CN115224138A - 一种水平拉通型锗硅雪崩光电探测器 - Google Patents

一种水平拉通型锗硅雪崩光电探测器 Download PDF

Info

Publication number
CN115224138A
CN115224138A CN202210691507.0A CN202210691507A CN115224138A CN 115224138 A CN115224138 A CN 115224138A CN 202210691507 A CN202210691507 A CN 202210691507A CN 115224138 A CN115224138 A CN 115224138A
Authority
CN
China
Prior art keywords
region
double
layer
substrate
input strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210691507.0A
Other languages
English (en)
Other versions
CN115224138B (zh
Inventor
戴道锌
项宇銮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210691507.0A priority Critical patent/CN115224138B/zh
Publication of CN115224138A publication Critical patent/CN115224138A/zh
Application granted granted Critical
Publication of CN115224138B publication Critical patent/CN115224138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种水平拉通型锗硅雪崩光电探测器。包括第一无源区、第二无源区和有源区,第一无源区通过有源区连接到第二无源区,第一无源区、第二无源区均由输入条形波导与锥形模式转换区构成;有源区中,锗吸收区从硅本征区中生长出来,作为探测器的吸收区;锗吸收区一侧依次与第一电荷收集区和第一欧姆接触层相连,另一侧依次与电荷区/雪崩放大区、第二电荷收集区和第二欧姆接触层相连,第一欧姆接触层和第二欧姆接触层分别与第一电极和第二电极相连。本发明采用水平结构,能够降低加工成本,提高探测器的响应度,获得片上水平拉通型锗硅雪崩光电探测器,具有工艺简单、高响应度、大带宽、高灵敏度等优点。

Description

一种水平拉通型锗硅雪崩光电探测器
技术领域
本发明涉及了光电探测领域的一种光电探测器,尤其涉及一种水平拉通型锗硅雪崩光电探测器。
背景技术
雪崩光电二极管,因其能实现内部增益常用于弱光探测,降低系统整体功耗,被广泛应用于光通信,光学成像等等领域。
硅基光电子器件具有与硅基集成电路完全兼容的工艺,同时具有大带宽,低功耗等等优势,在未来具有广阔的应用前景。硅Si材料的吸收截止波长为1.1μm,而基于III-V族材料的器件制作成本高,不易与硅集成。锗Ge薄膜可与硅集成,且在1260-1600nm的通信波段内具有较好的吸收,锗Ge/硅Si雪崩光电二极管在硅基光电子学领域具有独特的优势。
目前锗Ge/硅Si雪崩光电二极管有些能够简单工艺实现,但却牺牲器件工作性能;有些能够实现优良性能,但加工工艺复杂。在未来大规模硅基光电子的集成应用中,迫切需要具有工作性能优良,同时加工工艺简单且与其他硅基器件工艺兼容的锗Ge/硅Si雪崩光电二极管。
发明内容
为解决上述问题,本发明采用水平设计,引入双层锥形基板,两侧硅浅刻蚀槽和锗嵌入硅等结构提高探测器的响应度,具有工艺简单、高响应度、大带宽、高灵敏度等优点。
本发明采用的技术方案是:
本探测器包括第一输入条形波导、第一双层锥形基板、第二输入条形波导、第二双层锥形基板、第一电极和第二电极;第一输入条形波导和第二输入条形波导沿同一直线依次连接形成整条输入条形波导,整条输入条形波导的两侧对称设置有第一双层锥形基板、第二双层锥形基板,第一双层锥形基板和第二双层锥形基板均通过自身的一个端面与整条输入条形波导接触连接,且第一双层锥形基板和第二双层锥形基板的另一个端面均小于自身与整条输入条形波导接触连接的端面,第一双层锥形基板、第二双层锥形基板各自在靠近整条输入条形波导一侧的顶面开设有一个平行于整条输入条形波导的条形凹槽,分别作为第一浅刻蚀槽、第二浅刻蚀槽;第一双层锥形基板位于第一浅刻蚀槽外侧的部分作为第一欧姆接触层,第二双层锥形基板位于第二浅刻蚀槽外侧的部分作为第二欧姆接触层,第一双层锥形基板在第一浅刻蚀槽处的部分和整条输入条形波导靠近第一浅刻蚀槽处的部分共同构成第一电荷收集区,第二双层锥形基板在第二浅刻蚀槽处的部分和整条输入条形波导靠近第二浅刻蚀槽处的部分沿从第二欧姆接触层到整条输入条形波导的方向依次分为第二电荷收集区和电荷区/雪崩倍增区;所述第一欧姆接触层、第一电荷收集区、硅本征区、电荷区/雪崩倍增区、第二电荷收集区和第二欧姆接触层的两端均分别与第一双层锥形基板远离整条输入条形波导的端面的两端齐平,整条输入条形波导在第一电荷收集区和电荷区/雪崩倍增区之间的部分作为硅本征区,所述第一双层锥形基板和第二双层锥形基板的两侧的端部均为三角形,且所述第一双层锥形基板两侧的端部均通过三角形部分分别与第一输入条形波导和第二输入条形波导过渡连接,且所述第二双层锥形基板两侧的端部均通过三角形部分分别与第一输入条形波导和第二输入条形波导过渡连接,所述第一双层锥形基板靠近第一输入条形波导的三角形部分、所述第二双层锥形基板靠近第一输入条形波导的三角形部分以及第一双层锥形基板靠近第一输入条形波导的三角形部分与第二双层锥形基板靠近第一输入条形波导的三角形部分之间的第一输入条形波导部分构成第一锥形模式转换区,所述第一双层锥形基板靠近第二输入条形波导的三角形部分、所述第二双层锥形基板靠近第二输入条形波导的三角形部分以及第一双层锥形基板靠近第二输入条形波导的三角形部分与第二双层锥形基板靠近第二输入条形波导的三角形部分之间的第二输入条形波导部分构成第二锥形模式转换区,第一欧姆接触层、第一电荷收集区、电荷区/雪崩倍增区、第二电荷收集区和第二欧姆接触层均通过离子注入掺杂制备形成,且离子注入掺杂的离子浓度不同;硅本征区、第一锥形模式转换区和第二锥形模式转换区均未进行离子注入掺杂处理;硅本征区顶面开设有一个平行于整条输入条形波导的第二条形凹槽,第二条形凹槽内布置锗材料形成锗吸收区,所述第一电极和第二电极分别设置在第一欧姆接触层和第二欧姆接触层的顶面。
第一欧姆接触层的离子浓度大于第一电荷收集区的离子浓度,第二欧姆接触层的离子浓度大于第二电荷收集区的离子浓度,第一电荷收集区的离子浓度大于电荷区/雪崩倍增区的离子浓度,第二电荷收集区的离子浓度大于电荷区/雪崩倍增区的离子浓度。
整条输入条形波导在硅本征区所在槽两侧的部分的上表面分别形成高于第一浅刻蚀槽和第二浅刻蚀槽的台阶,两个所述台阶的宽度均为50-100nm。
第一电荷收集区和锗吸收区之间直接连接布置。
所述的硅本征区的槽内向上外延生长锗而形成锗吸收区。
所述第一电荷收集区、电荷区/雪崩倍增区和第二电荷收集区的宽度根据各自的离子浓度的设定而定。
所述第一输入条形波导和第一锥形模式转换区构成第一无源区;第一欧姆接触层、第一电极、第一电荷收集区、锗吸收区、硅本征区、电荷区/雪崩倍增区、第二电荷收集区、第二欧姆接触层和第二电极构成有源区;第二锥形模式转换区和第二输入条形波导构成第二无源区,所述第一无源区通过有源区连接到第二无源区,待输入光源从所述的第一无源区输入或第二无源区输入,或者从第一无源区和第二无源区同时输入。
所述锗吸收区位于有源区中心位置。
所述第一欧姆接触层、第一电荷收集区、硅本征区、电荷区/雪崩倍增区、第二电荷收集区和第二欧姆接触层平行于整条输入条形波导方向的长度均相同,且所述锗吸收区平行于整条输入条形波导方向的长度小于硅本征区的长度,所述锗吸收区的一端与相邻的硅本征区的一端的距离等于所述锗吸收区的另一端与相邻的硅本征区的另一端的距离,所述距离为50-100nm。
所述第一欧姆接触层、第一电荷收集区和电荷区/雪崩倍增区均采用P型离子注入掺杂,第二电荷收集区和第二欧姆接触层均采用N型离子注入掺杂。
本发明的有益效果是:
本发明通过引入双层锥形基板,两侧硅浅刻蚀槽和锗嵌入硅等结构,提升锗硅雪崩光电探测器的响应度。
本发明通过引入水平电荷区/雪崩倍增区的拉通型锗硅结构,能够实现大电光带宽,高增益带宽积的锗硅雪崩光电探测器。
本发明实现了加工工艺简单且与硅基平台其他器件工艺兼容的一种水平拉通型锗硅雪崩光电探测器,具有与其他器件大规模集成的潜力。
附图说明
图1是水平拉通型锗硅探测器的整体结构示意图;
图2是水平拉通型锗硅探测器俯视图;
图3是水平拉通型锗硅探测器有源区截面图;
图4是水平拉通型锗硅探测器左视图;
图5是水平拉通型锗硅探测器响应度随电压及输入光功率变化曲线图;
图6是水平拉通型锗硅探测器频率响应随电压变化图;
图7水平拉通型锗硅探测器带宽/增益带宽积随增益变化图。
图中:1.第一输入条形波导;2.第一双层锥形基板;3.第一欧姆接触层;4.第一电极;5.第一电荷收集区;6.锗吸收区;7.第二输入条形波导;8.第二双层锥形基板;9.电荷区/雪崩倍增区;10.第二电荷收集区;11.第二电极;12.第二欧姆接触层;13.硅本征区;14.第一浅刻蚀槽;15.第二浅刻蚀槽。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
如图1所示,本探测器包括第一输入条形波导1、第一双层锥形基板2、第二输入条形波导7、第二双层锥形基板8、第一电极4和第二电极11;第一输入条形波导1和第二输入条形波导7沿同一直线依次连接形成整条输入条形波导,整条输入条形波导的两侧对称设置有第一双层锥形基板2、第二双层锥形基板8,第一双层锥形基板2和第二双层锥形基板8均通过自身的一个端面与整条输入条形波导接触连接,且第一双层锥形基板2和第二双层锥形基板8的另一个端面均小于自身与整条输入条形波导接触连接的端面,第一双层锥形基板2、第二双层锥形基板8各自在靠近整条输入条形波导一侧的顶面开设有一个平行于整条输入条形波导的槽面宽度为1μm条形凹槽,分别作为第一浅刻蚀槽14、第二浅刻蚀槽15;第一双层锥形基板2位于第一浅刻蚀槽14外侧的部分作为第一欧姆接触层3,第二双层锥形基板8位于第二浅刻蚀槽15外侧的部分作为第二欧姆接触层12,第一双层锥形基板2在第一浅刻蚀槽14处的部分和整条输入条形波导靠近第一浅刻蚀槽14处的部分共同构成第一电荷收集区5,第二双层锥形基板8在第二浅刻蚀槽15处的部分和整条输入条形波导靠近第二浅刻蚀槽15处的部分沿从第二欧姆接触层12到整条输入条形波导的方向依次分为第二电荷收集区10和电荷区/雪崩倍增区9;第一欧姆接触层3、第一电荷收集区5、硅本征区13、电荷区/雪崩倍增区9、第二电荷收集区10和第二欧姆接触层12的两端均分别与第一双层锥形基板2远离整条输入条形波导的端面的两端齐平,整条输入条形波导在第一电荷收集区5和电荷区/雪崩倍增区9之间的部分作为硅本征区13,第一双层锥形基板2和第二双层锥形基板8的两侧的端部均为三角形,且第一双层锥形基板2两侧的端部均通过三角形部分分别与第一输入条形波导1和第二输入条形波导7过渡连接,且第二双层锥形基板8两侧的端部均通过三角形部分分别与第一输入条形波导1和第二输入条形波导7过渡连接,第一双层锥形基板2靠近第一输入条形波导1的三角形部分、第二双层锥形基板8靠近第一输入条形波导1的三角形部分以及第一双层锥形基板2靠近第一输入条形波导1的三角形部分与第二双层锥形基板8靠近第一输入条形波导1的三角形部分之间的第一输入条形波导1部分构成第一锥形模式转换区,第一双层锥形基板2靠近第二输入条形波导7的三角形部分、第二双层锥形基板8靠近第二输入条形波导7的三角形部分以及第一双层锥形基板2靠近第二输入条形波导7的三角形部分与第二双层锥形基板8靠近第二输入条形波导7的三角形部分之间的第二输入条形波导7部分构成第二锥形模式转换区,第一欧姆接触层3、第一电荷收集区5、电荷区/雪崩倍增区9、第二电荷收集区10和第二欧姆接触层12均通过离子注入掺杂制备形成,且离子注入掺杂的离子浓度不同;硅本征区13、第一锥形模式转换区和第二锥形模式转换区均未进行离子注入掺杂处理;硅本征区13顶面开设有一个平行于整条输入条形波导的第二条形凹槽,第二条形凹槽内布置锗材料形成锗吸收区6,第一电极4和第二电极11分别设置在第一欧姆接触层3和第二欧姆接触层12的顶面。
第一欧姆接触层3的离子浓度大于第一电荷收集区5的离子浓度,第二欧姆接触层12的离子浓度大于第二电荷收集区10的离子浓度,第二电荷收集区10的离子浓度大于电荷区/雪崩倍增区9的离子浓度。
整条输入条形波导在硅本征区13所在槽两侧的部分的上表面分别形成高于第一浅刻蚀槽14和第二浅刻蚀槽15的台阶,两个台阶的宽度均为100nm,台阶高度为70nm。
第一电荷收集区5和锗吸收区6之间直接连接布置。
硅本征区13的槽内向上外延生长锗而形成锗吸收区6。
第一电荷收集区5、电荷区/雪崩倍增区9和第二电荷收集区10的宽度根据各自的离子浓度的设定而定。
第一输入条形波导1和第一锥形模式转换区构成第一无源区;第一欧姆接触层3、第一电极4、第一电荷收集区5、锗吸收区6、硅本征区13、电荷区/雪崩倍增区9、第二电荷收集区10、第二欧姆接触层12和第二电极11构成有源区;第二锥形模式转换区和第二输入条形波导7构成第二无源区,第一无源区通过有源区连接到第二无源区,待输入光源从第一无源区输入或第二无源区输入,或者从第一无源区和第二无源区同时输入。
锗吸收区6位于有源区中心位置。
如图2和图4所示,第一欧姆接触层3、第一电荷收集区5、硅本征区13、电荷区/雪崩倍增区9、第二电荷收集区10和第二欧姆接触层12平行于整条输入条形波导方向的长度均相同,且锗吸收区6平行于整条输入条形波导方向的长度小于硅本征区13的长度,锗吸收区6的一端与相邻的硅本征区13的一端的距离等于锗吸收区6的另一端与相邻的硅本征区13的另一端的距离,距离为50nm。
第一欧姆接触层3、第一电荷收集区5和电荷区/雪崩倍增区9均采用P型离子注入掺杂,第二电荷收集区10和第二欧姆接触层12均采用N型离子注入掺杂。
在该实施案例中,锗吸收区6和硅本征区13共同构成锗硅复合型脊形波导。
如图3所示,电荷区/雪崩倍增区9位于硅本征区13与第二电荷收集区10之间,电荷区/雪崩倍增区9采用P型轻等离子浓度掺杂,通过改变电荷区/雪崩倍增区9掺杂的离子浓度以及宽度调节锗吸收区6、硅本征区13和电荷区/雪崩倍增区9的电场分布,从而提高锗硅雪崩光电探测器的增益,带宽,降低雪崩电压。第一电荷收集区5采用P型中等离子浓度掺杂,第二电荷收集区10采用N型中等离子浓度掺杂,第一欧姆接触层3采P型重掺杂,第二欧姆接触层12采用N型中掺杂。
本水平拉通型锗硅雪崩光电探测器时的工作过程具体为:
两束同一偏振态且携带相同信号的输入光分别从第一输入条形波导1和第二输入条形波导7同时输入,再分别通过第一锥形模式转换区和第二锥形模式转换区,然后两束输入光由条形波导光模式渐变为同种的脊形波导光信号,减小模式突变带来的损耗,脊形波导光信号最后进入锗吸收区6。脊形波导光信号在锗吸收区6中逐渐被吸收,生成光生载流子。在电场作用下,光生载流子分离,空穴向第一电荷收集区5移动,电子向电荷区/雪崩倍增区9移动并在其中发生雪崩倍增,雪崩倍增产生的空穴被第一电荷收集区5收集最终汇聚到第一电极4,电子被第二电荷收集区10收集最终汇聚到第二电极11,形成有效光电流。
单束输入光从第一输入条形波导1输入后再通过第一锥形模式转换区或者从第二输入条形波导7输入后再通过第二锥形模式转换区,然后单束输入光由条形波导光模式渐变为同种的脊形波导光信号,减小模式突变带来的损耗,脊形波导光信号最后进入锗吸收区6。脊形波导光信号在锗吸收区6中逐渐被吸收,生成光生载流子。在电场作用下,光生载流子分离,空穴向第一电荷收集区5移动,电子向电荷区/雪崩倍增区9移动并在其中发生雪崩倍增,雪崩倍增产生的空穴被第一电荷收集区5收集最终汇聚到第一电极4,电子被第二电荷收集区10收集最终汇聚到第二电极11,形成有效光电流。
本发明的实施例如下:
第一欧姆接触层3的离子浓度为1×1020,宽度为3μm,第一电荷收集区5的离子浓度为1.5×1019,宽度为1.22μm,第二欧姆接触层12的离子浓度为1×1020,宽度为3μm,第二电荷收集区10的离子浓度为1.5×1019,宽度为0.95μm,电荷区/雪崩倍增区9的离子浓度为2.8×1017,宽度为150nm。
图5、图6和图7分别为本实施例的水平拉通型锗硅雪崩光电探测器实验测试时的响应度、频率响应和增益带宽积随电压变化曲线示意图。由图可知,该器件在偏压为-14V,输入光功率为-11dBm时,响应度为6.7A/W,当光功率为-25dBm时响应度更是达到了68.1A/W。该器件在偏压为-14V时,3dB光电带宽约为48GHz,增益带宽积约为615GHz。由此可见,本发明器件可以获得高响应度,大带宽,高增益带宽积等优良性能的弱光光电探测器。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

1.一种水平拉通型锗硅雪崩光电探测器,其特征在于:包括第一输入条形波导(1)、第一双层锥形基板(2)、第二输入条形波导(7)、第二双层锥形基板(8)、第一电极(4)和第二电极(11);第一输入条形波导(1)和第二输入条形波导(7)沿同一直线依次连接形成整条输入条形波导,整条输入条形波导的两侧对称设置有第一双层锥形基板(2)、第二双层锥形基板(8),第一双层锥形基板(2)和第二双层锥形基板(8)均通过自身的一个端面与整条输入条形波导接触连接,且第一双层锥形基板(2)和第二双层锥形基板(8)的另一个端面均小于自身与整条输入条形波导接触连接的端面,第一双层锥形基板(2)、第二双层锥形基板(8)各自在靠近整条输入条形波导一侧的顶面开设有一个平行于整条输入条形波导的条形凹槽,分别作为第一浅刻蚀槽(14)、第二浅刻蚀槽(15);第一双层锥形基板(2)位于第一浅刻蚀槽(14)外侧的部分作为第一欧姆接触层(3),第二双层锥形基板(8)位于第二浅刻蚀槽(15)外侧的部分作为第二欧姆接触层(12),第一双层锥形基板(2)在第一浅刻蚀槽(14)处的部分和整条输入条形波导靠近第一浅刻蚀槽(14)处的部分共同构成第一电荷收集区(5),第二双层锥形基板(8)在第二浅刻蚀槽(15)处的部分和整条输入条形波导靠近第二浅刻蚀槽(15)处的部分沿从第二欧姆接触层(12)到整条输入条形波导的方向依次分为第二电荷收集区(10)和电荷区/雪崩倍增区(9);所述第一欧姆接触层(3)、第一电荷收集区(5)、硅本征区(13)、电荷区/雪崩倍增区(9)、第二电荷收集区(10)和第二欧姆接触层(12)的两端均分别与第一双层锥形基板(2)远离整条输入条形波导的端面的两端齐平,整条输入条形波导在第一电荷收集区(5)和电荷区/雪崩倍增区(9)之间的部分作为硅本征区(13),所述第一双层锥形基板(2)和第二双层锥形基板(8)两侧的端部均为三角形,且所述第一双层锥形基板(2)两侧的端部均通过三角形部分分别与第一输入条形波导(1)和第二输入条形波导(7)过渡连接,且所述第二双层锥形基板(8)两侧的端部均通过三角形部分分别与第一输入条形波导(1)和第二输入条形波导(7)过渡连接,所述第一双层锥形基板(2)靠近第一输入条形波导(1)的三角形部分、所述第二双层锥形基板(8)靠近第一输入条形波导(1)的三角形部分以及第一双层锥形基板(2)靠近第一输入条形波导(1)的三角形部分与第二双层锥形基板(8)靠近第一输入条形波导(1)的三角形部分之间的第一输入条形波导(1)部分构成第一锥形模式转换区,所述第一双层锥形基板(2)靠近第二输入条形波导(7)的三角形部分、所述第二双层锥形基板(8)靠近第二输入条形波导(7)的三角形部分以及第一双层锥形基板(2)靠近第二输入条形波导(7)的三角形部分与第二双层锥形基板(8)靠近第二输入条形波导(7)的三角形部分之间的第二输入条形波导(7)部分构成第二锥形模式转换区,第一欧姆接触层(3)、第一电荷收集区(5)、电荷区/雪崩倍增区(9)、第二电荷收集区(10)和第二欧姆接触层(12)均通过离子注入掺杂制备形成,且离子注入掺杂的离子浓度不同;硅本征区(13)、第一锥形模式转换区和第二锥形模式转换区均未进行离子注入掺杂处理;硅本征区(13)顶面开设有一个平行于整条输入条形波导的第二条形凹槽,第二条形凹槽内布置锗材料形成锗吸收区(6),所述第一电极(4)和第二电极(11)分别设置在第一欧姆接触层(3)和第二欧姆接触层(12)的顶面。
2.根据权利要求1所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:第一欧姆接触层(3)的离子浓度大于第一电荷收集区(5)的离子浓度,第二欧姆接触层(12)的离子浓度大于第二电荷收集区(10)的离子浓度,第一电荷收集区(5)的离子浓度大于电荷区/雪崩倍增区(9)的离子浓度,第二电荷收集区(10)的离子浓度大于电荷区/雪崩倍增区(9)的离子浓度。
3.根据权利要求1所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:整条输入条形波导在硅本征区(13)所在槽两侧的部分的上表面分别形成高于第一浅刻蚀槽(14)和第二浅刻蚀槽(15)的台阶,两个所述台阶的宽度均为50-100nm。
4.根据权利要求1所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:第一电荷收集区(5)和锗吸收区(6)之间直接连接布置。
5.根据权利要求1所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:所述的硅本征区(13)的槽内向上外延生长锗而形成锗吸收区(6)。
6.根据权利要求1所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:所述第一电荷收集区(5)、电荷区/雪崩倍增区(9)和第二电荷收集区(10)的宽度根据各自的离子浓度的设定而定。
7.根据权利要求1所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:所述第一输入条形波导(1)和第一锥形模式转换区构成第一无源区;第一欧姆接触层(3)、第一电极(4)、第一电荷收集区(5)、锗吸收区(6)、硅本征区(13)、电荷区/雪崩倍增区(9)、第二电荷收集区(10)、第二欧姆接触层(12)和第二电极(11)构成有源区;第二锥形模式转换区和第二输入条形波导(7)构成第二无源区,所述第一无源区通过有源区连接到第二无源区,待输入光源从所述的第一无源区输入或第二无源区输入,或者从第一无源区和第二无源区同时输入。
8.根据权利要求7所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:所述锗吸收区(6)位于有源区中心位置。
9.根据权利要求8所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:所述第一欧姆接触层(3)、第一电荷收集区(5)、硅本征区(13)、电荷区/雪崩倍增区(9)、第二电荷收集区(10)和第二欧姆接触层(12)平行于整条输入条形波导方向的长度均相同,且所述锗吸收区(6)平行于整条输入条形波导方向的长度小于硅本征区(13)的长度,所述锗吸收区(6)的一端与相邻的硅本征区(13)的一端的距离等于所述锗吸收区(6)的另一端与相邻的硅本征区(13)的另一端的距离,所述距离为50-100nm。
10.根据权利要求7所述的一种水平拉通型锗硅雪崩光电探测器,其特征在于:所述第一欧姆接触层(3)、第一电荷收集区(5)和电荷区/雪崩倍增区(9)均采用P型离子注入掺杂,第二电荷收集区(10)和第二欧姆接触层(12)均采用N型离子注入掺杂。
CN202210691507.0A 2022-06-17 2022-06-17 一种水平拉通型锗硅雪崩光电探测器 Active CN115224138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210691507.0A CN115224138B (zh) 2022-06-17 2022-06-17 一种水平拉通型锗硅雪崩光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210691507.0A CN115224138B (zh) 2022-06-17 2022-06-17 一种水平拉通型锗硅雪崩光电探测器

Publications (2)

Publication Number Publication Date
CN115224138A true CN115224138A (zh) 2022-10-21
CN115224138B CN115224138B (zh) 2023-12-08

Family

ID=83607899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210691507.0A Active CN115224138B (zh) 2022-06-17 2022-06-17 一种水平拉通型锗硅雪崩光电探测器

Country Status (1)

Country Link
CN (1) CN115224138B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117334761A (zh) * 2023-11-27 2024-01-02 之江实验室 一种反射型锗硅雪崩光电探测器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078145A (zh) * 2014-11-18 2017-08-18 王士原 经微结构增强吸收的光敏器件
CN109742175A (zh) * 2019-01-02 2019-05-10 北京工业大学 垂直耦合型波分复用光信号接收共面光电探测器
US20190288132A1 (en) * 2013-05-22 2019-09-19 W&Wsens, Devices Inc. Microstructure enhanced absorption photosensitive devices
CN111048606A (zh) * 2019-12-25 2020-04-21 武汉邮电科学研究院有限公司 一种高带宽高响应度的锗硅光电探测器
CN112051582A (zh) * 2020-09-28 2020-12-08 国科光芯(海宁)科技股份有限公司 一种阵列式相干测距芯片及其系统
CN112531067A (zh) * 2020-12-02 2021-03-19 吉林大学 一种锗硅雪崩光电探测器
WO2022021741A1 (zh) * 2020-07-30 2022-02-03 武汉光谷信息光电子创新中心有限公司 一种侧向结构雪崩光电探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190288132A1 (en) * 2013-05-22 2019-09-19 W&Wsens, Devices Inc. Microstructure enhanced absorption photosensitive devices
CN107078145A (zh) * 2014-11-18 2017-08-18 王士原 经微结构增强吸收的光敏器件
CN109742175A (zh) * 2019-01-02 2019-05-10 北京工业大学 垂直耦合型波分复用光信号接收共面光电探测器
CN111048606A (zh) * 2019-12-25 2020-04-21 武汉邮电科学研究院有限公司 一种高带宽高响应度的锗硅光电探测器
WO2022021741A1 (zh) * 2020-07-30 2022-02-03 武汉光谷信息光电子创新中心有限公司 一种侧向结构雪崩光电探测器及其制备方法
CN112051582A (zh) * 2020-09-28 2020-12-08 国科光芯(海宁)科技股份有限公司 一种阵列式相干测距芯片及其系统
CN112531067A (zh) * 2020-12-02 2021-03-19 吉林大学 一种锗硅雪崩光电探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
廖雅香;张均营;余凯;薛春来;李传波;成步文: "SiGe/Si单光子雪崩光电二极管仿真", 红外与激光工程, vol. 45, no. 5 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117334761A (zh) * 2023-11-27 2024-01-02 之江实验室 一种反射型锗硅雪崩光电探测器

Also Published As

Publication number Publication date
CN115224138B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US6515315B1 (en) Avalanche photodiode for high-speed applications
CN113035982B (zh) 全硅掺杂多结电场增强型锗光波导探测器
US20050051861A1 (en) Avalanche photo-detector with high saturation power and high gain-bandwidth product
CN110212053B (zh) 一种硅基叉指型光电探测器
WO2017148098A1 (zh) 光波导探测器与光模块
JP2011040445A (ja) 半導体受光装置及びその製造方法
CN109075219B (zh) 光波导集成光接收元件及其制造方法
JP4093304B2 (ja) アバランシ・フォトダイオード
CN115224138B (zh) 一种水平拉通型锗硅雪崩光电探测器
JP6699055B2 (ja) アバランシェ受光器
CN115295646A (zh) 一种高性能光探测器芯片外延片
CN115832095A (zh) 锗硅光电探测器
US20080179700A1 (en) Photodetector and manufacturing method thereof
US20040036146A1 (en) Phototransistor device with fully depleted base region
JP6362142B2 (ja) ゲルマニウム受光器
JP4304338B2 (ja) 光検出素子
JPH11330536A (ja) 半導体受光素子
CN115440834A (zh) 波导型硅基短波红外波段雪崩光电探测器及其制作方法
JP3610910B2 (ja) 半導体受光素子
CN220155555U (zh) 一种片上集成的微波光子探测器
KR101705725B1 (ko) 저전압 고이득 고속 광 검출기 및 그의 제조방법
CN218769537U (zh) 一种光子集成增益探测器结构
CN115101612B (zh) 一种硅基双重多量子阱的高速pin探测器
CN113629159B (zh) 硅红外增强倏逝波耦合雪崩光电探测器及其制作方法
WO2024027359A1 (zh) 一种光电探测器、其制备方法及光接收机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant