CN115199705A - Multifunctional energy storage flywheel system with damped energy recovery and online modal monitoring - Google Patents
Multifunctional energy storage flywheel system with damped energy recovery and online modal monitoring Download PDFInfo
- Publication number
- CN115199705A CN115199705A CN202210616144.4A CN202210616144A CN115199705A CN 115199705 A CN115199705 A CN 115199705A CN 202210616144 A CN202210616144 A CN 202210616144A CN 115199705 A CN115199705 A CN 115199705A
- Authority
- CN
- China
- Prior art keywords
- flywheel
- mandrel
- shell
- bearing
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 31
- 238000011084 recovery Methods 0.000 title claims abstract description 26
- 238000012544 monitoring process Methods 0.000 title claims abstract description 23
- 238000013016 damping Methods 0.000 claims abstract description 98
- 239000000725 suspension Substances 0.000 claims abstract description 14
- 238000006073 displacement reaction Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 13
- 230000005284 excitation Effects 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 239000000523 sample Substances 0.000 claims description 7
- 230000003068 static effect Effects 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 5
- 238000005339 levitation Methods 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- -1 tin-iron-boron rare earth Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/30—Flywheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/08—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0402—Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/30—Flywheels
- F16F15/315—Flywheels characterised by their supporting arrangement, e.g. mountings, cages, securing inertia member to shaft
- F16F15/3156—Arrangement of the bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2222/00—Special physical effects, e.g. nature of damping effects
- F16F2222/02—Special physical effects, e.g. nature of damping effects temperature-related
- F16F2222/025—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/0047—Measuring, indicating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/08—Sensor arrangement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种储能飞轮技术领域,特别是关于一种具有阻尼能量回收和在线模态监测的多功能储能飞轮系统。The invention relates to the technical field of an energy storage flywheel, in particular to a multifunctional energy storage flywheel system with damping energy recovery and online mode monitoring.
背景技术Background technique
飞轮储能系统是一种机电能量转换的储能装置,突破了化学电池的局限,用物理方法实现储能。通过电动/发电互逆式双向电机,电能与高速运转飞轮的机械动能之间的相互转换与储存,具有储能密度高、功率大,效率高,寿命长,无污染等优点,可以广泛应用于航空航天、电网调频、不间断电源、机车牵引、军事(大功率电磁炮、鱼雷)等众多方面。The flywheel energy storage system is an energy storage device for electromechanical energy conversion, which breaks through the limitations of chemical batteries and realizes energy storage by physical methods. Through the motor/generator reciprocal bidirectional motor, the mutual conversion and storage between electrical energy and the mechanical kinetic energy of the high-speed flywheel has the advantages of high energy storage density, high power, high efficiency, long life, and no pollution. It can be widely used in Aerospace, power grid frequency modulation, uninterruptible power supply, locomotive traction, military (high-power electromagnetic gun, torpedo) and many other aspects.
飞轮储能系统主要由转子系统、轴承系统和电动/发电机、电力转换器以及辅助运行系统(包括冷却系统,真空系统和状态检测系统)组成。为了储存足够多的能量,飞轮转子一般设计为大惯量回转体结构,由于飞轮的几何中心和质量中心不可能完全重合,在飞轮高速旋转时,不可避免的会产生振动,剧烈的振动冲击力会直接损害轴承,严重时会导致系统损坏,除了轴承系统以外,还需要有效的阻尼系统衰减振动并控制稳定性。The flywheel energy storage system is mainly composed of rotor system, bearing system and motor/generator, power converter and auxiliary operation system (including cooling system, vacuum system and state detection system). In order to store enough energy, the flywheel rotor is generally designed as a large inertia revolving body structure. Since the geometric center of the flywheel and the center of mass cannot be completely coincident, when the flywheel rotates at a high speed, vibration will inevitably occur, and the severe vibration and impact force will Direct damage to the bearing can lead to system damage in severe cases. In addition to the bearing system, an effective damping system is also required to damp vibration and control stability.
由于储能飞轮的质量、转动惯量较大,转速很高,陀螺效应十分明显,并存在过临界问题,传统的滚动轴承、流体动压轴承难以满足高速重载而摩擦损耗低的要求。一般采用磁悬浮轴承卸载飞轮大部分重量,再配合机械保护轴承使用。磁悬浮轴承主要分为两类,主动磁轴承和被动磁轴承。主动磁轴承主要指电磁轴承,被动磁轴承主要指永磁轴承。电磁轴承利用受控电磁力实现定转子的非接触支承,具有转速高、无磨损、不需润滑系统、低工耗、自带在线振动监测功能等优点,适用于高速转子系统。但对于大惯量低速飞轮系统而言,电磁轴承的优势难以发挥,且成本高昂,低速大惯量飞轮的陀螺效应显著,电磁轴承控制难度大,容易造成轴系动力学失稳,将直接损坏机械保护轴承甚至整机。Due to the large mass and moment of inertia of the energy storage flywheel, the high rotational speed, the obvious gyroscopic effect, and the overcritical problem, traditional rolling bearings and hydrodynamic bearings are difficult to meet the requirements of high speed and heavy load and low friction loss. Generally, the magnetic suspension bearing is used to unload most of the weight of the flywheel, and then it is used with the mechanical protection bearing. Magnetic suspension bearings are mainly divided into two categories, active magnetic bearings and passive magnetic bearings. Active magnetic bearings mainly refer to electromagnetic bearings, and passive magnetic bearings mainly refer to permanent magnet bearings. Electromagnetic bearing uses controlled electromagnetic force to realize non-contact support of stator and rotor. It has the advantages of high speed, no wear, no need for lubrication system, low power consumption, and built-in online vibration monitoring function. It is suitable for high-speed rotor systems. However, for the flywheel system with high inertia and low speed, the advantages of electromagnetic bearings are difficult to exert, and the cost is high. The gyroscopic effect of low-speed and high-inertia flywheels is significant, the control of electromagnetic bearings is difficult, and it is easy to cause dynamic instability of the shaft system, which will directly damage the mechanical protection. Bearings and even the whole machine.
为了尽可能减少风阻损耗,飞轮转子运行在真空环境中,并采用高效的永磁同步电机和变流器实现飞轮机械能和电能的快速转换。飞轮系统通过频繁的升降速实现充放电循环,因此要频繁地跨越临界转速,准确、及时地掌握飞轮转子系统的模态特性,对飞轮的平稳运转也是很重要的。In order to reduce the windage loss as much as possible, the flywheel rotor operates in a vacuum environment, and uses a high-efficiency permanent magnet synchronous motor and converter to realize the rapid conversion of flywheel mechanical energy and electrical energy. The flywheel system realizes the charge-discharge cycle through frequent acceleration and deceleration. Therefore, it is also very important for the smooth operation of the flywheel to frequently cross the critical speed and accurately and timely grasp the modal characteristics of the flywheel rotor system.
发明内容SUMMARY OF THE INVENTION
针对飞轮储能系统在运行过程中的轴承问题、飞轮模态特性在线监测问题,以及飞轮振动控制及能量回收问题,本发明的目的是提供一种具有阻尼能量回收和在线模态监测的多功能储能飞轮系统,可以支承转子的运动,降低摩擦阻力,减小损耗,可以对飞轮的振动有阻尼作用,并把这部分振动能量进行回收,也可以及时获取飞轮轴系的模态特性。Aiming at the bearing problems of the flywheel energy storage system during operation, the online monitoring of flywheel modal characteristics, as well as the problems of flywheel vibration control and energy recovery, the purpose of the present invention is to provide a multi-functional system with damping energy recovery and online modal monitoring. The energy storage flywheel system can support the movement of the rotor, reduce frictional resistance, reduce loss, damping the vibration of the flywheel, recover this part of the vibration energy, and obtain the modal characteristics of the flywheel shaft system in time.
为实现上述目的,本发明采取以下技术方案:一种具有阻尼能量回收和在线模态监测的多功能储能飞轮系统,其包括:外壳,其顶部设置有轴承端盖,位于所述外壳内底部设置有底座;芯轴,穿设在所述外壳内,所述芯轴中部设置有飞轮,所述芯轴的顶部与所述轴承端盖活动连接,所述芯轴的底部穿过所述底座延伸至所述外壳底部的外部,形成延伸部;上辅助轴承,设置在所述芯轴的顶部,用于支撑所述飞轮的旋转;永磁轴承,位于所述上辅助轴承的下方,设置在所述芯轴上端面与所述外壳之间,用于为所述飞轮提供轴向力;斥力型Halbach圆环阵列磁悬浮装置,设置在所述底座与所述芯轴之间,为所述飞轮提供轴向力,与所述永磁轴承配合使所述飞轮完成悬浮;下辅助轴承,设置在所述外壳底部与所述芯轴之间,用于支撑所述飞轮的旋转。In order to achieve the above purpose, the present invention adopts the following technical scheme: a multifunctional energy storage flywheel system with damping energy recovery and online modal monitoring, which comprises: a casing, the top of which is provided with a bearing end cover, which is located at the inner bottom of the casing A base is provided; a mandrel is passed through the casing, a flywheel is arranged in the middle of the mandrel, the top of the mandrel is movably connected with the bearing end cover, and the bottom of the mandrel passes through the base extending to the outside of the bottom of the casing to form an extension; an upper auxiliary bearing, arranged on the top of the mandrel, for supporting the rotation of the flywheel; a permanent magnet bearing, located below the upper auxiliary bearing, arranged in Between the upper end face of the mandrel and the shell, it is used to provide axial force for the flywheel; the repulsion type Halbach circular array magnetic levitation device is arranged between the base and the mandrel and is the flywheel An axial force is provided to complete the suspension of the flywheel in cooperation with the permanent magnet bearing; a lower auxiliary bearing is arranged between the bottom of the casing and the mandrel to support the rotation of the flywheel.
进一步,所述上辅助轴承的外环设置在所述外壳的内壁面,所述上辅助轴承的内环与所述芯轴配合安装,且所述上辅助轴承由所述芯轴的上部轴肩进行定位。Further, the outer ring of the upper auxiliary bearing is arranged on the inner wall surface of the housing, the inner ring of the upper auxiliary bearing is fitted with the mandrel, and the upper auxiliary bearing is formed by the upper shoulder of the mandrel to locate.
进一步,所述永磁轴承包括上永磁体、轴向位移传感器探头和下永磁体;Further, the permanent magnet bearing includes an upper permanent magnet, an axial displacement sensor probe and a lower permanent magnet;
所述上永磁体镶嵌在所述外壳的内壁面,所述下永磁体镶嵌在所述芯轴的上端面,所述上永磁体的极性与所述下永磁体的极性呈相反设置,各永磁体呈圆环形布置,且所述圆环与所述芯轴同心;The upper permanent magnet is inlaid on the inner wall surface of the casing, the lower permanent magnet is inlaid on the upper end surface of the mandrel, and the polarity of the upper permanent magnet is opposite to that of the lower permanent magnet, Each permanent magnet is arranged in an annular shape, and the annular ring is concentric with the mandrel;
所述轴向位移传感器探头设置在所述上永磁体与所述下永磁体之间,用于实时测量所述永磁轴承的动、静间隙,确保该间隙在预设范围内。The axial displacement sensor probe is arranged between the upper permanent magnet and the lower permanent magnet, and is used to measure the dynamic and static gaps of the permanent magnet bearing in real time to ensure that the gap is within a preset range.
进一步,所述斥力型Halbach圆环阵列磁悬浮装置包括支撑套、上Halbach圆环阵列和下Halbach圆环阵列;Further, the repulsion type Halbach ring array magnetic suspension device includes a support sleeve, an upper Halbach ring array and a lower Halbach ring array;
所述支撑套设置在所述芯轴的下部轴肩上,所述上Halbach圆环阵列设置在所述支撑套上,所述下Halbach圆环阵列设置在所述底座上,所述上Halbach圆环阵列和所述下Halbach圆环阵列均由多个小圆环体顺序排列粘合而成,形成单边磁场;The support sleeve is arranged on the lower shoulder of the mandrel, the upper Halbach ring array is arranged on the support sleeve, the lower Halbach ring array is arranged on the base, and the upper Halbach ring array is arranged on the base. The ring array and the lower Halbach ring array are formed by sequentially arranging and gluing a plurality of small torus to form a unilateral magnetic field;
且所述上Halbach圆环阵列与所述下Halbach圆环阵列呈对称设置,间隙配合,相互排斥,给所述飞轮提供轴向力。In addition, the upper Halbach ring array and the lower Halbach ring array are symmetrically arranged, fit with clearance, and repel each other, so as to provide axial force to the flywheel.
进一步,所述外壳内,位于所述飞轮的上部和下部分别设置有一组用于监测飞轮模态特性的电磁激振器,所述电磁激振器与所述芯轴非接触安装;Further, in the outer casing, a set of electromagnetic vibration exciters for monitoring the modal characteristics of the flywheel are respectively provided on the upper and lower parts of the flywheel, and the electromagnetic vibration exciters are installed in a non-contact manner with the mandrel;
所述电磁激振器包括E型铁心、激磁线圈和测力线圈;所述激磁线圈和所述测力线圈分别缠绕在所述E型铁心的上部凹槽和下部凹槽内;所述激磁线圈对所述飞轮进行激振,获取其模态,所述测力线圈用于监测所述电磁激振器的力输出大小。The electromagnetic vibrator includes an E-type iron core, an excitation coil and a force measuring coil; the excitation coil and the force-measuring coil are wound in the upper groove and the lower groove of the E-type iron core respectively; the excitation coil The flywheel is excited to obtain its mode, and the force measuring coil is used to monitor the force output of the electromagnetic vibrator.
进一步,所述外壳的底部外侧设置有阻尼装置;Further, a damping device is provided on the outer side of the bottom of the casing;
所述阻尼装置包括阻尼装置壳体,以及设置在所述阻尼装置壳体内的冷却装置、阻尼体外壳、O型圈、永磁铁、阻尼体、轴承座、滚珠轴承和挤压油膜;The damping device includes a damping device housing, and a cooling device, a damping body casing, an O-ring, a permanent magnet, a damping body, a bearing seat, a ball bearing and a squeeze oil film arranged in the damping device housing;
所述阻尼装置壳体设置在所述外壳的底部外侧,所述阻尼装置壳体内设置有所述阻尼体外壳,所述阻尼装置壳体与所述阻尼体外壳之间设置有所述冷却装置;The damping device casing is arranged on the outer side of the bottom of the casing, the damping body casing is arranged in the damping device casing, and the cooling device is arranged between the damping device casing and the damping body casing;
所述阻尼体与所述阻尼体外壳间隙配合安装,位于该间隙处的上部和下部都设置有所述O型圈,所述O型圈采用对轴颈定心的结构,所述O型圈与所述阻尼体、所述阻尼体外壳构成密封环境,形成所述挤压油膜;The damping body is installed in a clearance fit with the damping body casing, and the O-ring is provided at the upper and lower parts of the clearance. The O-ring adopts a structure for centering the journal, and the O-ring forming a sealed environment with the damping body and the damping body shell to form the squeeze oil film;
所述阻尼体的外圆面上开设有瓦片形槽,瓦片形的永磁铁嵌设在该瓦片形槽内;A tile-shaped slot is opened on the outer circular surface of the damping body, and the tile-shaped permanent magnet is embedded in the tile-shaped slot;
所述轴承座与所述阻尼体的内圆面配合安装,位于所述阻尼装置壳体的中部;所述芯轴的延伸部下端周向设置有所述滚珠轴承,所述滚珠轴承与所述轴承座配合安装。The bearing seat is installed in cooperation with the inner circular surface of the damping body, and is located in the middle part of the damping device casing; the lower end of the extension part of the mandrel is circumferentially provided with the ball bearing, The bearing seat is fitted with the installation.
进一步,所述阻尼体外壳采用空心结构,该空心内设置有线圈,所述线圈与所述永磁铁相互作用,产生感应电压;所述阻尼体外壳的内壁面的上部和下部分别设置有用于容置所述O型圈的密封槽,并在所述阻尼体外壳的两侧分别设置有出油孔和进油孔。Further, the damping body shell adopts a hollow structure, and a coil is arranged in the hollow core, and the coil interacts with the permanent magnet to generate an induced voltage; The sealing groove of the O-ring is arranged, and an oil outlet hole and an oil inlet hole are respectively arranged on both sides of the damping body casing.
进一步,所述冷却装置包括壳体、进水口、出水口和螺旋管;所述壳体为圆筒状结构,其顶部和底部分别设置有所述进水口和所述出水口,所述螺旋管设置在所述壳体内,且所述螺旋管的一端与所述进水口连通,所述螺旋管的另一端与所述出水口连通。Further, the cooling device includes a casing, a water inlet, a water outlet and a spiral pipe; the casing is a cylindrical structure, and the top and bottom of the casing are respectively provided with the water inlet and the water outlet, and the spiral pipe It is arranged in the casing, and one end of the spiral tube is communicated with the water inlet, and the other end of the spiral tube is communicated with the water outlet.
进一步,所述外壳上部,在所述永磁轴承下方的所述芯轴上设置有电动/发电一体机。Further, on the upper part of the casing, a motor/generator integrated machine is arranged on the mandrel below the permanent magnet bearing.
进一步,位于所述上辅助轴承和所述下辅助轴承处分别设置有上径向位移传感器、下径向位移传感器;位于所述芯轴的下部设置有轴向位移传感器;通过所述轴向位移传感器、所述上径向位移传感器和所述下径向位移传感器感知所述飞轮的振动状态。Further, an upper radial displacement sensor and a lower radial displacement sensor are respectively arranged at the upper auxiliary bearing and the lower auxiliary bearing; an axial displacement sensor is arranged at the lower part of the mandrel; through the axial displacement The sensor, the upper radial displacement sensor and the lower radial displacement sensor sense the vibration state of the flywheel.
本发明由于采取以上技术方案,其具有以下优点:The present invention has the following advantages due to taking the above technical solutions:
1、本发明的飞轮转子支承系统,采用多种轴承,混合在一起共同作用,使飞轮悬浮起来,尽可能的减小摩擦损耗。1. The flywheel rotor support system of the present invention adopts a variety of bearings, which are mixed together to make the flywheel suspend and reduce friction loss as much as possible.
2、本发明设置有飞轮模态特性在线监测装置,可以及时获取飞轮轴系的模态特性。2. The present invention is provided with an online monitoring device for the modal characteristics of the flywheel, which can obtain the modal characteristics of the flywheel shaft system in time.
3、本发明设置有阻尼装置,可以降低飞轮的振动。3. The present invention is provided with a damping device, which can reduce the vibration of the flywheel.
4、本发明设置有能量回收装置,可以把飞轮的部分振动能量回收利用。4. The present invention is provided with an energy recovery device, which can recover and utilize part of the vibration energy of the flywheel.
附图说明Description of drawings
图1是本发明实施例中多功能储能飞轮系统的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the multifunctional energy storage flywheel system in the embodiment of the present invention;
图2是本发明实施例中的电磁激振器结构示意图;2 is a schematic structural diagram of an electromagnetic vibrator in an embodiment of the present invention;
图3是本发明实施例中电磁激振装置俯视图;3 is a top view of an electromagnetic excitation device in an embodiment of the present invention;
图4是本发明实施例中的永磁轴承结构示意图;Fig. 4 is the schematic diagram of the structure of the permanent magnet bearing in the embodiment of the present invention;
图5是本发明实施例中的斥力型Halbach圆环阵列磁悬浮装置结构示意图;5 is a schematic structural diagram of a repulsion type Halbach ring array magnetic suspension device in an embodiment of the present invention;
图6是本发明实例中的斥力型Halbach圆环阵列沿半径方向截面处的排列示意图;Fig. 6 is the arrangement schematic diagram of the repulsive force type Halbach ring array in the radial direction section in the example of the present invention;
图7是本发明实施例中的阻尼装置结构示意图;7 is a schematic structural diagram of a damping device in an embodiment of the present invention;
图8是本发明实施例中的阻尼体结构示意图;8 is a schematic structural diagram of a damping body in an embodiment of the present invention;
图9是本发明实施例中的阻尼体外壳结构示意图;9 is a schematic structural diagram of a damping body shell in an embodiment of the present invention;
图10是本发明实施例中的冷却装置示意图;10 is a schematic diagram of a cooling device in an embodiment of the present invention;
图11是本发明实施例中的冷却装置内置螺旋管示意图。FIG. 11 is a schematic diagram of a built-in helical tube of a cooling device in an embodiment of the present invention.
附图标号:Reference number:
1-飞轮;2-电磁激振器;3-电动/发电一体机;4-上径向位移传感器;5-永磁轴承;6-上辅助轴承;7-垫片;8-轴向位移传感器;9-轴承端盖;10-螺栓;11-外壳;12-支撑套;13-上Halbach圆环阵列;14-下Halbach圆环阵列;15-底座;16-下径向位移传感器;17-下辅助轴承;18-芯轴;19-阻尼装置;21-E型铁心;22-激磁线圈;23-测力线圈;51-上永磁体;52-轴向位移传感器探头;53-下永磁体;190-阻尼装置壳体;191-冷却装置;192-阻尼体外壳;193-线圈;194-O型圈;195-永磁铁;196-阻尼体;197-轴承座;198-滚珠轴承;199-挤压油膜;1911-进水口;1912-出水口;1913-螺旋管;1921-密封槽;1922-出油孔;1923-进油孔。1-flywheel; 2-electromagnetic vibration exciter; 3-motor/generator; 4-upper radial displacement sensor; 5-permanent magnet bearing; 6-upper auxiliary bearing; 7-washer; 8-axial displacement sensor ;9-bearing end cover;10-bolt;11-housing;12-supporting sleeve;13-upper Halbach ring array;14-lower Halbach ring array;15-base;16-lower radial displacement sensor;17- Lower auxiliary bearing; 18-mandrel; 19-damping device; 21-E type iron core; 22-excitation coil; 23-force coil; 51-upper permanent magnet; 52-axial displacement sensor probe; 53-lower permanent magnet ;190-damping device housing;191-cooling device;192-damping body shell;193-coil;194-O-ring;195-permanent magnet;196-damping body;197-bearing seat;198-ball bearing;199 - Squeeze oil film; 1911 - water inlet; 1912 - water outlet; 1913 - spiral tube; 1921 - sealing groove; 1922 - oil outlet; 1923 - oil inlet.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings of the embodiments of the present invention. Obviously, the described embodiments are some, but not all, embodiments of the present invention. Based on the described embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art fall within the protection scope of the present invention.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
本发明提供的具有阻尼能量回收和在线模态监测的多功能储能飞轮系统,是一种新的磁悬浮轴承卸载结构,对飞轮轴系的模态设计了在线实时监测分析装置,对飞轮的振动也设计了新型阻尼装置和具有能量回收的功能装置。可以支承转子的运动,降低摩擦阻力,减小损耗,可以对飞轮的振动有阻尼作用,并把这部分振动能量进行回收,也可以及时获取飞轮轴系的模态特性。由于永磁轴承通常由一对或多个磁环作径向或轴向排列而成,具有卸载力大、能耗低、无需电源、结构简单的优点。本发明将永磁轴承与机械轴承混合使用,可以集成两者的优点,适用于低成本大惯量的飞轮储能系统。The multifunctional energy storage flywheel system with damping energy recovery and on-line modal monitoring provided by the present invention is a new unloading structure of magnetic suspension bearing. New damping devices and functional devices with energy recovery are also designed. It can support the movement of the rotor, reduce the frictional resistance, reduce the loss, damping the vibration of the flywheel, recover this part of the vibration energy, and obtain the modal characteristics of the flywheel shaft system in time. Because the permanent magnet bearing is usually composed of a pair or more magnetic rings arranged radially or axially, it has the advantages of large unloading force, low energy consumption, no power supply and simple structure. The invention mixes the permanent magnet bearing and the mechanical bearing, can integrate the advantages of the two, and is suitable for a flywheel energy storage system with low cost and large inertia.
在本发明的一个实施例中,提供一种具有阻尼能量回收和在线模态监测的多功能储能飞轮系统。本实施例中,如图1所示,该系统包括:In one embodiment of the present invention, a multifunctional energy storage flywheel system with damping energy recovery and on-line modal monitoring is provided. In this embodiment, as shown in Figure 1, the system includes:
外壳11,其顶部设置有轴承端盖9,位于外壳11内底部设置有底座15;The
芯轴18,穿设在外壳11内,芯轴18中部设置有飞轮1,芯轴18的顶部与轴承端盖9活动连接,芯轴18的底部穿过底座15延伸至外壳11底部的外部,形成延伸部;The
上辅助轴承6,设置在芯轴18的顶部,用于支撑飞轮1的旋转;The upper
永磁轴承5,位于上辅助轴承6的下方,设置在芯轴18上端面与外壳11之间,用于为飞轮1提供轴向力;The
斥力型Halbach圆环阵列磁悬浮装置,设置在底座15与芯轴18之间,为飞轮1提供轴向力,与永磁轴承5配合使飞轮1完成悬浮;The repulsion type Halbach ring array magnetic levitation device is arranged between the base 15 and the
下辅助轴承17,设置在外壳11底部15与芯轴18之间,用于支撑飞轮1的旋转。The lower
上述实施例中,上辅助轴承6安装在芯轴18的顶端。上辅助轴承6的外环设置在外壳11的内壁面,上辅助轴承6的内环与芯轴18配合安装,且上辅助轴承6由芯轴18的上部轴肩进行定位。In the above embodiment, the upper
具体的,上辅助轴承6放置到规定位置后,垫上垫片7,再盖上轴承端盖9,通过螺栓10与外壳11连接在一起,该结构可以使得安装、维修更加方便。在飞轮芯轴18的上、下两端分别安装上辅助轴承6和下辅助轴承17,支承飞轮1旋转。在本实施例中,上辅助轴承6和下辅助轴承17都采用滚动轴承。Specifically, after the upper
上述实施例中,外壳11内,位于飞轮1的上部和下部分别设置有一组用于监测飞轮模态特性的电磁激振器2,电磁激振器2与芯轴18非接触安装。In the above-mentioned embodiment, a set of
如图2所示,电磁激振器2包括E型铁心21、激磁线圈22和测力线圈23;激磁线圈22和测力线圈23分别缠绕在E型铁心21的上部凹槽和下部凹槽内;激磁线圈22对飞轮1进行激振,获取其模态,测力线圈23用于监测电磁激振器2的力输出大小。As shown in FIG. 2, the
在本实施例中,每组电磁激振器2都采用四个电磁激振器成90°排列而成,如图3所示,构成飞轮模态特性在线监测装置,可以及时获取飞轮轴系的模态特性。In this embodiment, each group of
优选的,芯轴18上端设置有4个90度正交放置的非接触激振器,可激振静止或者旋转状态的飞轮1,实时监测轴系模态。Preferably, the upper end of the
使用时,通过向激磁线圈22中通电流可以使其产生电磁力,电磁激振器2可以直接利用电磁力作激振力,对飞轮轴系进行激振,获取其模态,也可以对飞轮轴系在静止状态或不同转速状态下,来获取他的模态变化,了解轴系的工作状态;而测力线圈23用来监视激振器2力输出的大小,通过检测、调整,可以避免激振力过大,使被测物变形和移动,影响激振器出力。When in use, the electromagnetic force can be generated by passing a current to the
上述实施例中,如图4所示,永磁轴承5包括上永磁体51、轴向位移传感器探头52和下永磁体53。上永磁体51镶嵌在外壳11的内壁面,下永磁体53镶嵌在芯轴18的上端面,上永磁体51的极性与下永磁体53的极性呈相反设置,例如,上永磁体51的N极与下永磁体53的S极相对,上永磁体51的S极与下永磁体53的N极相对,使用时,通过异极相吸,给飞轮1提供轴向力,使飞轮1悬浮。各永磁体呈圆环形布置,且圆环与芯轴18同心,分别为多组不同直径的同心圆环,且相邻同心圆环上的永磁体外表面极性相反,该永磁轴承采用钦铁硼稀土永磁材料制造,且表面有抗氧化层,以防止永磁体被氧化,同时还可以防止脆性永磁体破碎飞出。In the above embodiment, as shown in FIG. 4 , the
轴向位移传感器探头52设置在上永磁体51与下永磁体53之间,用于实时测量永磁轴承5的动、静间隙,确保该间隙在预设范围内。间隙过大则卸载力减小,卸载效果不好;间隙过小则卸载力过大,且容易发生碰撞,或者轮体受热后,膨胀,导致间隙过小而发生碰摩,损坏轴系。The axial
上述实施例中,如图5所示,斥力型Halbach圆环阵列磁悬浮装置包括支撑套12、上Halbach圆环阵列13和下Halbach圆环阵列14。支撑套12设置在芯轴18的下部轴肩上,上Halbach圆环阵列13设置在支撑套12上,下Halbach圆环阵列14设置在底座15上,上Halbach圆环阵列13和下Halbach圆环阵列14均由多个小圆环体顺序排列粘合而成,形成单边磁场。且上Halbach圆环阵列13与下Halbach圆环阵列14呈对称设置,间隙配合,相互排斥,给飞轮1提供轴向力。In the above embodiment, as shown in FIG. 5 , the repulsion type Halbach ring array magnetic suspension device includes a
如图6所示,为斥力型Halbach圆环阵列沿半径方向截面处的排列示意图,箭头方向代表磁化方向,按照一定的排列规则径向式排列结合在一起,排列后的永磁体结构最终会形成磁力很大的单边磁场,通过设置上下两组Halbach圆环阵列,间隙配合,相互排斥,给飞轮提供轴向力,使其悬浮起来;斥力型Halbach圆环阵列磁悬浮装置提供的轴向力和永磁轴承5提供的轴向力共同使飞轮转子悬浮起来。As shown in Figure 6, it is a schematic diagram of the arrangement of the repulsion type Halbach ring array along the radial direction. The direction of the arrow represents the magnetization direction. According to a certain arrangement rule, the radial arrangement is combined together, and the arranged permanent magnet structure will eventually form The unilateral magnetic field with large magnetic force, by setting up and down two sets of Halbach ring arrays, clearance fit and mutual repulsion, provides axial force to the flywheel to make it levitate; the axial force and The axial force provided by the
上述实施例中,外壳11的底部外侧设置有阻尼装置19。当飞轮1在高速旋转时由于质量中心与几何中心不完全重合,而产生振动时,可以通过在飞轮储能系统的底部设置的阻尼装置19来降低振动。如图7所示,阻尼装置19包括阻尼装置壳体190,以及设置在阻尼装置壳体190内的冷却装置191、阻尼体外壳192、O型圈194、永磁铁195、阻尼体196、轴承座197、滚珠轴承198和挤压油膜199。In the above embodiment, the damping
阻尼装置壳体190设置在外壳11的底部外侧,阻尼装置壳体190内设置有阻尼体外壳192,阻尼装置壳体190与阻尼体外壳192之间设置有冷却装置191;The damping
阻尼体196与阻尼体外壳192间隙配合安装,位于该间隙处的上部和下部都设置有O型圈194,O型圈194采用对轴颈定心的结构,O型圈194与阻尼体196、阻尼体外壳192构成密封环境,形成挤压油膜199;同时,通过O型圈194还可以承受较大的轴向负载。The damping
阻尼体196的外圆面上开设有瓦片形槽,瓦片形的永磁铁195嵌设在该瓦片形槽内;采用这种表面嵌入式结构,形成一个4极转子。该结构有逆凸极性,表面嵌入式结构涉及的相关冲压不太复杂,因此它结构简单、成本低、比内嵌式更容易制造,如图8所示。A tile-shaped groove is formed on the outer circular surface of the damping
轴承座197与阻尼体196的内圆面配合安装在一起,位于阻尼装置壳体190的中部;芯轴18的延伸部下端周向设置有滚珠轴承198,滚珠轴承198与轴承座197配合安装。The
上述实施例中,如图9所示,阻尼体外壳192采用空心结构,该空心内设置有线圈193,线圈193与永磁铁195相互作用,产生感应电压;阻尼体外壳192的内壁面的上部和下部分别设置有用于容置O型圈194的密封槽1921,并在阻尼体外壳192的两侧分别设置有出油孔1922和进油孔1923。通过设置在阻尼体外壳192上的进油孔1923和出油孔1922控制阻尼油的油压;同时,通过轴向位移传感器8和上径向位移传感器4,下径向位移传感器16来感知飞轮的振动状态,根据振动状态可以改变挤压油膜的油压来调整阻尼油液的减震效果。In the above-mentioned embodiment, as shown in FIG. 9 , the damping
使用时,当飞轮1运行时,飞轮转子的振动会通过芯轴18传递给滚珠轴承198,再传递给轴承座197,进而传递给阻尼体196,通过挤压油膜199、O型圈1904和磁铁195、线圈193的相互作用,都能达到减小振动的作用。When in use, when the flywheel 1 is running, the vibration of the flywheel rotor will be transmitted to the
上述实施例中,如图10、图11所示,冷却装置191包括壳体、进水口1911、出水口1912和螺旋管1913。壳体为圆筒状结构,其顶部和底部分别设置有进水口1911和出水口1912,螺旋管1913设置在壳体内,且螺旋管1913的一端与进水口1911连通,螺旋管1913的另一端与出水口1912连通。使用时,从进水口1911和出水口1912通循环水,通过热传递,对阻尼装置中的滚珠轴承198与轴承座197、阻尼油和回收线圈等产生的热量进行冷却。In the above embodiment, as shown in FIGS. 10 and 11 , the
上述实施例中,阻尼装置19中还设置有能量回收装置。在阻尼装置19中,通过永磁铁195和线圈193的相互作用,会产生感应电压,这些能量可以通过能量回收装置重新利用。使用时,通过能量回收装置可以对芯轴18减振、下轴承散热、并回收振动能量,提高系统能效。In the above embodiment, the damping
上述实施例中,外壳11上部,在永磁轴承5下方的芯轴18上设置有电动/发电一体机3。In the above embodiment, on the upper part of the
上述实施例中,位于上辅助轴承6和下辅助轴承17处分别设置有上径向位移传感器4、下径向位移传感器16;位于芯轴18的下部设置有轴向位移传感器8;通过轴向位移传感器8、上径向位移传感器4和下径向位移传感器16感知飞轮1的振动状态。In the above embodiment, the upper radial displacement sensor 4 and the lower
综上,本发明对于飞轮储能的轴承支承系统,采用多种轴承混合在一起共同作用,使飞轮悬浮起来,尽可能的减小摩擦。在飞轮底部,设置有一种斥力型Halbach圆环阵列磁悬浮装置,通过将磁铁按照一定的排列规则径向式或平行式排列结合在一起,排列后的永磁体结构最终会形成磁力很大的单边磁场,通过设置上下两组Halbach圆环阵列,间隙配合,相互排斥,给飞轮提供轴向力,使其悬浮起来,同时,为了避免Halbach圆环阵列磁悬浮装置的径向尺寸过大,在飞轮上部设置有轴向永磁轴承卸载,通过分别由镶嵌于壳体的永磁体和镶嵌于飞轮转子上端面的永磁体组成,且N极与S极相对,通过异极相吸,也给飞轮提供一部分轴向力,配合Halbach圆环阵列磁悬浮装置共同提供轴向力,完成飞轮的悬浮。在飞轮旋转体的上、下两端分别安装上滚动轴承和下滚动轴承,支承飞轮旋转,且具有结构简单、成本低的优势。To sum up, for the bearing support system for the energy storage of the flywheel in the present invention, a variety of bearings are used to mix and work together to suspend the flywheel and reduce friction as much as possible. At the bottom of the flywheel, there is a repulsive Halbach ring array magnetic levitation device. By combining the magnets in a radial or parallel arrangement according to a certain arrangement rule, the arranged permanent magnet structure will eventually form a unilateral with great magnetic force. Magnetic field, by setting up and down two sets of Halbach ring arrays, clearance fit and mutual repulsion, provide axial force to the flywheel to make it levitate. There is an axial permanent magnet bearing for unloading, which is composed of a permanent magnet embedded in the casing and a permanent magnet embedded in the upper end face of the flywheel rotor, and the N pole is opposite to the S pole. Axial force, cooperate with Halbach ring array magnetic suspension device to provide axial force to complete the suspension of the flywheel. An upper rolling bearing and a lower rolling bearing are respectively installed on the upper and lower ends of the flywheel rotating body to support the flywheel to rotate, and the utility model has the advantages of simple structure and low cost.
在飞轮的上下各设置有一组电磁激振器,电磁激振器可以直接利用电磁力作激振力,通过对飞轮转子的轴系进行激振,来了解飞轮轴系的模态。传统设计需要在飞轮转子安装之前,进行模态特性测试,一般用力锤敲击,激发出转子的固有模态并测量。力锤敲击容易造成转子表面的机械损伤,且飞轮安装轴承之前,其模态特性与装配后的结构模态有不小的差异,造成飞轮敲击模态测量的不准确。本发明的电磁激振装置,可以对飞轮转子进行非接触激振,飞轮处于静止或旋转状态,均可非接触激发出整个轴系的模态频率,能够实时考虑陀螺效应和轴承特性对轴系模态造成的影响,与传统模态测量相比,具有在线、实时、准确的技术优势。A set of electromagnetic vibration exciters are arranged on the upper and lower sides of the flywheel. The electromagnetic vibration exciter can directly use the electromagnetic force as the exciting force, and can understand the mode of the flywheel shaft system by exciting the shaft system of the flywheel rotor. The traditional design needs to test the modal characteristics before the flywheel rotor is installed. Generally, it is hit with a force hammer to excite the inherent mode of the rotor and measure it. Hammer knocking is easy to cause mechanical damage to the rotor surface, and the modal characteristics of the flywheel before the bearing is installed are quite different from the structural modal after assembly, resulting in inaccurate modal measurement of the flywheel knocking. The electromagnetic excitation device of the present invention can perform non-contact excitation on the rotor of the flywheel. The flywheel is in a static or rotating state, and the modal frequency of the entire shaft system can be excited non-contact, and the gyro effect and bearing characteristics can be considered in real time for the shaft system. Compared with the traditional modal measurement, the influence caused by the modal has the technical advantages of online, real-time and accurate.
对于飞轮在高速旋转时的振动问题,通过在飞轮储能系统的底部设置阻尼装置,来降低振动,该阻尼器采用油阻尼,阻尼器中的阻尼体中安装有永磁磁铁,阻尼器的外壳中设置有线圈,用于和磁铁阻尼体相互作用。同时在阻尼器中设置有挤压油膜,对飞轮储能系统有减震和稳定作用。还能通过改变挤压油膜的油压和油温来调整减震效果,而阻尼油还能对阻尼器进行散热。For the vibration of the flywheel when it rotates at a high speed, the vibration is reduced by setting a damping device at the bottom of the flywheel energy storage system. The damper adopts oil damping, and the damping body in the damper is installed with a permanent magnet, and the outer casing of the damper is installed. A coil is arranged in the coil for interacting with the magnet damping body. At the same time, a squeeze oil film is arranged in the damper, which has shock absorption and stabilization effects on the flywheel energy storage system. The shock absorption effect can also be adjusted by changing the oil pressure and oil temperature of the squeeze oil film, and the damping oil can also dissipate heat from the damper.
在通过阻尼装置降低储能飞轮的振动时,本发明还在阻尼装置中设置了能量回收装置,把这部分振动能量回收利用。在阻尼器中,设置有磁铁和线圈,磁铁和线圈在阻尼时会相互作用,并产生感应电压,起到能量回收的作用。When the vibration of the energy storage flywheel is reduced by the damping device, the present invention also sets an energy recovery device in the damping device to recover and utilize this part of the vibration energy. In the damper, a magnet and a coil are arranged, and the magnet and the coil will interact during damping and generate an induced voltage, which plays the role of energy recovery.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be The technical solutions described in the foregoing embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210616144.4A CN115199705B (en) | 2022-05-31 | 2022-05-31 | Multifunctional energy storage flywheel system with damping energy recovery and online modal monitoring functions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210616144.4A CN115199705B (en) | 2022-05-31 | 2022-05-31 | Multifunctional energy storage flywheel system with damping energy recovery and online modal monitoring functions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115199705A true CN115199705A (en) | 2022-10-18 |
CN115199705B CN115199705B (en) | 2023-06-16 |
Family
ID=83575657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210616144.4A Active CN115199705B (en) | 2022-05-31 | 2022-05-31 | Multifunctional energy storage flywheel system with damping energy recovery and online modal monitoring functions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115199705B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4477903A1 (en) * | 2023-06-08 | 2024-12-18 | Hamilton Sundstrand Corporation | Hybrid airfoil and auxiliary magnetic bearings |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040256929A1 (en) * | 2001-08-30 | 2004-12-23 | Gabrys Christopher W. | Tubular flywheel energy storage system |
CN102169046A (en) * | 2010-12-22 | 2011-08-31 | 北京航空航天大学 | Online elastic mode testing system for magnetically suspended electromechanical equipment |
CN203014719U (en) * | 2012-12-25 | 2013-06-19 | 河海大学 | Repulsive type Halbach ring array magnetic suspension device |
CN103278327A (en) * | 2013-05-23 | 2013-09-04 | 陕西科技大学 | Dynamic calibration system and calibration method for identifying stiffness of sliding bearing |
CN103939523A (en) * | 2014-05-21 | 2014-07-23 | 张铁林 | Halbach array magnetic suspension bearing and rotor supporting system |
US20170271943A1 (en) * | 2014-12-02 | 2017-09-21 | Management Services Group, Inc., Doing Business As (DBA) Global Technical Systems | Devices and methods for increasing energy and/or power density in composite flywheel energy storage systems |
CN107910979A (en) * | 2017-12-26 | 2018-04-13 | 盾石磁能科技有限责任公司 | High-speed magnetic levitation flywheel energy storage device |
CN109450157A (en) * | 2018-12-06 | 2019-03-08 | 哈尔滨电气股份有限公司 | The big energy storage capacity variable cross-section rotor flywheel energy storage system of Permanent-magnet bearing and electromagnetic bearing mixing bearing |
CN109450158A (en) * | 2018-12-06 | 2019-03-08 | 哈尔滨电气股份有限公司 | The cylindrical rotor flywheel energy storage system of Permanent-magnet bearing and electromagnetic bearing mixing bearing |
CN111435806A (en) * | 2019-01-14 | 2020-07-21 | 坎德拉(深圳)科技创新有限公司 | Flywheel energy storage device and axial magnetic bearing |
CN212297270U (en) * | 2020-04-26 | 2021-01-05 | 中铁二院工程集团有限责任公司 | Flywheel device supported by repulsion type magnetic suspension bearing |
CN112211939A (en) * | 2020-10-30 | 2021-01-12 | 江苏理工学院 | Damping device |
CN113124086A (en) * | 2021-02-26 | 2021-07-16 | 江苏开沃汽车有限公司 | Multi-cavity shock absorber for energy recovery and working method |
CN216050648U (en) * | 2021-09-13 | 2022-03-15 | 坎德拉(深圳)新能源科技有限公司 | Modal testing device of non-contact energy storage flywheel unit |
CN114448161A (en) * | 2022-01-27 | 2022-05-06 | 中国长江三峡集团有限公司 | High-temperature superconducting magnetic suspension flywheel with axial vibration isolation function |
-
2022
- 2022-05-31 CN CN202210616144.4A patent/CN115199705B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040256929A1 (en) * | 2001-08-30 | 2004-12-23 | Gabrys Christopher W. | Tubular flywheel energy storage system |
CN102169046A (en) * | 2010-12-22 | 2011-08-31 | 北京航空航天大学 | Online elastic mode testing system for magnetically suspended electromechanical equipment |
CN203014719U (en) * | 2012-12-25 | 2013-06-19 | 河海大学 | Repulsive type Halbach ring array magnetic suspension device |
CN103278327A (en) * | 2013-05-23 | 2013-09-04 | 陕西科技大学 | Dynamic calibration system and calibration method for identifying stiffness of sliding bearing |
CN103939523A (en) * | 2014-05-21 | 2014-07-23 | 张铁林 | Halbach array magnetic suspension bearing and rotor supporting system |
US20170271943A1 (en) * | 2014-12-02 | 2017-09-21 | Management Services Group, Inc., Doing Business As (DBA) Global Technical Systems | Devices and methods for increasing energy and/or power density in composite flywheel energy storage systems |
CN107910979A (en) * | 2017-12-26 | 2018-04-13 | 盾石磁能科技有限责任公司 | High-speed magnetic levitation flywheel energy storage device |
CN109450157A (en) * | 2018-12-06 | 2019-03-08 | 哈尔滨电气股份有限公司 | The big energy storage capacity variable cross-section rotor flywheel energy storage system of Permanent-magnet bearing and electromagnetic bearing mixing bearing |
CN109450158A (en) * | 2018-12-06 | 2019-03-08 | 哈尔滨电气股份有限公司 | The cylindrical rotor flywheel energy storage system of Permanent-magnet bearing and electromagnetic bearing mixing bearing |
CN111435806A (en) * | 2019-01-14 | 2020-07-21 | 坎德拉(深圳)科技创新有限公司 | Flywheel energy storage device and axial magnetic bearing |
CN212297270U (en) * | 2020-04-26 | 2021-01-05 | 中铁二院工程集团有限责任公司 | Flywheel device supported by repulsion type magnetic suspension bearing |
CN112211939A (en) * | 2020-10-30 | 2021-01-12 | 江苏理工学院 | Damping device |
CN113124086A (en) * | 2021-02-26 | 2021-07-16 | 江苏开沃汽车有限公司 | Multi-cavity shock absorber for energy recovery and working method |
CN216050648U (en) * | 2021-09-13 | 2022-03-15 | 坎德拉(深圳)新能源科技有限公司 | Modal testing device of non-contact energy storage flywheel unit |
CN114448161A (en) * | 2022-01-27 | 2022-05-06 | 中国长江三峡集团有限公司 | High-temperature superconducting magnetic suspension flywheel with axial vibration isolation function |
Non-Patent Citations (2)
Title |
---|
XUE-FENG HAN ET AL.: "Numerical investigation of floating zone silicon using Halbach array magnets", 《JOURNAL OF CRYSTAL GROWTH》, no. 546 * |
胡国良等: "双线圈磁流变阀压降特性分析", 《机床与液压》, vol. 41, no. 19 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4477903A1 (en) * | 2023-06-08 | 2024-12-18 | Hamilton Sundstrand Corporation | Hybrid airfoil and auxiliary magnetic bearings |
Also Published As
Publication number | Publication date |
---|---|
CN115199705B (en) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019137026A1 (en) | Thrust bearing, rotor system, and thrust bearing control method | |
CN104201935B (en) | A kind of four-degree-of-freedom magnetically levitated flywheel | |
CN107222131A (en) | A kind of rotor gravity unloading type magnetic bearing compound machine | |
CN103607067A (en) | Magnetic-suspension flywheel energy-storage cell used for electric automobile | |
WO2019137024A1 (en) | Thrust bearing, rotor system and control method for thrust bearing | |
CN107289004A (en) | A kind of vehicle-mounted flying wheel battery alternating current-direct current five degree of freedom conisphere face hybrid magnetic bearing | |
CN103225669B (en) | With the Permanent-magnet bearing squeeze film damper of elastic ring | |
CN101571161B (en) | Magnetic sliding bearing | |
CN107327483A (en) | A kind of vehicle-mounted flying wheel battery double sphere hybrid magnetic bearings of alternating current-direct current five degree of freedom | |
WO2019137025A1 (en) | Radial bearing, rotor system and method for controlling radial bearing | |
CN204267527U (en) | A kind of two-freedom external rotor permanent magnet is biased spherical radial direction magnetic bearing | |
CN206321422U (en) | High-speed rotor system magnetic suspension bearing device experiment platform | |
CN103199631B (en) | Utilize rotor energy-storage system and the energy storage method of eddy energy | |
CN115199705B (en) | Multifunctional energy storage flywheel system with damping energy recovery and online modal monitoring functions | |
CN114448161A (en) | High-temperature superconducting magnetic suspension flywheel with axial vibration isolation function | |
CN101964564B (en) | Vertical type magnetic suspension flywheel battery adopting thin spoke flywheel | |
Dergachev et al. | Flywheel energy storage system with magnetic hts suspension and embedded in the flywheel motor-generator | |
CN201956944U (en) | Vertical magnetic levitation flywheel battery utilizing flywheel | |
CN112160985A (en) | Electric Spindle System Supported by Double Radial Hexapole Hybrid Magnetic Bearings with Different Magnetic Pole Surfaces | |
Tang et al. | Rotor dynamics analysis and experiment study of the flywheel spin test system | |
CN111734740A (en) | Radial magnetic-gas combined bearing device | |
CN203632454U (en) | Magnetic suspension flywheel energy storage battery used for electric automobile | |
CN113037001B (en) | Flywheel energy storage device based on outer rotor bearingless permanent magnet synchronous motor | |
CN104314977B (en) | A two-degree-of-freedom outer rotor permanent magnet offset spherical radial magnetic bearing | |
CN203180653U (en) | Rotor energy storage system utilizing whirling energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |