CN115223995A - 半导体存储器结构 - Google Patents

半导体存储器结构 Download PDF

Info

Publication number
CN115223995A
CN115223995A CN202110422428.5A CN202110422428A CN115223995A CN 115223995 A CN115223995 A CN 115223995A CN 202110422428 A CN202110422428 A CN 202110422428A CN 115223995 A CN115223995 A CN 115223995A
Authority
CN
China
Prior art keywords
layer
plug
semiconductor
liner
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110422428.5A
Other languages
English (en)
Inventor
张皓筌
杨峻昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winbond Electronics Corp
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to CN202110422428.5A priority Critical patent/CN115223995A/zh
Publication of CN115223995A publication Critical patent/CN115223995A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Abstract

一种半导体存储器结构,包含半导体基板、设置于半导体基板上的位线、以及设置于位线一侧的电容接触件。电容接触件包含设置于半导体基板上的半导体插塞、设置于半导体插塞上的金属插塞、沿着金属插塞的侧壁和底部延伸的金属硅化物衬层、以及设置于金属硅化物衬层上的氮化物层。金属硅化物衬层的顶表面低于金属插塞的顶表面。氮化物层围绕金属插塞的顶部。

Description

半导体存储器结构
技术领域
本发明有关于一种半导体存储器结构,且特别是有关于动态随机存取存储器接触件结构。
背景技术
动态随机存取存储器(Dynamic Random Access Memory,DRAM)装置广泛地应用于消费性电子产品中。为了增加动态随机存取存储器装置内的器件密度以及改善其整体表现,目前动态随机存取存储器装置的制造技术持续朝向器件尺寸的微缩化而努力。
然而,当器件尺寸持续缩小时,许多挑战随之而生。举例而言,在半导体制造工艺中,由于半导体插塞与金属插塞的接触面积较小,因此在位线之间产生较大的电容值。目前业界仍努力改进动态随机存取存储器装置的制造方法,以克服器件尺寸缩小所产生的问题。
发明内容
本发明实施例提供半导体存储器结构,包含半导体基板、设置于半导体基板上的位线、以及设置于位线一侧的电容接触件。电容接触件包含设置于半导体基板上的半导体插塞、设置于半导体插塞上的金属插塞、沿着金属插塞的侧壁和底部延伸的金属硅化物衬层、以及设置于金属硅化物衬层上的氮化物层。金属硅化物衬层的顶表面低于金属插塞的顶表面。氮化物层围绕金属插塞的顶部。
本发明实施例借由延伸至金属插塞的两侧侧壁的金属硅化物衬层,可减少电容接触件的电阻,还可降低位线的电容值。
附图说明
为让本发明的特征和优点能更明显易懂,下文特举不同实施例,并配合所附图式作详细说明如下:
图1是根据本发明的一些实施例,绘示半导体存储器结构的俯视示意图。
图2-图11是根据本发明的一些实施例,绘示形成半导体存储器结构在不同阶段的剖面示意图。
图12是根据本发明的一些实施例,绘示半导体存储器结构的俯视示意图。
图13-图14是根据本发明的其他实施例,绘示形成半导体存储器结构在不同阶段的剖面示意图。
图15是根据本发明的一些实施例,绘示半导体存储器结构的俯视示意图。
图16-图18是根据本发明的其他实施例,绘示形成半导体存储器结构在不同阶段的剖面示意图。
100:半导体存储器结构
102:半导体基板
102A:主动区
102B:隔离区
104:隔离部件
1041:隔离衬层
1042:隔离填充物
106:字线
108:位线接触件
109:间隔物
110:盖层
112:氧化物层
114:氮化物层
120:位线
122,123:导电层
121,124,125:介电层
130:介电衬层
131:氮化物衬层
132:氧化物衬层
133:氮化物衬层
140:电容接触件
141,141’,141”:半导体材料
142:半导体插塞
1420:凹口
143:氮化物材料层
144:氮化物层
146:金属硅化物衬层
147:附着层
148:金属插塞
150:保护层
152:介电层
154:导电阻障层
160:电容结构
162:电极层
164:介电层
166:电极层
D1,D2,D3,Z:方向
WN,WN1,WN2,WM,WM1,WM2,WS:宽度
具体实施方式
