CN115207911A - 一种基于电价激励的工业厂级及微网负荷优化调度方法 - Google Patents

一种基于电价激励的工业厂级及微网负荷优化调度方法 Download PDF

Info

Publication number
CN115207911A
CN115207911A CN202210891806.9A CN202210891806A CN115207911A CN 115207911 A CN115207911 A CN 115207911A CN 202210891806 A CN202210891806 A CN 202210891806A CN 115207911 A CN115207911 A CN 115207911A
Authority
CN
China
Prior art keywords
power
load
power generation
model
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210891806.9A
Other languages
English (en)
Inventor
周孟然
王旭
汪胜和
马金辉
高博
胡锋
李金中
朱梓伟
张宏炀
汪飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
State Grid Anhui Electric Power Co Ltd
Original Assignee
Anhui University of Science and Technology
State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology, State Grid Anhui Electric Power Co Ltd filed Critical Anhui University of Science and Technology
Priority to CN202210891806.9A priority Critical patent/CN115207911A/zh
Publication of CN115207911A publication Critical patent/CN115207911A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Biophysics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)

Abstract

一种基于电价激励的工业厂级及微网负荷优化调度方法,包括:获取企业内多个用电负荷,并根据用电负荷计算每日总负荷;根据每日总负荷构建在预设的负荷时间调度约束条件下的电费计算模型,并根据计算最低电费下的负荷需求曲线;电费计算模型的目标函数为:minC=Wj·Cj‑x·ΔPa·Ca其中,Cj为对应j时段电价;ΔPa为企业参与电网削峰或填谷响应动作的功率;x表示电力公司发布响应需求的情况;输入得到的负荷需求曲线,根据预先构建的微电网负荷优化调度模型计算每个时刻的经济成本和燃料排放,并采用遗传算法计算最优解;本发明能够将需求响应电价补贴及工业用户采用生产过程中的余热发电融入优化调度模型中,实现对工业用户参与大电网削峰填谷和进一步优化自身用电经济性。

Description

一种基于电价激励的工业厂级及微网负荷优化调度方法
技术领域
本发明涉及工业负荷优化调度技术领域,更具体的说是涉及一种基于电价激励的工业厂级及微网负荷优化调度方法。
背景技术
工业负荷作为电力消费的主力,更好的优化调度方法的对电力系统稳定运行有重要意义。随着我国国民经济的持续快速发展,用户需求侧用电量逐渐提高,电力供需矛盾日益凸显。为进一步深化电价改革,运用价格杠杆引导电力用户积极参与电力需求响应,挖掘需求侧负荷调节能力,保障电力供需平衡和电网安全稳定运行,根据《国家发展改革委关于进一步完善分时电价机制的通知》(发改价格〔2021〕1093 号)要求,许多地区施行了需求响应电价补偿的政策来鼓励用户参与需求响应,另外许多大型工业企业回收余热进行发电,这些措施一方面进一步保证电网稳定运行,另一方面也有利于保护环境。在建模时将这些因素融入对今后的工业负荷优化调度提供了新的方向。
工业用户电力消费在世界电力消费中占比很大,针对工业用户负荷优化调度问题,现有的方法大多是针对工业负荷中可调节负荷的调节,基于分时电价将高峰时段运行的负荷进行削减或转移到平段或低谷时段,一方面实现对企业的电费支出的优化,另一方面实现对大电网的削峰填谷,但这些方法在建立模型时过于笼统往往漏掉一些重要因素,如没有考虑电价补贴和一些工业用户利用余热发电等。因此在对工业负荷优化调度时不能进一步响应大电网削峰填谷需求和缩减用户自身电费支出。
因此,如何提供一种基于电价激励的工业厂级及微网负荷优化调度方法,能够将需求响应电价补贴及工业用户采用生产过程中的余热发电融入优化调度模型中,实现对工业用户参与大电网削峰填谷和进一步优化自身用电经济性是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种基于电价激励的工业厂级及微网负荷优化调度方法,能够将需求响应电价补贴及工业用户采用生产过程中的余热发电融入优化调度模型中,实现对工业用户参与大电网削峰填谷和进一步优化自身用电经济性。
为了实现上述目的,本发明采用如下技术方案:
一种基于电价激励的工业厂级及微网负荷优化调度方法,包括以下步骤:
获取企业内多个用电负荷,并根据所述用电负荷计算每日总负荷;
根据所述每日总负荷构建在预设的负荷时间调度约束条件下的电费计算模型,并根据所述计算最低电费下的负荷需求曲线;
所述电费计算模型的目标函数为:
min C=Wj·Cj-x·ΔPa·Ca
其中,Cj为对应j时段电价;ΔPa为企业参与电网削峰或填谷响应动作的功率;x为0或1,表示电力公司发布响应需求的情况;
输入得到的负荷需求曲线,根据预先构建的微电网负荷优化调度模型计算每个时刻的经济成本和燃料排放,并采用遗传算法计算最优解,得到成本和燃料排放最优时的每个时刻的调度方案。
进一步的,所述负荷时间调度约束条件包括:
负荷运行时间:0≤ti,j<Ti,j;i=1...m;
负荷在各时段运行时间不超过对应时段总时间:
Figure BDA0003767857850000021
负荷在一个调度周期中运行总时间不变:
Figure BDA0003767857850000022
Figure BDA0003767857850000023
其中,Cj为对应j时段电价;ΔPa为企业参与电网削峰或填谷响应动作的功率;Ca为对应响应补偿电价。
进一步的,所述微电网负荷优化调度模型的目标函数为:
最低经济成本:
Figure BDA0003767857850000024
其中,Pb,j和Ps,j为在j时段购电和售电价格;Eb,j j和Es,j为时段购电量;
Figure BDA0003767857850000025
Fi,t为i电源在j时段的燃料成本;Mi,t为i电源在j时段的运维成本,为对应设备运维系数与其在j时段输出功率乘积;
最低燃料排放:
Figure BDA0003767857850000026
其中,λj为j污染物的处理系数;Qij为i微电源产生j污染物的大小;Pi、为电源i的输出功率。
进一步的,构建所述微电网负荷优化调度模型,步骤包括:
构建微电源发电模型,所述微电源发电模型电包括光伏发电模型、风机发电模型和燃气轮机发电模型中的一种或多种;
当所述微电源发电模型电包括光伏发电模型、风机发电模型和燃气轮机发电模型时,根据所述微电源发电模型计算电功率平衡,形成微电源发电模型出力约束。
进一步的,所述光伏发电模型为:
Ppv=Apv·I·ηpv
其中,Ppv为光伏电池实际输出电功率;Apv为光伏板的面积(m2);I是太阳辐照强度(kW/m2),ηpv为光伏电池的发电效率。
进一步的,所述风机发电模型为:
Figure BDA0003767857850000031
Figure BDA0003767857850000032
风力发电机在四种风速状态下输出不同的电功率:V为风机实际风速,Vcin为切入风速,Vcout为切出风速,Vrate则表示额定风速;Prate为电机额定功率。
进一步的,所述燃气轮机在稳定燃烧效率下输出功率为:
Figure BDA0003767857850000033
其中,PMT(t)为单位时间内燃气轮机输出的电功率;Vf(t)为燃气轮机输出电功率为PMT(t)时相应的天然气消耗量,单位为m3;ηMT为燃气轮机的发电效率;RLHVng(t)为天然气的低热值,取值为9.7kW〃h/m3
进一步的,当所述微电源发电为燃气轮机发电时,进行余热发电;内燃气轮机的尾气排放余热量为:
Figure BDA0003767857850000034
其中,QMT(t)为单位时间内燃气轮机的尾气排放余热量;PMT(t)为单位时间内燃气轮机的发电功率;ηMT为燃气轮机的发电效率;ηLoss为散热的损失率。
余热发电输出功率为:
PC(t)=QC(t)·ηC·λ
ηC为余热发电系统转换效率;QC(t)为t时间内排放的余热量;λ为余热会收装置尾气回收率。
进一步的,构建所述微电网负荷优化调度模型,步骤还包括:
获取蓄电池处理约束条件下的蓄电池荷电状态;
根据所述蓄电池荷电状态、所述微电源发电模型和所述负荷需求曲线,计算所述微电源出力约束下的大电网交互功率;
根据所述大电网交互功率和所述微电源发电模型计算目标函数值。
进一步的,采用遗传算法计算最优解步骤包括:
初始化种群,其中,种群个体包括燃气轮机和蓄电池;
通过所述微电网负荷优化调度模型计算目标函数值;
根据所述目标函数值对种群个体进行排序,采用快速非支配排序对个体比较、分级;选择排序等级高的个体为新一代父代个体对所述种群个体进行选择、交叉、变异,形成新的种群;
达到最大迭代次数后,输出最优解,得到经济成本和燃料排放最优时微电源发电模型每个时刻的输出功率。
本发明的有益效果:
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种基于电价激励的工业厂级及微网负荷优化调度方法,针对工业负荷,在建立模型时一方面考虑企业自身负荷的可调度空间,另一方面将需求响应电价补贴及工业用户采用生产过程中的余热发电融入优化调度模型中,对工业用户参与大电网削峰填谷和进一步优化自身用电经济性有很大帮助。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明提供的一种基于电价激励的工业厂级及微网负荷优化调度方法示意图;
图2附图为本发明中微网系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,包括以下步骤:
S1:首先进行厂级负荷优化,实际为求解线性规划问题以用电费用最低为目标求解的变量为可调度负荷在的工作时间,采用GA算法求解,进而得到满足约束的最具经济性的负荷用电曲线。
具体步骤包括:
S11:获取企业内多个用电负荷,并根据所述用电负荷计算每日总负荷;
S12:根据所述每日总负荷构建在负荷时间调度约束条件下的电费计算模型,并计算最低电费下的负荷需求曲线;
负荷时间调度约束条件包括:
负荷运行时间:0≤ti,j<Ti,j;i=1...m;
负荷在各时段运行时间不超过对应时段总时间:
Figure BDA0003767857850000051
负荷在一个调度周期中运行总时间不变:
Figure BDA0003767857850000052
Figure BDA0003767857850000053
其中,Cj为对应j时段电价;ΔPa为企业参与电网削峰或填谷响应动作的功率;Ca为对应响应补偿电价。
S2:输入得到的负荷需求曲线,根据预先构建的微电网负荷优化调度模型,得到每个时刻的设备出力曲线,并计算最优解。
微电网负荷优化调度模型包括:
最低经济成本:
Figure BDA0003767857850000054
Figure BDA0003767857850000055
其中,Pb,j和Ps,j为在j时段购电和售电价格;Eb,j j和Es,j为时段购电量;计算最低燃料排放:Fi,t为i电源在j时段的燃料成本;Mi,t为i电源在j时段的运维成本,为对应设备运维系数与其在j时段输出功率乘积;
最低燃料排放:
Figure BDA0003767857850000056
其中,λj为j污染物的处理系数;Qij为i微电源产生j污染物的大小;Pi、为电源i的输出功率。
具体步骤包括:
S21:构建微电源发电模型,其中,所述微电源发电包括光伏发电、风机发电和燃气轮机发电中的一种或多种;
光伏发电模型出力为:Ppv=Apv·I·ηpv
其中,Ppv为光伏电池实际输出电功率;Apv为光伏板的面积(m2);I是太阳辐照强度(kW/m2),ηpv为光伏电池的发电效率。
风机发电模型出力为:
Figure BDA0003767857850000061
风力发电机会在四种风速状态下输出不同的电功率;Vcin为切入风速,Vcout为切出风速,Vcout则表示额定风速;Prate为电机额定功率。
燃气轮发电模型出力:当所述微电源发电为燃气轮机发电时,燃气轮机在稳定燃烧效率下输出功率为:
Figure BDA0003767857850000062
其中,PMT(t)为单位时间内燃气轮机输出的电功率;Vf(t)为燃气轮机输出电功率为PMT(t)时相应的天然气消耗量,单位为m3;ηMT为燃气轮机的发电效率;RLHVng(t)为天然气的低热值,取值为9.7kW〃h/m3
S22:根据光伏发电模型和风机发电模型预测出力曲线、各时刻电价、工业产生的余热发电量;
根据负荷需求曲线,要求负荷消纳光伏风机以及自身余热发电量,得到剩余负荷需求。剩余负荷需求由燃气轮机、蓄电池以及大电网满足。
S23:剩余负荷需求由燃气轮机、蓄电池以及大电网满足。
初始化种群,种群中的每个包含燃气轮机和储能单元即蓄电池,各时刻输出功率,将S22中剩余负荷需求减去种群中对应的燃气轮机、蓄电池出力以及燃气轮机产生余热发电量,可得到与大电网交互的功率,功率为正表示购电,功率为负表示售电,根据大电网交互约束条件舍去不可行值。
其中,蓄电池出力为:
Figure BDA0003767857850000063
SOCmin≤SOC≤SOCmax
式中,SOC(t+1)、SOC(t)分别为t+1时刻、t时刻的荷电状态;PBAT(t)为电池在单位时间内的充放电功率,锂电池进行放电时PBAT(t)为正,锂电池进行充电时PBAT(t)为负;ηdis为锂电池放电效率;ηch为充电效率;QR为锂电池的额定容量;SOCmin和SOCmax分别为锂离子电池组荷电状态的下限与上限。
电功率平衡约束为:
PL i(t)=PPV i(t)+PWT i(t)+PBAT i(t)+PMT i(t)+PC i(t)+PGRID i(t)
PL i(t)为场景i下t时间的电负荷功率,PPV i(t)、PWT i(t)、PBAT i(t)、PMT i(t)、PC i(t)、PGRID i(t)分别为光伏、风力、燃气轮机、蓄电池、余热发电和电网的出力情况。
燃气轮机产生的余热发电量为;
Figure BDA0003767857850000064
其中,QMT(t)为单位时间内燃气轮机的尾气排放余热量;PMT(t)为单位时间内燃气轮机的发电功率;ηMT为燃气轮机的发电效率;ηLoss为散热的损失率;
以往余热发电系统例如有机朗肯循环余热发电系统采用并网不上网的运行方式,本发明将其与储能单元产生交互,其输出功率为:
PC(t)=QC(t)·ηC·λ
ηC为余热发电系统转换效率;QC(t)为t时间内排放的余热量;λ为余热会收装置尾气回收率。
大电网交互约束条件:
Figure BDA0003767857850000071
式中:
Figure BDA0003767857850000072
分别为联络线能通过最大和最小功率。
S24:根据目标函数值对种群个体进行排序,采用快速非支配排序对个体比较、分级,目标函数值越小表示成本越低、对应个体越优,进而排在较高等级,选择等级高个体为新一代父代个体,为保持新一代父代个体数量不变针对同等级个体选择时根据拥挤距离排序,优先选择拥挤度较大个体避免陷入局部最优。
S25:经过选择、交叉、变异得到新种群,经约束修正和精英策略防止优秀个体流失。
S26:经重复S24-S25步骤,达到最大迭代次数后输出结果。
得到的结果为包含经济性即运行费用值和环保性即环保费用值的帕累托解集,最后根据微电网实际情况添加约束选取最优解,例如微电网碳排放量、污染气体排放量的约束等不能以运行费用和环保费用简单相加取最低值作为最优解,进而得到经济成本和燃料排放最优时微电源发电模型每个时刻的输出功率。
在一种实施例中,S2中,负荷时间调度约束条件包括:
负荷运行时间:0≤ti,j<Ti,j;i=1...m;
负荷在各时段运行时间不超过对应时段总时间:
Figure BDA0003767857850000073
负荷在一个调度周期中运行总时间不变:
Figure BDA0003767857850000074
Figure BDA0003767857850000075
其中,Cj为对应j时段电价;ΔPa为企业参与电网削峰或填谷响应动作的功率;Ca为对应响应补偿电价。
本发明中S1是对厂内的可调度负荷削峰填谷,把电价高时运行的可调度设备转移到电价低的时刻,降低用电费用为目标求的变量为可调度负荷运行时间段,进而得到优化后的一天的用电曲线,即负荷需求曲线;在掌握用电需求后,S2是从对负荷供电角度,以经济性和环保性为目标求解的是发电单元,如燃气轮机,蓄电池,大电网各时刻的输出功率,可以得到经济性和环保性最优时发电单元的运行计划和经济性和环保性最优时具体的运行成本和排放成本。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,包括以下步骤:
获取企业内多个用电负荷,并根据所述用电负荷计算每日总负荷;
根据所述每日总负荷构建在预设的负荷时间调度约束条件下的电费计算模型,并计算最低电费下的负荷需求曲线;
所述电费计算模型的目标函数为:
minC=Wj·Cj-x·ΔPa·Ca
其中,Cj为对应j时段电价;ΔPa为企业参与电网削峰或填谷响应动作的功率;x为0或1,表示电力公司发布响应需求的情况;
将所述负荷需求曲线输入预先构建的微电网负荷优化调度模型计算每个时刻的经济成本和燃料排放,并采用遗传算法计算最优解,得到成本和燃料排放最优时的每个时刻的调度方案。
2.根据权利要求1所述的一种基于电价机理的工业厂级及微网负荷优化调度方法,其特征在于,所述负荷时间调度约束条件包括:
负荷运行时间:0≤ti,j<Ti,j;i=1...m;
负荷在各时段运行时间不超过对应时段总时间:
Figure FDA0003767857840000011
负荷在一个调度周期中运行总时间不变:
Figure FDA0003767857840000012
Figure FDA0003767857840000013
其中,Cj为对应j时段电价;ΔPa为企业参与电网削峰或填谷响应动作的功率;Ca为对应响应补偿电价。
3.根据权利要求1所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,所述微电网负荷优化调度模型的目标函数为:
最低经济成本:
Figure FDA0003767857840000014
其中,Pb,j和Ps,j为在j时段购电和售电价格;Eb,j j和Es,j为时段购电量;
Figure FDA0003767857840000015
Fi,t为i电源在j时段的燃料成本;Mi,t为i电源在j时段的运维成本,为对应设备运维系数与其在j时段输出功率乘积;
最低燃料排放:
Figure FDA0003767857840000016
其中,λj为j污染物的处理系数;Qij为i微电源产生j污染物的大小;Pi、为电源i的输出功率。
4.根据权利要求3所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,构建所述微电网负荷优化调度模型,步骤包括:
构建微电源发电模型,所述微电源发电模型电包括光伏发电模型、风机发电模型和燃气轮机发电模型中的一种或多种;
当所述微电源发电模型电包括光伏发电模型、风机发电模型和燃气轮机发电模型时,根据所述微电源发电模型计算电功率平衡,形成微电源发电模型出力约束。
5.根据权利要求4所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,所述光伏发电模型为:
Ppv=Apv·I·ηpv
其中,Ppv为光伏电池实际输出电功率;Apv为光伏板的面积(m2);I是太阳辐照强度(kW/m2),ηpv为光伏电池的发电效率。
6.根据权利要求4所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,所述风机发电模型为:
Figure FDA0003767857840000021
Figure FDA0003767857840000022
风力发电机在四种风速状态下输出不同的电功率:V为风机实际风速,Vcin为切入风速,Vcout为切出风速,Vrate则表示额定风速;Prate为电机额定功率;Pv为风速在Vcin和Vrate之间时风力发电机的输出功率。
7.根据权利要求4所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,
所述燃气轮机在稳定燃烧效率下输出功率为:
Figure FDA0003767857840000023
其中,PMT(t)为单位时间内燃气轮机输出的电功率;Vf(t)为燃气轮机输出电功率为PMT(t)时相应的天然气消耗量,单位为m3;ηMT为燃气轮机的发电效率;RLHVng(t)为天然气的低热值,取值为9.7kW〃h/m3
8.根据权利要求7所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,当所述微电源发电为燃气轮机发电时,进行余热发电;内燃气轮机的尾气排放余热量为:
Figure FDA0003767857840000031
其中,QMT(t)为单位时间内燃气轮机的尾气排放余热量;PMT(t)为单位时间内燃气轮机的发电功率;ηMT为燃气轮机的发电效率;ηLoss为散热的损失率。
余热发电输出功率为:
PC(t)=QC(t)·ηC·λ
ηC为余热发电系统转换效率;QC(t)为t时间内排放的余热量;λ为余热会收装置尾气回收率。
9.根据权利要求8所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,构建所述微电网负荷优化调度模型,步骤还包括:
获取蓄电池处理约束条件下的蓄电池荷电状态;
根据所述蓄电池荷电状态、所述微电源发电模型和所述负荷需求曲线,计算所述微电源出力约束下的大电网交互功率;
根据所述大电网交互功率和所述微电源发电模型计算目标函数值。
10.根据权利要求9所述的一种基于电价激励的工业厂级及微网负荷优化调度方法,其特征在于,采用遗传算法计算最优解步骤包括:
初始化种群,其中,种群个体包括燃气轮机和蓄电池;
通过所述微电网负荷优化调度模型计算目标函数值;
根据所述目标函数值对种群个体进行排序,采用快速非支配排序对个体比较、分级;选择排序等级高的个体为新一代父代个体对所述种群个体进行选择、交叉、变异,形成新的种群;
达到最大迭代次数后,输出最优解。
CN202210891806.9A 2022-07-27 2022-07-27 一种基于电价激励的工业厂级及微网负荷优化调度方法 Pending CN115207911A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210891806.9A CN115207911A (zh) 2022-07-27 2022-07-27 一种基于电价激励的工业厂级及微网负荷优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210891806.9A CN115207911A (zh) 2022-07-27 2022-07-27 一种基于电价激励的工业厂级及微网负荷优化调度方法

Publications (1)

Publication Number Publication Date
CN115207911A true CN115207911A (zh) 2022-10-18

Family

ID=83584700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210891806.9A Pending CN115207911A (zh) 2022-07-27 2022-07-27 一种基于电价激励的工业厂级及微网负荷优化调度方法

Country Status (1)

Country Link
CN (1) CN115207911A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117592620A (zh) * 2024-01-19 2024-02-23 浙江浙达能源科技有限公司 一种面向水泥企业的生产计划优化方法
CN118281946A (zh) * 2024-06-04 2024-07-02 国网浙江省电力有限公司营销服务中心 考虑需求响应的新能源数据处理方法及平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846467A (zh) * 2016-05-15 2016-08-10 华南理工大学 计及激励型需求响应的微电网负荷削减控制方法
US20170337646A1 (en) * 2016-05-19 2017-11-23 Hefei University Of Technology Charging and discharging scheduling method for electric vehicles in microgrid under time-of-use price
CN110097228A (zh) * 2019-05-06 2019-08-06 国家电网有限公司 一种政府监管下基于谱风险的虚拟电厂调度模型构建方法
WO2019196375A1 (zh) * 2018-04-13 2019-10-17 华南理工大学 基于需求侧响应的微电网最优机组及分时电价的优化方法
CN112101607A (zh) * 2019-06-18 2020-12-18 华北电力大学(保定) 一种考虑需求响应时间效应的主动配电网滚动优化调度方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846467A (zh) * 2016-05-15 2016-08-10 华南理工大学 计及激励型需求响应的微电网负荷削减控制方法
US20170337646A1 (en) * 2016-05-19 2017-11-23 Hefei University Of Technology Charging and discharging scheduling method for electric vehicles in microgrid under time-of-use price
WO2019196375A1 (zh) * 2018-04-13 2019-10-17 华南理工大学 基于需求侧响应的微电网最优机组及分时电价的优化方法
CN110097228A (zh) * 2019-05-06 2019-08-06 国家电网有限公司 一种政府监管下基于谱风险的虚拟电厂调度模型构建方法
CN112101607A (zh) * 2019-06-18 2020-12-18 华北电力大学(保定) 一种考虑需求响应时间效应的主动配电网滚动优化调度方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117592620A (zh) * 2024-01-19 2024-02-23 浙江浙达能源科技有限公司 一种面向水泥企业的生产计划优化方法
CN118281946A (zh) * 2024-06-04 2024-07-02 国网浙江省电力有限公司营销服务中心 考虑需求响应的新能源数据处理方法及平台

Similar Documents

Publication Publication Date Title
Mehrjerdi et al. Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems
Ruiming Multi-objective optimized operation of integrated energy system with hydrogen storage
CN108173283B (zh) 一种含风光可再生能源的热电联供系统运行方法
Singh et al. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system
Cai et al. Techno-economic analysis of wind curtailment/hydrogen production/fuel cell vehicle system with high wind penetration in China
CN102170129B (zh) 一种基于大规模风电并网的电力系统低碳调度方法及其装置
CN115207911A (zh) 一种基于电价激励的工业厂级及微网负荷优化调度方法
Okinda et al. A review of techniques in optimal sizing of hybrid renewable energy systems
Feng et al. Performance analysis of hybrid energy storage integrated with distributed renewable energy
Modu et al. Operational strategy and capacity optimization of standalone solar-wind-biomass-fuel cell energy system using hybrid LF-SSA algorithms
CN111224432A (zh) 微电网优化调度方法和装置
CN108039741B (zh) 计及微源余电上网的交直流混合微网优化运行方法
CN113988392B (zh) 一种考虑可靠性需求响应的微网优化规划方法
Mohammad et al. Hydrogen technology supported solar photovoltaic-based microgrid for urban apartment buildings: Techno-economic analysis and optimal design
Phan-Van et al. A comparison of different metaheuristic optimization algorithms on hydrogen storage-based microgrid sizing
CN114530882A (zh) 一种多分布式能源的供用能协同自治方法及系统
Zhang et al. Optimal configuration of wind/solar/diesel/storage microgrid capacity based on PSO-GWO algorithm
CN108171384A (zh) 一种基于复合粒子群算法微网能量管理方法
CN111064188B (zh) 一种基于净现值计算的光储系统容量配置方法
Mozaffarilegha et al. Optimum implementation renewable energy systems in remote areas
Li et al. Optimal configuration for distributed generations in micro-grid system considering diesel as the main control source
Koochaki et al. Optimal design of solar-wind hybrid system using teaching-learning based optimization applied in charging station for electric vehicles
Zhang et al. Capacity optimization allocation method for off-grid RES-H2 microgrid system considering the load-follow-source mechanism
Chen et al. Optimization and analysis of microgrid based on different operational strategies
Zhang et al. Distributed scheduling for multi-energy synergy system considering renewable energy generations and plug-in electric vehicles: A level-based coupled optimization method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination