CN108171384A - 一种基于复合粒子群算法微网能量管理方法 - Google Patents

一种基于复合粒子群算法微网能量管理方法 Download PDF

Info

Publication number
CN108171384A
CN108171384A CN201711492016.9A CN201711492016A CN108171384A CN 108171384 A CN108171384 A CN 108171384A CN 201711492016 A CN201711492016 A CN 201711492016A CN 108171384 A CN108171384 A CN 108171384A
Authority
CN
China
Prior art keywords
micro
energy
grid system
cost
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711492016.9A
Other languages
English (en)
Inventor
霍现旭
徐科
吴鸣
陈培育
丁一
吴彬
陈亮
王旭东
王嘉庚
孙丽敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Tianjin Electric Power Co Ltd, Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201711492016.9A priority Critical patent/CN108171384A/zh
Publication of CN108171384A publication Critical patent/CN108171384A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

本发明涉及一种基于复合粒子群算法微网能量管理方法,其技术特点在于:包括以下步骤:步骤1、搭建微网系统模型;步骤2、建立光伏电池的数学模型;步骤3、建立微型燃气轮机模型;步骤4、建立储能电池的数学模型;步骤5、建立微网系统能量管理控制目标模型;步骤6、采用复合粒子群算法对微网系统进行能量管理。本发明采用复合粒子群优化算法,充分考虑微网运行过程的经济性、环保特性以及运行可靠性等要求对微网系统进行能量管理。

Description

一种基于复合粒子群算法微网能量管理方法
技术领域
本发明属于能源管控技术领域,涉及微网能量管理方法,尤其是一种基于复合粒子群算法微网能量管理方法。
背景技术
微网作为包含分布式能源和负荷的独立功能系统,发挥可再生能源灵活运用的优势,能够并网或孤岛运行,实现将多分布式能源系统看作一个整体并网、统一能效管理,是电力行业和科研的热点领域之一。微电网能量管理是一个非线性多目标优化求解问题,所采用的求解办法要求更快更准确的实现整体的最优化。传统的线性求取最优解的方法主要包括最速下降法、二次逼近法等,但上述求解办法在对全局的优化问题求解时面临诸多问题,因此智能型优化求解方法得到了很大程度的发展和应用,主要包括的求解方法有进化算法、人工神经网络算法等。其中,粒子群算法在优化调度与功率分摊等问题研究方面得到了广泛应用,求解更为准确。但其同样存在陷入局部最优解的问题。如何选择合理的优化算法实现对微网全局能量管理是有待解决的重要问题。
发明内容
本发明的目的在于提供一种计及微电网分布式能源不确定性的储能系统容量配置方法,能够在合理配备不同储能形式的同时实现微网经济运行。
本发明解决其现实问题是采取以下技术方案实现的:
一种基于复合粒子群算法微网能量管理方法,包括以下步骤:
步骤1、搭建微网系统模型;
步骤2、建立光伏电池的数学模型;
步骤3、建立微型燃气轮机模型;
步骤4、建立储能电池的数学模型;
步骤5、建立微网系统能量管理控制目标模型;
步骤6、采用复合粒子群算法对微网系统进行能量管理;
而且,所述步骤1的微网系统模型包括微型燃气轮机MT、光伏PV组件和储能系统BESS;该微网系统模型中包括卸荷装置,通过对可中断负荷进行投切管理从而有效维持功率平衡。
而且,所述步骤2的光伏电池的数学模型为:
PPV=P1·G·[1+k(Tc-Tr)]/G1
其中,PPV为光伏电池组件的实时功率输出;P1为最大的测试功率,G1为太阳能所辐照的强度,其值取1000W/m2,Tc为组件工作温度,Tr为参考温度,其值为30℃,G为在实际的情况下太阳能辐照的具体强度值,k为单位功率条件下的温度系数。
而且,所述步骤3的微型燃气轮机模型为:
其中,Cmicro-t为t时间段内微型燃气轮机消耗燃料所损失的成本;Pmicro-t为输出的功率值;为运行效率,cf为每平方米能源消耗的价格,LHV是天然气低热热值;
其中,微型燃气轮机的运行效率ηmicro-t与输出的功率有直接关系,具体如下:
而且,所述步骤4的储能电池的数学模型为储能电池的充放电状态表示为:
其中,Esc(t)为储能电池的实时充电电量;Esf(t)为储能电池的实时放电电量;Es(t)为时间t储能电池的实时容量值,PALL(t)为时间t分布式电源的输出功率和,Pl(t)为时间t整个微网系统中负荷情况,分别为逆变器的工作效率和ES的充放电效率。
而且,所述步骤5的具体步骤包括:
(1)建立微电网系统的发电成本最小优化目标函数;
优化目标定义为系统的发电成本最小,所占比重最大的成本为燃料消耗成本及系统的整体运行维护成本,其目标函数如下:
COM(Pit)=KOMi·Pit
其中,f1为目标函数,表示运行周期内的发电成本和,Cfuel为分布式电源中天然气能能源消耗成本,COM为整个系统中运行维护的总成本,Pit为某个t时间段内DGi的功率输出,KOMi为DGi的功率输出具体运行维护的系数;
(2)建立微电网系统的环境治理成本最小优化目标
其中,f2为微网系统中环境治理所需要的成本;k指不同分布式系统污染类型数,bk为某一个k类污染物处理所需总体费用,aik为DGi排放污染物系数;
(3)建立整个微网系统整体收益最大目标,将成本最小值取倒数,折算成最大值,求取对应各个分布式电源及储能系统的功率输出。
其约束条件如下:
1)功率平衡约束:
其中,PLt指时间t所有的负荷总和,PBt为时间t储能系统的输出功率值;
2)分布式电源输出功率约束:
Pimin≤Pi≤Pimax
Rid·Δt≤Pit-Pit-1≤Riu·Δt
其中,Pimin、Pimax分别为DGi输出功率的上、下限,Rid、Riu分别为DGi输出功率的上、下爬坡速率;
3)蓄电池荷电状态约束:
PBmin≤PB≤PBmax
EBmin≤EB≤EBmax
其中,PBmin、PBmax分别为蓄电池的最小、最大充放电功率,EBmin、EBmax分别为蓄电池的最小、最大容量;
而且,所述步骤6的采用复合粒子群算法对微网系统进行能量管理的具体步骤包括:
1)开始时较多的考虑微电网系统的环境收益Lb,较多的考虑发电成本优化目标Pb,用以确定解范围;
2)后期减少微电网系统的环境收益优化目标Lb,增大发电成本最小优化目标Pb,同时将两个有效的结合考虑,提高算法的全局搜索能力和收敛速率;
3)不改变复合粒子群算法的位置更新方程,改变速度更新方程;
基于上述思想,复合粒子群算法的位置更新方程保持不变,而速度更新方程改为:
vi=wvi+c1r1(pi-xi)+r2(c2(pi-xi)+c3(pg-xi))
其中,其中包括n个粒子,其中第i个粒子的具体位置由xi表示,速度由vi表示;粒子寻优过程中走过的最好位置由pi表示,以群体为研究对象,整个群体走过的最好位置由pg表示;c1=2;c2+c3=2。一般要求随进化的进行减小c2,根据等式c3增加,增大Gb的同时减少Lb,能够有效的提高此算法的全局收敛能力;
此处c2、c3变化设计为线性变化,线性变化方式为:
其中,iter为当前所迭代的次数;Maiter为迭代次数的上限值;
4)当速度方程和位置方程同时收敛的情况下,在满足约束条件范围内取得的极大值为此时的经济收益优化目标Gb值。
本发明的优点和有益效果:
1、本发明采用复合粒子群优化算法,充分考虑微网运行过程的经济性、环保特性以及运行可靠性等要求对微网系统进行能量管理。
2、本发明在用电低谷期时选择运维费用最低以及污染物排放系数相对较低的分布式能源发电,此时储能电池充电;在用电高峰期时,孤岛运行模式下,微电网主动切除可中断负荷,使得分布式电源发电满足主负荷的基本要求,此发明对微电网能量管理和优化提供了一系列的参考。
附图说明
图1是本发明的基于粒子群算法能量管理流程图;
图2是本发明的微网系统拓扑结构图。
具体实施方式
以下结合附图对本发明实施例作进一步详述:
本发明公开了一种基于复合粒子群算法微网能量管理方法,综合考虑微网运行过程的经济性、环保特性以及运行可靠性等要求,建立微电网能量管理多目标优化数学模型,以运行成本及环境治理的费用最小为综合优化目标,采用复合粒子群算法,通过预测系统内负荷需求的变化,在满足功率平衡情况下对微网的能量管理策略。
一种基于复合粒子群算法微网能量管理方法,如图1所示,包括以下步骤:
步骤1、搭建微网系统模型;
在本实施例中,如图1所示,微电网处于孤岛运行模式时,母线上的PCC耦合点保持断开;该微网系统模型的结构包括微型燃气轮机(MT)、光伏(PV)组件和储能系统(BESS);其中,为提高分布式能源的利用率,MT可看作是可控的分布式电源,采用下垂的控制方式;PV为不可控的微源,采用最大功率跟踪的运行控制方式;该微网系统模型中包括卸荷装置,通过对可中断负荷进行投切管理来有效的维持功率平衡。
步骤2、建立光伏电池的数学模型;
PPV=P1·G·[1+k(Tc-Tr)]/G1 (1)
其中,PPV为光伏电池组件的实时功率输出;P1为最大的测试功率(要求测试条件符合标准),G1为太阳能所辐照的强度(要求测试条件符合标准),其值取1000W/m2,Tc为组件工作温度,Tr为参考温度,其值为30℃,G为在实际的情况下太阳能辐照的具体强度值,k为单位功率条件下的温度系数。
步骤3、建立微型燃气轮机模型;
考虑微型燃气轮机工作过程中,消耗燃料所损失的成本Cmicro-t,具体的微型燃气轮机模型为:
其中,Cmicro-t为t时间段内消耗燃料所损失的成本(单位:元),Pmicro-t为输出的功率值(单位:kW);为运行效率,cf为每平方米能源消耗的价格(单位:元/m3),具体价格为3元/m3,LHV是天然气低热热值(单位:kWh/m3),这里取10kWh/m3
其中,微型燃气轮机的运行效率ηmicro-t与输出的功率有直接关系,具体如下:
步骤4、建立储能电池的数学模型;
储能电池的充放电状态表示为:
其中,Esc(t)为储能电池的实时充电电量;Esf(t)为储能电池的实时放电电量;Es(t)为时间t储能电池的实时容量值,PALL(t)为时间t分布式电源的输出功率和,Pl(t)为时间t整个微网系统中负荷情况,分别为逆变器的工作效率和ES的充放电效率。
步骤5、建立微网系统能量管理控制目标模型;
所述步骤5的具体步骤包括:
(1)建立微电网系统的发电成本最小优化目标函数;
优化目标定义为系统的发电成本最小,所占比重最大的成本为燃料消耗成本及系统的整体运行维护成本,其目标函数如下:
COM(Pit)=KOMi·Pit (7)
其中,f1为目标函数,表示运行周期内的发电成本和(单位:元),Cfuel为分布式电源中天然气能能源消耗成本(单位:元),COM为整个系统中运行维护的总成本(单位:元),Pit为某个t时间段内DGi的功率输出(单位:kW),KOMi为DGi的功率输出具体运行维护的系数(单位:元/kWh)。
(2)建立微电网系统的环境治理成本最小优化目标
其中,f2为微网系统中环境治理所需要的成本(单位:元);k指不同分布式系统污染类型数,bk为某一个k类污染物处理所需总体费用(单位:元/kg),aik为DGi排放污染物系数(单位:g/kWh)。
(3)建立整个微网系统整体收益最大目标,将成本最小值取倒数,折算成最大值,求取对应各个分布式电源及储能系统的功率输出。
在本实施例中,结合经典粒子群算法中经济收益优化目标Pb(优化目标f1)和微电网系统的环境收益优化目标Lb(优化目标f2)的各自独特的特点,考虑速度进化过程中粒子的最好位置经济收益优化目标Pb情况下,同时考虑其他临近位置最好值置环境收益优化目标Lb,得到全局优化过程中的最好位置经济收益优化目标Gb(优化目标f)。
其约束条件如下:
1)功率平衡约束:
其中,PLt指时间t所有的负荷总和(单位:kW),PBt为时间t储能系统的输出功率值。
2)分布式电源输出功率约束:
Pimin≤Pi≤Pimax (11)
Rid·Δt≤Pit-Pit-1≤Riu·Δt (12)
其中,Pimin、Pimax分别为DGi输出功率的上、下限(单位:kW),Rid、Riu分别为DGi输出功率的上、下爬坡速率(单位:kW/h)。
3)蓄电池荷电状态约束:
PBmin≤PB≤PBmax (13)
EBmin≤EB≤EB max (14)
其中,PBmin、PBmax分别为蓄电池的最小、最大充放电功率,EBmin、EBmax分别为蓄电池的最小、最大容量。
步骤6、采用复合粒子群算法对微网系统进行能量管理。
所述复合粒子群算法的原理为:在整个搜索过程中主要分为几个阶段,开始时Lb考虑最多Pb考虑最少,用以确定解范围;后期减少Lb增大Pb,同时将两个有效的结合考虑,提高了算法的全局搜索能力和收敛速率。基于上述思想,复合粒子群算法的位置更新方程保持不变,而速度更新方程改为:
其中,其中包括n个粒子,其中第i个粒子的具体位置由xi表示,速度由vi表示;粒子寻优过程中走过的最好位置由pi表示,以群体为研究对象,整个群体走过的最好位置由pg表示;c1=2;c2+c3=2。一般要求随进化的进行减小c2,根据等式c3增加,增大Gb的同时减少Lb,能够有效的提高此算法的全局收敛能力。此处c2、c3变化设计为线性变化,线性变化方式为:
其中,iter为当前所迭代的次数;Maiter为迭代次数的上限值。
根据以上粒子群算法推导所述步骤6的采用复合粒子群算法对微网系统进行能量管理的具体步骤包括:
结合经典粒子群算法中经济收益优化目标Pb(优化目标f1)和微电网系统的环境收益优化目标Lb(优化目标f2)的各自独特的特点,考虑速度进化过程中粒子的最好位置经济收益优化目标Pb情况下,同时考虑其他临近位置最好值置环境收益优化目标Lb,得到全局优化过程中的最好位置经济收益优化目标Gb(优化目标f)。
1)开始时较多的考虑微电网系统的环境收益Lb,较多的考虑发电成本优化目标Pb,用以确定解范围。
2)后期减少微电网系统的环境收益优化目标Lb,增大发电成本最小优化目标Pb,同时将两个有效的结合考虑,提高算法的全局搜索能力和收敛速率。
3)不改变复合粒子群算法的位置更新方程,改变速度更新方程。
基于上述思想,复合粒子群算法的位置更新方程保持不变,而速度更新方程改为:
vi=wvi+c1r1(pi-xi)+r2(c2(pi-xi)+c3(pg-xi))
其中,其中包括n个粒子,其中第i个粒子的具体位置由xi表示,速度由vi表示;粒子寻优过程中走过的最好位置由pi表示,以群体为研究对象,整个群体走过的最好位置由pg表示;c1=2;c2+c3=2。一般要求随进化的进行减小c2,根据等式c3增加,增大Gb的同时减少Lb,能够有效的提高此算法的全局收敛能力。
此处c2、c3变化设计为线性变化,线性变化方式为:
其中,iter为当前所迭代的次数;Maiter为迭代次数的上限值。
4)当速度方程和位置方程同时收敛的情况下,在满足约束条件范围内取得的极大值为此时的经济收益优化目标Gb值(包含环境收益优化目标Lb最小值和发电成本优化目标Pb最小值)。
需要强调的是,本发明所述实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (7)

1.一种基于复合粒子群算法微网能量管理方法,其特征在于:包括以下步骤:
步骤1、搭建微网系统模型;
步骤2、建立光伏电池的数学模型;
步骤3、建立微型燃气轮机模型;
步骤4、建立储能电池的数学模型;
步骤5、建立微网系统能量管理控制目标模型;
步骤6、采用复合粒子群算法对微网系统进行能量管理。
2.根据权利要求1所述的一种基于复合粒子群算法微网能量管理方法,其特征在于:所述步骤1的微网系统模型包括微型燃气轮机MT、光伏PV组件和储能系统BESS;该微网系统模型中包括卸荷装置,通过对可中断负荷进行投切管理从而有效维持功率平衡。
3.根据权利要求1或2所述的一种基于复合粒子群算法微网能量管理方法,其特征在于:所述步骤2的光伏电池的数学模型为:
PPV=P1·G·[1+k(Tc-Tr)]/G1
其中,PPV为光伏电池组件的实时功率输出;P1为最大的测试功率,G1为太阳能所辐照的强度,其值取1000W/m2,Tc为组件工作温度,Tr为参考温度,其值为30℃,G为在实际的情况下太阳能辐照的具体强度值,k为单位功率条件下的温度系数。
4.根据权利要求1或2所述的一种基于复合粒子群算法微网能量管理方法,其特征在于:所述步骤3的微型燃气轮机模型为:
其中,Cmicro-t为t时间段内微型燃气轮机消耗燃料所损失的成本;Pmicro-t为输出的功率值;ηmicro-t为运行效率,cf为每平方米能源消耗的价格,LHV是天然气低热热值;
其中,微型燃气轮机的运行效率ηmicro-t与输出的功率有直接关系,具体如下:
5.根据权利要求1或2所述的一种基于复合粒子群算法微网能量管理方法,其特征在于:所述步骤4的储能电池的数学模型为储能电池的充放电状态表示为:
其中,Esc(t)为储能电池的实时充电电量;Esf(t)为储能电池的实时放电电量;Es(t)为时间t储能电池的实时容量值,PALL(t)为时间t分布式电源的输出功率和,Pl(t)为时间t整个微网系统中负荷情况,ηi、ηs分别为逆变器的工作效率和ES的充放电效率。
6.根据权利要求1或2所述的一种基于复合粒子群算法微网能量管理方法,其特征在于:所述步骤5的具体步骤包括:
(1)建立微电网系统的发电成本最小优化目标函数;
优化目标定义为系统的发电成本最小,所占比重最大的成本为燃料消耗成本及系统的整体运行维护成本,其目标函数如下:
COM(Pit)=KOMi·Pit
其中,f1为目标函数,表示运行周期内的发电成本和,Cfuel为分布式电源中天然气能能源消耗成本,COM为整个系统中运行维护的总成本,Pit为某个t时间段内DGi的功率输出,KOMi为DGi的功率输出具体运行维护的系数;
(2)建立微电网系统的环境治理成本最小优化目标
其中,f2为微网系统中环境治理所需要的成本;k指不同分布式系统污染类型数,bk为某一个k类污染物处理所需总体费用,aik为DGi排放污染物系数;
(3)建立整个微网系统整体收益最大目标,将成本最小值取倒数,折算成最大值,求取对应各个分布式电源及储能系统的功率输出:
其约束条件如下:
1)功率平衡约束:
其中,PLt指时间t所有的负荷总和,PBt为时间t储能系统的输出功率值;
2)分布式电源输出功率约束:
Pimin≤Pi≤Pimax
Rid·Δt≤Pit-Pit-1≤Riu·Δt
其中,Pimin、Pimax分别为DGi输出功率的上、下限,Rid、Riu分别为DGi输出功率的上、下爬坡速率;
3)蓄电池荷电状态约束:
PBmin≤PB≤PBmax
EBmin≤EB≤EBmax
其中,PBmin、PBmax分别为蓄电池的最小、最大充放电功率,EBmin、EBmax分别为蓄电池的最小、最大容量。
7.根据权利要求1或2所述的一种基于复合粒子群算法微网能量管理方法,其特征在于:所述步骤6的采用复合粒子群算法对微网系统进行能量管理的具体步骤包括:
1)开始时较多的考虑微电网系统的环境收益Lb,较多的考虑发电成本优化目标Pb,用以确定解范围;
2)后期减少微电网系统的环境收益优化目标Lb,增大发电成本最小优化目标Pb,同时将两个有效的结合考虑,提高算法的全局搜索能力和收敛速率;
3)不改变复合粒子群算法的位置更新方程,改变速度更新方程;
基于上述思想,复合粒子群算法的位置更新方程保持不变,而速度更新方程改为:
vi=wvi+c1r1(pi-xi)+r2(c2(pi-xi)+c3(pg-xi))
其中,其中包括n个粒子,其中第i个粒子的具体位置由xi表示,速度由vi表示;粒子寻优过程中走过的最好位置由pi表示,以群体为研究对象,整个群体走过的最好位置由pg表示;c1=2;c2+c3=2。一般要求随进化的进行减小c2,根据等式c3增加,增大Gb的同时减少Lb,能够有效的提高此算法的全局收敛能力;
此处c2、c3变化设计为线性变化,线性变化方式为:
其中,iter为当前所迭代的次数;Maiter为迭代次数的上限值;
4)当速度方程和位置方程同时收敛的情况下,在满足约束条件范围内取得的极大值为此时的经济收益优化目标Gb值。
CN201711492016.9A 2017-12-30 2017-12-30 一种基于复合粒子群算法微网能量管理方法 Pending CN108171384A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711492016.9A CN108171384A (zh) 2017-12-30 2017-12-30 一种基于复合粒子群算法微网能量管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711492016.9A CN108171384A (zh) 2017-12-30 2017-12-30 一种基于复合粒子群算法微网能量管理方法

Publications (1)

Publication Number Publication Date
CN108171384A true CN108171384A (zh) 2018-06-15

Family

ID=62516969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711492016.9A Pending CN108171384A (zh) 2017-12-30 2017-12-30 一种基于复合粒子群算法微网能量管理方法

Country Status (1)

Country Link
CN (1) CN108171384A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274092A (zh) * 2018-10-16 2019-01-25 清华大学 基于能源互联网的能量管理方法及装置
CN109767100A (zh) * 2018-12-29 2019-05-17 国网河北省电力有限公司衡水市冀州区供电分公司 一种提高农网供电可靠性的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179704A1 (en) * 2009-01-14 2010-07-15 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
CN103545846A (zh) * 2013-11-11 2014-01-29 湖南大学 基于广义负荷预测的微网经济运行方法
CN103904646A (zh) * 2014-03-28 2014-07-02 华中科技大学 一种考虑三相潮流的微电网多目标能量优化方法
CN104065072A (zh) * 2014-06-16 2014-09-24 四川大学 一种基于动态电价的微电网运行优化方法
CN104135025A (zh) * 2014-05-30 2014-11-05 国家电网公司 基于模糊粒子群算法和储能系统的微网经济运行优化方法
CN104184170A (zh) * 2014-07-18 2014-12-03 国网上海市电力公司 基于改进的自适应遗传算法的独立微网配置优化方法
CN104392286A (zh) * 2014-12-02 2015-03-04 山东大学 考虑冷热电联供和储能运行策略的微电网运行优化方法
CN105005872A (zh) * 2015-08-06 2015-10-28 北京交通大学 一种移峰填谷的储能系统的容量配置方法
CN105162113A (zh) * 2015-08-26 2015-12-16 天津大学 一种基于灵敏度分析的微电网与配电网互动成本计算方法
CN106451550A (zh) * 2016-11-10 2017-02-22 三峡大学 一种基于改进次梯度粒子群的微电网并网优化调度方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179704A1 (en) * 2009-01-14 2010-07-15 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
CN103545846A (zh) * 2013-11-11 2014-01-29 湖南大学 基于广义负荷预测的微网经济运行方法
CN103904646A (zh) * 2014-03-28 2014-07-02 华中科技大学 一种考虑三相潮流的微电网多目标能量优化方法
CN104135025A (zh) * 2014-05-30 2014-11-05 国家电网公司 基于模糊粒子群算法和储能系统的微网经济运行优化方法
CN104065072A (zh) * 2014-06-16 2014-09-24 四川大学 一种基于动态电价的微电网运行优化方法
CN104184170A (zh) * 2014-07-18 2014-12-03 国网上海市电力公司 基于改进的自适应遗传算法的独立微网配置优化方法
CN104392286A (zh) * 2014-12-02 2015-03-04 山东大学 考虑冷热电联供和储能运行策略的微电网运行优化方法
CN105005872A (zh) * 2015-08-06 2015-10-28 北京交通大学 一种移峰填谷的储能系统的容量配置方法
CN105162113A (zh) * 2015-08-26 2015-12-16 天津大学 一种基于灵敏度分析的微电网与配电网互动成本计算方法
CN106451550A (zh) * 2016-11-10 2017-02-22 三峡大学 一种基于改进次梯度粒子群的微电网并网优化调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴鸣,等: "基于模型预测控制的冷热电联供型微网动态优化调度", 《中国电机工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274092A (zh) * 2018-10-16 2019-01-25 清华大学 基于能源互联网的能量管理方法及装置
CN109767100A (zh) * 2018-12-29 2019-05-17 国网河北省电力有限公司衡水市冀州区供电分公司 一种提高农网供电可靠性的方法

Similar Documents

Publication Publication Date Title
Roslan et al. Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction
CN107958300A (zh) 一种考虑互动响应的多微网互联运行协调调度优化方法
CN111786422B (zh) 基于bp神经网络的微电网参与上层电网实时优化调度方法
CN107039975A (zh) 一种分布式能源系统能量管理方法
CN104092250A (zh) 微电网系统的分布式经济调度与协调控制方法
CN113285479A (zh) 一种超大容量的区域微电网系统及运行方法
CN111130121A (zh) 一种dg和ev环境下配电网无功补偿系统的模糊协调控制计算方法
CN115170343A (zh) 一种区域综合能源系统分布式资源和储能协同规划方法
Gbadega et al. JAYA algorithm-based energy management for a grid-connected micro-grid with PV-wind-microturbine-storage energy system
CN108171384A (zh) 一种基于复合粒子群算法微网能量管理方法
Gan et al. A review on capacity optimization of hybrid renewable power system with energy storage
Li et al. Micro-grid resource allocation based on multi-objective optimization in cloud platform
CN110098623B (zh) 一种基于智能负载的Prosumer单元控制方法
Wang et al. Improved PSO-based energy management of Stand-Alone Micro-Grid under two-time scale
CN114938040B (zh) 源-网-荷-储交直流系统综合优化调控方法和装置
CN110994632A (zh) 一种基于机会约束规划考虑电压和环保指标的分布式电源布点定容优化的计算方法
CN103490443B (zh) 在电网三级电压控制体系中对风电场进行电压控制的方法
CN112886624B (zh) 一种三站合一变电站储能装置规划设计系统及方法
Cuiqing et al. A Hybrid AC/DC Microgrid Energy Management Strategy Based on Neural Network
Song et al. Optimal Energy for Grid-Connected Microgrid with Battery Swapping Station and Wind Photovoltaic and Energy Storage
Liu et al. The optimal sizing for AC/DC hybrid stand-alone microgrid based on energy dispatch strategy
Mozaffarilegha et al. Optimum implementation renewable energy systems in remote areas
Padamanabhan et al. Renewable Energy Storage Systems with Grid Connected Solar Using Multi-Objective Optimization Technique
Wang et al. Optimal Dispatch for Multi-microgrids: a Source-Grid-Load-Storage Collaboration Based Perspective
Xu Wind-solar-storage linkage configuration of carbon-neutral energy internet based on fuzzy control algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180615