图1是根据本发明的一些实施例,绘示半导体存储器结构100的俯视示意图。在一些实施例中,半导体存储器结构100是动态随机存取存储器(DRAM)阵列(array)的一部分。在一些实施例中,半导体存储器结构100包含半导体基板102、字线106、位线接触件108、位线120、介电衬层130、以及电容接触件140。
半导体基板102包含主动区102A与环绕主动区102A的隔离区102B。介电衬层130包含一对氮化物衬层131、133与夹在一对氮化物衬层131、133之间的氧化物衬层132。电容接触件140包含金属插塞144与围绕金属插塞144的附着层147及氮化物层148。应注意的是,图1所绘示出的俯视图仅显示部分器件。
在此实施例中,字线106沿着第一方向D1延伸,位线120沿着第二方向D2延伸,而主动区102A沿着第三方向D3延伸。在此实施例中,第一方向D1与第二方向D2垂直,而第三方向D3(即,主动区102A的延伸方向)与第二方向D2呈现大约10-40°的夹角,例如20°,以提高器件的积集度。
应注意的是,图1仅显示动态随机存取存储器(DRAM)的部分器件以简化图式。而后续图示为沿着图2中剖线A-A’所示的剖面示意图(第一方向D1与高度方向Z所形成的平面),以利于说明半导体存储器结构的形成方法。
图2-图11是根据本发明的一些实施例,绘示形成半导体存储器结构100在不同阶段的剖面示意图。
如图2所示,提供半导体基板102。在一些实施例中,半导体基板102可以是元素半导体基板,例如硅基板、或锗基板;或化合物半导体基板,例如碳化硅基板、或砷化镓基板。在一些实施例中,半导体基板102可以是绝缘体上的半导体(semiconductor-on-insulator,SOI)基板。
在图2中,半导体基板102包含主动区102A与隔离区102B,且彼此交错排列。
在图2中,在半导体基板102的隔离区102B中设置隔离部件104,其包含隔离衬层1041与隔离填充物1042。
在一些实施例中,隔离衬层1041与隔离填充物1042可包含氮化物或氧化物,例如氧化硅(SiO)、氮化硅(SiN)、氮氧化硅(SiON)、及/或前述的组合。隔离衬层1041与隔离填充物1042的形成可包含图案化制造工艺、沉积制造工艺、平坦化制造工艺。
在一些实施例中,在半导体基板的主动区中埋设字线(未绘示)。在一些实施例中,字线作为闸极,并包含闸极介电层、闸极衬层、以及闸极电极(未绘示)。应注意的是,由于图1中的字线106沿着第一方向D1延伸,且剖线A-A’并未接触到字线106,因此在图2中并没有出现字线。
在图2中,位线接触件108部分埋置在半导体基板102的主动区102A中,以利于后续与位线120电连接。在一些实施例中,位线接触件108的两侧设置间隔物109,以防止位线接触件与后续形成的电容接触件连接而形成短路。
在一些实施例中,位线接触件108为导电材料,其包含掺杂多晶硅、金属、或金属氮化物等等。在一些实施例中,位线接触件108的形成包含使用前述的沉积制造工艺及图案化制造工艺,因此在此不再赘述。
在一些实施例中,位线接触件108为具有掺质的多晶硅,以降低与后续形成的位线的接触电阻。掺质可包含n型或p型掺质,例如氮、砷、磷、锑离子或硼、铝、镓、铟、三氟化硼离子(BF3+)。
在一些实施例中,间隔物109为介电材料,其包含氮化物,例如氮化硅。在一些实施例中,间隔物109的形成包含使用前述的沉积制造工艺及刻蚀制造工艺,因此在此不再赘述。
请继续参照图2,盖层110形成于半导体基板102上,以保护半导体基板内的器件不受后续制造工艺影响而损害。在一些实施例中,盖层110包含氧化物层112与氮化物层114。
在一些实施例中,氧化物层112包含由四乙氧基硅烷(tetraethylorthosilicate,TEOS)形成的氧化硅层。在一些实施例中,氮化物层114包含氮化硅(SiN)或氮氧化硅(SiON)。在一些实施例中,氧化物层112与氮化物层114可借由如上所述的沉积制造工艺依序来形成。
接着,如图2所示,形成位线120在半导体基板102上,也包含形成位线120在位线接触件108上。在一些实施例中,在位线接触件108上的位线120包含位于位线接触件108上的导电层122与123、及位于导电层122与123上的介电层124与125。而在隔离部件104上的位线120包含位于盖层110上的介电层121、位于介电层121上的导电层122与123、及位于导电层122与123上的介电层124与125。借由最上层的介电层144与145,可保护下方膜层(例如导电层122与123)在后续制造工艺中免于受到损害。
在一些实施例中,导电层122与123包含掺杂的多晶硅、金属、或金属氮化物,例如钨(W)、钛(Ti)及氮化钛(TiN)等。在一些实施例中,介电层121、124与125包含氮化物或氧化物,例如氮化硅或氧化硅等。
在一些实施例中,位线120的形成包含如前所述的沉积制造工艺与图案化制造工艺,因此在此不再赘述。
接着,如图2所示,形成介电衬层130在位线120的两侧壁与顶表面上以及盖层110上,可防止位线120与后续形成的电容接触件直接接触而形成短路。
在一些实施例中,位于位线120的两侧壁的介电衬层130包含氮化物衬层131与氮化物衬层133、以及设置于两者之间的氧化物衬层132,借以防止位线120与后续形成的电容接触件之间产生寄生电容。在一替代实施例中,氧化物衬层132也可由气隙(air gap)取代。
在一些实施例中,位于位线120的顶表面上与盖层110上的介电衬层130仅包含氮化物衬层133,以保护下方膜层不受后续制造工艺影响。
在一些实施例中,先借由沉积制造工艺沉积氮化物衬层131与氧化物衬层132后,再借由回蚀制造工艺去除位于位线120的顶表面上与盖层的顶表面上的氮化物衬层131与氧化物衬层132,最后再借由沉积制造工艺沉积氮化物衬层133,使得氧化物衬层132夹设在氮化物衬层131与133之间。
接着,图3-图10为在位线120的一侧形成电容接触件140的不同阶段的剖面图。
如图3所示,借由回蚀制造工艺沿着介电衬层120的侧壁凹蚀盖层110与半导体基板102(也包含刻蚀部分的间隔物109),使后续形成的电容接触件与半导体基板102的主动区102A电连接。
接着,如图4-图5所示,借由沉积制造工艺沉积半导体材料141,再借由回蚀制造工艺刻蚀半导体材料141,使半导体材料141’的顶表面低于位线120的顶表面。在一些实施例中,半导体材料141包含掺杂多晶硅。
接着,如图6-图7所示,借由沉积制造工艺顺应性沉积氮化物材料层143,再借由刻蚀制造工艺刻蚀位于半导体材料141’的顶表面上与介电衬层130的顶表面上的氮化物材料层143直到部分的半导体材料141’的顶表面露出,而留下位线120两侧的氮化物层144。
在一些实施例中,氮化物层144的顶表面与介电衬层130的顶表面齐平,使得氮化物层144具有较精细的图案,而利于后续定义出金属硅化物衬层。此外,氮化物层144的侧壁直接接触介电衬层130的侧壁。
接着,如图8所示,以氮化物层144作为刻蚀遮罩,借由刻蚀制造工艺刻蚀半导体材料141’,以形成具有凹口1420的半导体材料141”。在图8中,半导体材料141”呈现U形并围绕凹口1420,至少一部分的半导体材料141”将在后续转化为金属硅化物衬层。
接着,如图9所示,借由硅化(silicidation)制造工艺将沿着凹口1420的半导体材料141”转变为金属硅化物衬层146,以降低与后续金属插塞(未绘示)的接触电阻。
具体来说,在氮化物层144正下方且沿着凹口的半导体材料141”完全转变为金属硅化物衬层146,而在凹口下方的半导体材料141”仅部分转变为金属硅化物衬层146,而剩余的半导体材料141”作为半导体插塞142。也就是说,经硅化后的半导体材料141”被取代成半导体插塞142与金属硅化物衬层146,其中,半导体插塞142仅直接接触介电衬层130的下部侧壁,而金属硅化物衬层146仅直接接触介电衬层130的上部侧壁。
在一些实施例中,金属硅化物衬层146呈现U形并且金属硅化物衬层146的顶表面直接接触氮化物层144的底表面。在一些实施例中,氮化物层144的两侧侧壁皆与金属硅化物衬层146的两侧侧壁齐平,以有效降低位线电容。也就是说,氮化物层144的宽度与金属硅化物衬层146的宽度相同。
在一些实施例中,硅化制造工艺包含先沉积金属(例如钴)在半导体插塞142上,对前述金属进行退火制造工艺,再使用湿刻蚀制造工艺移除前述金属未进行反应的部分,以形成金属硅化物衬层146。在一些实施例中,金属硅化物衬层146包含钴化硅(CoSi)。
接着,借由沉积制造工艺与平坦化制造工艺沿着金属硅化物衬层146的表面形成附着层材料,并且在附着层材料上形成金属材料,再借由平坦化制造工艺除去多余的部分,以形成附着层147与金属插塞148,并得到如图10所示的结构。在一些实施例中,附着层147的顶表面、金属插塞148的顶表面与氮化物层144的顶表面齐平。
在一些实施例中,附着层147可增加金属硅化物衬层146与金属插塞148之间的黏着力。
在一些实施例中,由于附着层147沿着金属硅化物衬层146的侧壁和底部形成,因此附着层147呈现为U形并且围绕金属插塞148。
在一些实施例中,附着层147设置在金属硅化物衬层146与金属插塞148之间。在一些实施例中,附着层147沿着氮化物层144的侧壁与金属硅化物衬层的侧壁与底部延伸,并且直接接触氮化物层144与金属硅化物衬层146。在一些实施例中,附着层147包含钛(Ti)或氮化钛(TiN)等。
在一些实施例中,金属硅化物衬层146位于氮化物层144之下,而金属插塞148与氮化物层144齐平,因此金属硅化物衬层146的顶表面低于金属插塞148的顶表面。
在一些实施例中,金属插塞148的顶部被氮化物层144围绕,而金属插塞148的底部与侧壁被金属硅化物衬层146围绕。
相较于仅在金属插塞的底部设置金属硅化物衬层的实施态样,本发明实施例更在金属插塞148的侧壁设置金属硅化物衬层146而增加接触面积,可降低电容接触件的电阻。
在一些实施例中,金属插塞148的底表面不低于位线120中的导电层123的底表面,且金属插塞148借由金属硅化物衬层146隔开导电层123,借以降低位线120与电容接触件140的电容值。
在一些实施例中,氮化物层144的宽度WN为金属插塞148的宽度WM的5%-20%。当大于上述范围时,金属插塞148与后续所形成的电容的接触面积过小,具有较大接触电阻,而影响效能。当小于上述范围时,则图案化过程中氮化物层144容易被侵蚀,进而难以定义出U形金属硅化物衬层146。
在一些实施例中,位线接触件108下方的半导体基板102中具有掺杂区(未绘示),其可作为源极,电容接触件170下方的半导体基板102也具有掺杂区(未绘示),其可作为汲极。可搭配图1,在任一沿着第三方向D3延伸的主动区102A中,排列顺序为电容接触件140、字线106、位线接触件108、字线106、电容接触件140,而可分别作为汲极、闸极、源极、闸极、汲极。也就是说,在主动区102A中含有两组电晶体结构共用同一个源极,而可更有效利用布局节省制造成本。
接着参照图11,在电容接触件140与位线120上形成介电层152、导电阻障层154与电容结构160。
在一些实施例中,介电层152与导电阻障层154两者交错排列。导电阻障层154位于电容接触件140的正上方且横跨至介电衬层130。在一些实施例中,导电阻障层154包含可阻挡刻蚀溶液渗透的材料,例如钨或铜。
在一些实施例中,电容结构160包含电极层162与166及夹设于其中的介电层164。在一些实施例中,电极层162形成在导电阻障层154上,且具有U型的剖面轮廓。在一些实施例中,介电层164沿着电极层162与导电阻障层154延伸,且为连续的膜层。应注意的是,图11的电容结构仅为示例,本领域技术人员也可应用不同于图11的电容结构在电容接触件140上。
在一些实施例中,介电层164可包含氮化硅(Si3N4)、氧化铝(Al2O3)、氧化钇(Y2O3)、氧化钛(TiO)、二氧化铪(HfO2)或二氧化锆(ZrO2)等。在一些实施例中,电极层162与166可包含硅锗(SiGe)、钛、氮化钛、氮化钨、钽或氮化钽等,借以降低漏电流。
应注意的是,在形成电容结构160之后仍可形成额外的部件,例如金属层与介电层等,以完成记忆器件(如动态随机存取存储器(DRAM))的制作。
综上所述,本发明实施例借由金属硅化物衬层沿着金属插塞的侧壁延伸,不但可减少电容接触件的电阻,还可降低位线的电容值。
图12是根据本发明的一些实施例,绘示半导体存储器结构的俯视示意图。应注意的是,为了凸显电容接触件140的构成,图12所绘示出的俯视图仅显示部分器件。
详细来说,图12揭示出电容接触件140包含金属插塞148、围绕着金属插塞148的附着层147与金属硅化物衬层146。并且,金属硅化物衬层146位于外圈,而附着层147位于内圈,以防止金属插塞144从金属硅化物衬层146的表面剥离。
图13-图14是根据本发明的其他实施例,绘示形成半导体存储器结构在不同阶段的剖面示意图。
承接图8,借由调宽氮化物层144的宽度或是缩短硅化制造工艺的时间,可使氮化物层144正下方的半导体材料141”仅部分转变为金属硅化物衬层146,剩余的半导体材料141”则作为半导体插塞142。也就是说,半导体插塞142呈现U形并围绕金属硅化物衬层146,而介电衬层130设置于半导体插塞142的两侧侧壁上。
在一些实施例中,半导体插塞142的顶表面与金属硅化物衬层146的顶表面齐平并且直接接触氮化物层144的底表面。在一些实施例中,氮化物层144的两侧侧壁分别与半导体插塞142及金属硅化物衬层146共线,也就是说,氮化物层144的侧壁分别与半导体插塞142的侧壁及金属硅化物衬层146齐平。
借由半导体插塞142更设置于金属硅化物衬层146的侧壁上,以增加产能。
接着,类似于上述制造工艺,形成附着层147与金属插塞148,而可得到如图14的半导体存储器结构。
在一些实施例中,金属硅化物衬层146的宽度WS与氮化物层144的宽度WN的比例不低于30%,例如在图13中宽度WS与宽度WN的比例为30%-小于100%,或者在图10中宽度WS与宽度WN的比例为100%,可以较低的成本降低接触电阻。由于氮化物层144用于定义出半导体材料(或金属硅化物衬层)的形状,因此上述比例难以超过100%。
图15是根据本发明的一些实施例,绘示半导体存储器结构的俯视示意图。应注意的是,为了凸显电容接触件140的构成,图15所绘示出的俯视图仅显示部分器件。
图15类似于图12,其差异在于电容接触件140。具体来说,图15揭示出电容接触件140包含金属插塞148、围绕着金属插塞148的附着层147、金属硅化物衬层146与半导体插塞142。并且,以金属插塞148为中心,由内而外分别为附着层147、金属硅化物衬层146与半导体插塞142。也就是说,在电容接触件140中,最外圈为半导体插塞142,以降低位线的电容值。
图16-图18是根据本发明的其他实施例,绘示形成半导体存储器结构在不同阶段的剖面示意图。
图16承接图6,在一些实施例中,借由调整刻蚀条件,例如使氮化物层144的上方的刻蚀速率较下方快,因此氮化物层144呈现上窄下宽的梯形。
接着,图17类似于图8,以氮化物层144的底部作为刻蚀遮罩,借由刻蚀制造工艺刻蚀半导体材料141’,以形成具有凹口1420的半导体插塞142。
接着,借由类似于上述的制造工艺,形成金属硅化物衬层146、附着层147与金属插塞148,而可得到如图18的半导体存储器结构。在图17中,由于氮化物层144的顶表面的宽度WN1比底表面的宽度WN2窄,因此所形成的金属插塞148的顶部WM1的宽度比金属插塞148的底部WM2宽。借此,减少金属插塞148与上方器件(例如电容)的接触电阻。
综上所述,本发明实施例借由延伸至金属插塞的两侧侧壁的金属硅化物衬层,可减少电容接触件的电阻,还可降低位线的电容值。此外,借由形成围绕金属硅化物衬层的半导体插塞,可更进一步降低位线的电容值。另外,借由不均匀的宽度(例如顶部宽底部窄)的金属插塞,可在减少位线的电容值的情况下,同时减少与上方器件的接触电阻。

Claims (10)

1.一种半导体存储器结构,其特征在于,包括:
一半导体基板;
一位线,设置于该半导体基板上;以及
一电容接触件,设置于该位线的一侧,其中该电容接触件包括:
一半导体插塞,设置于半导体基板上;
一金属插塞,设置于该半导体插塞上;
一金属硅化物衬层,沿着该金属插塞的侧壁和底部延伸,其中该金属硅化物衬层的顶表面低于该金属插塞的顶表面;以及
一氮化物层,设置于该金属硅化物衬层上,且该氮化物层围绕该金属插塞的顶部。
2.如权利要求1所述的半导体存储器结构,其特征在于,该氮化物层的顶表面与该金属插塞的顶表面齐平。
3.如权利要求1所述的半导体存储器结构,其特征在于,该氮化物层的侧壁与该半导体插塞的侧壁齐平。
4.如权利要求1所述的半导体存储器结构,其特征在于,更包括一介电衬层,设置于该位线与该电容接触件之间,其中该氮化物层的顶表面与该介电衬层的顶表面齐平。
5.如权利要求4所述的半导体存储器结构,其特征在于,该氮化物层位于该介电衬层与该金属插塞之间并且直接接触该介电衬层。
6.如权利要求1所述的半导体存储器结构,其特征在于,更包括一附着层,设置于该金属硅化物衬层与该金属插塞之间。
7.如权利要求6所述的半导体存储器结构,其特征在于,该附着层的顶表面与该金属插塞的顶表面齐平。
8.如权利要求1所述的半导体存储器结构,其特征在于,该半导体插塞为U形并围绕该金属插塞。
9.如权利要求1所述的半导体存储器结构,其特征在于,在剖面图上,该金属硅化物衬层的宽度与该氮化物层的宽度的比例为30%-100%。
10.如权利要求1所述的半导体存储器结构,其特征在于,在剖面图上,该氮化物层的宽度为该金属插塞的宽度的5%-20%。
CN202110422428.5A 2021-04-20 2021-04-20 半导体存储器结构 Pending CN115223995A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110422428.5A CN115223995A (zh) 2021-04-20 2021-04-20 半导体存储器结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110422428.5A CN115223995A (zh) 2021-04-20 2021-04-20 半导体存储器结构

Publications (1)

Publication Number Publication Date
CN115223995A true CN115223995A (zh) 2022-10-21

Family

ID=83604001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110422428.5A Pending CN115223995A (zh) 2021-04-20 2021-04-20 半导体存储器结构

Country Status (1)

Country Link
CN (1) CN115223995A (zh)

Similar Documents

Publication Publication Date Title
US8642466B2 (en) Semiconductor device with air gap and method for fabricating the same
US20010055842A1 (en) Methods of forming self-aligned contact pads using a damascene gate process
US10283617B1 (en) Hybrid spacer integration for field-effect transistors
US11037930B2 (en) Semiconductor devices
US11711914B2 (en) Semiconductor structure having buried gate structure and method of manufacturing the same
US20230309293A1 (en) Semiconductor devices
US20200219732A1 (en) Method of forming a pattern and method of manufacturing a semiconductor device using the same
US11690213B2 (en) Semiconductor devices having a decreasing height gate structure
US20230217641A1 (en) Semiconductor memory structure
US11696435B2 (en) Semiconductor memory structure and method for forming the same
US20110248336A1 (en) Semiconductor device and method of manufacturing the same
US10008385B1 (en) Enlarged sacrificial gate caps for forming self-aligned contacts
US11205574B2 (en) Method for forming a semiconductor memory structure
CN113451395B (zh) 半导体结构及其形成方法
CN115223995A (zh) 半导体存储器结构
TWI766609B (zh) 半導體記憶體結構
US20240015947A1 (en) Method for manufacturing semiconductor device having buried gate structure
US20240014278A1 (en) Semiconductor device having buried gate structure
US20240021690A1 (en) Semiconductor device and method for manufacturing the same
US11943913B2 (en) Method of manufacturing semiconductor structure having multi-work function gate electrode
EP3826057A1 (en) Semiconductor device and method of fabricating the same
US20240098978A1 (en) Semiconductor device and method for manufacturing the same
CN116615023A (zh) 半导体存储结构
CN115084034A (zh) 半导体存储器结构及其形成方法
TW202403970A (zh) 具埋入式閘極結構的半導體元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination