. The CVD silicon oxide mask in the process is beneficial to protect the terminal core contact metal and maintain the stability of the superlattice structure during the device fabrication process.
虽然,上文中已经用一般性说明、具体实施方式,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail above with general description and specific embodiments, some modifications or improvements can be made on the basis of the present invention, which is obvious to those skilled in the art. Therefore, these modifications or improvements made without departing from the spirit of the present invention fall within the scope of the claimed protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210765689.1A CN115224191B (en) | 2022-07-01 | 2022-07-01 | A ferroelectric superlattice multi-value memory device and a method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210765689.1A CN115224191B (en) | 2022-07-01 | 2022-07-01 | A ferroelectric superlattice multi-value memory device and a method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115224191A true CN115224191A (en) | 2022-10-21 |
CN115224191B CN115224191B (en) | 2024-06-28 |
Family
ID=83610156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210765689.1A Active CN115224191B (en) | 2022-07-01 | 2022-07-01 | A ferroelectric superlattice multi-value memory device and a method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115224191B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08274195A (en) * | 1995-03-30 | 1996-10-18 | Mitsubishi Chem Corp | Ferroelectric fet element |
US9685215B1 (en) * | 2016-04-01 | 2017-06-20 | SK Hynix Inc. | Semiconductor memory device including a ferroelectric layer |
CN106910776A (en) * | 2017-04-10 | 2017-06-30 | 温州大学 | Large area molybdenum bisuphide field-effect transistor and its preparation based on high-k gate dielectric |
CN108878642A (en) * | 2018-06-28 | 2018-11-23 | 上海电力学院 | A kind of organic ferromagnetic material superlattices memory cell of two-dimensional material-and its preparation |
KR20180134124A (en) * | 2017-06-08 | 2018-12-18 | 에스케이하이닉스 주식회사 | Ferroelectric Memory Device |
US20200303417A1 (en) * | 2019-03-18 | 2020-09-24 | Mitsubishi Electric Research Laboratories, Inc. | Low Power 2D Memory Transistor for Flexible Electronics and the Fabrication Methods Thereof |
CN111755447A (en) * | 2020-07-13 | 2020-10-09 | 湘潭大学 | A high-density ferroelectric memory cell based on multiple logic states and its control method |
KR102321010B1 (en) * | 2020-05-18 | 2021-11-03 | 충북대학교 산학협력단 | Synapse device and fabrication method of the same |
CN113948635A (en) * | 2021-09-10 | 2022-01-18 | 山东师范大学 | Ferroelectric tunnel junction memristor with high tunnel resistance and preparation method and application thereof |
CN114093927A (en) * | 2021-11-11 | 2022-02-25 | 西安电子科技大学杭州研究院 | Complementary field effect transistor based on ferroelectric doping and manufacturing method thereof |
-
2022
- 2022-07-01 CN CN202210765689.1A patent/CN115224191B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08274195A (en) * | 1995-03-30 | 1996-10-18 | Mitsubishi Chem Corp | Ferroelectric fet element |
US9685215B1 (en) * | 2016-04-01 | 2017-06-20 | SK Hynix Inc. | Semiconductor memory device including a ferroelectric layer |
CN106910776A (en) * | 2017-04-10 | 2017-06-30 | 温州大学 | Large area molybdenum bisuphide field-effect transistor and its preparation based on high-k gate dielectric |
KR20180134124A (en) * | 2017-06-08 | 2018-12-18 | 에스케이하이닉스 주식회사 | Ferroelectric Memory Device |
CN108878642A (en) * | 2018-06-28 | 2018-11-23 | 上海电力学院 | A kind of organic ferromagnetic material superlattices memory cell of two-dimensional material-and its preparation |
US20200303417A1 (en) * | 2019-03-18 | 2020-09-24 | Mitsubishi Electric Research Laboratories, Inc. | Low Power 2D Memory Transistor for Flexible Electronics and the Fabrication Methods Thereof |
KR102321010B1 (en) * | 2020-05-18 | 2021-11-03 | 충북대학교 산학협력단 | Synapse device and fabrication method of the same |
CN111755447A (en) * | 2020-07-13 | 2020-10-09 | 湘潭大学 | A high-density ferroelectric memory cell based on multiple logic states and its control method |
CN113948635A (en) * | 2021-09-10 | 2022-01-18 | 山东师范大学 | Ferroelectric tunnel junction memristor with high tunnel resistance and preparation method and application thereof |
CN114093927A (en) * | 2021-11-11 | 2022-02-25 | 西安电子科技大学杭州研究院 | Complementary field effect transistor based on ferroelectric doping and manufacturing method thereof |
Non-Patent Citations (2)
Title |
---|
LI T, SHARMA P, LIPATOV A, ET AL.: "Polarization-mediated modulation of electronic and transport properties of hybrid MoS2–BaTiO3–SrRuO3 tunnel junctions", 《NANO LETTERS》, vol. 17, no. 2, 17 January 2017 (2017-01-17), pages 5 * |
YANG K, WANG S, HAN T, ET AL.: "Low-power OR logic ferroelectric in-situ transistor based on a CuInP2S6/MoS2 van der Waals heterojunction", 《NANOMATERIALS》, vol. 11, no. 8, 31 July 2021 (2021-07-31) * |
Also Published As
Publication number | Publication date |
---|---|
CN115224191B (en) | 2024-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102140148B1 (en) | Memory device including two-dimensional material and methods of manufacturing and operating the same | |
US7608883B2 (en) | Transistor for non volatile memory devices having a carbon nanotube channel and electrically floating quantum dots in its gate dielectric | |
JP2011517857A (en) | Memory cell using selectively manufactured carbon nanotube reversible resistance switching element and method of forming the same | |
US8945997B2 (en) | Integrated circuits having improved split-gate nonvolatile memory devices and methods for fabrication of same | |
CN110571333B (en) | Manufacturing method of undoped transistor device | |
TWI829006B (en) | Integrated chip and ferroelectric field-effecttransistor device and method for fabricating the same | |
JPWO2008146760A1 (en) | Storage element and reading method thereof | |
KR20080109610A (en) | Capacitorless memory | |
CN112652664B (en) | Semiconductor device and manufacturing method thereof, integrated circuit and electronic equipment | |
TW202145350A (en) | Fin field-effect transistor device and method of forming the same | |
CN115224191B (en) | A ferroelectric superlattice multi-value memory device and a method for manufacturing the same | |
CN108417635B (en) | Quantum dot device and method of making the same | |
CN110767803A (en) | Global manufacturing method for source-drain metal of carbon nanotube device | |
CN115863441A (en) | Edge contact transistor based on two-dimensional material and preparation method | |
CN113299758B (en) | Source-drain double-doped reconfigurable field effect transistor | |
KR20220100492A (en) | Polarization enhancement structure for enlarging memory window | |
CN102593064B (en) | Manufacturing method of gate-control diode semiconductor memory device | |
CN110993694A (en) | Two-dimensional thin film field effect transistor with sub-10nm channel fabricated by self-oxidation | |
CN113035958A (en) | Semiconductor field effect transistor and manufacturing method thereof | |
US7998850B2 (en) | Semiconductor device and method for manufacturing the same | |
US6929983B2 (en) | Method of forming a current controlling device | |
CN110350030B (en) | Preparation method of three-dimensional germanium and germanium-silicon vertical channel transistor | |
CN204130534U (en) | A kind of non-volatile high density three dimensional semiconductor memory device | |
CN112614865B (en) | Junctionless silicon nanowire transistor based on phase change material storage gate and preparation method | |
CN116190436B (en) | A two-dimensional homojunction logic inverter and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |