CN115197968A - Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application thereof - Google Patents

Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application thereof Download PDF

Info

Publication number
CN115197968A
CN115197968A CN202110383729.1A CN202110383729A CN115197968A CN 115197968 A CN115197968 A CN 115197968A CN 202110383729 A CN202110383729 A CN 202110383729A CN 115197968 A CN115197968 A CN 115197968A
Authority
CN
China
Prior art keywords
gly
ala
val
leu
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110383729.1A
Other languages
Chinese (zh)
Other versions
CN115197968B (en
Inventor
牛志远
朱武凌
郭长江
支灵通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang Medical University
Original Assignee
Xinxiang Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang Medical University filed Critical Xinxiang Medical University
Priority to CN202110383729.1A priority Critical patent/CN115197968B/en
Publication of CN115197968A publication Critical patent/CN115197968A/en
Application granted granted Critical
Publication of CN115197968B publication Critical patent/CN115197968B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/503Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from viruses
    • C12N9/506Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from viruses derived from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04002Adenine deaminase (3.5.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04005Cytidine deaminase (3.5.4.5)
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/06Methods of screening libraries by measuring effects on living organisms, tissues or cells
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for constructing and screening a chimeric antigen receptor modified cell library with an automatically optimized antigen binding domain and application thereof, wherein a chimeric antigen receptor sequence is inserted into a cell, and mutation is continuously induced in an extracellular antigen binding domain through a cis-acting element and a trans-acting factor to establish an antibody sequence dynamic library for subsequent screening; displaying the antibody sequence dynamic library on the cell surface by the receptor 2 to form a chimeric receptor library cell library; receptor 1 is able to recognize the tag on the target antigen and form a dimer with receptor 2, which is able to recognize the target antigen, thus initiating expression of the selection gene and simultaneously initiating the inhibition system to maintain stability of the antigen binding domain. Screening the chimeric antigen receptor library, and performing amplification sequencing on the antigen binding domain of the screened positive cell chimeric receptor to obtain the nucleic acid sequence of the antigen recognition region. The method can be used for preparing various antibodies, and is simple, convenient and efficient.

Description

Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application thereof
Technical Field
The invention relates to a method for constructing and screening a chimeric antigen receptor modified cell library with an automatically optimized antigen binding domain and application thereof, belonging to the technical field of genetic engineering.
Background
At present, the antibody plays an irreplaceable role in the fields of scientific research, detection, diagnosis, medical treatment and the like, and along with the development of chimeric antigen receptor T cell immunotherapy (CAR-T) and immune checkpoint therapy, the preparation of the antibody is in greater demand and higher requirement at present. For example, single chain antibodies (scFv) of the extracellular antigen-binding domain of a Chimeric Antigen Receptor (CAR) are prepared. The extracellular antigen-binding domain of CARs also mostly employs camelid and shark-derived single domain antibodies (sdabs) naturally devoid of light chain, known as heavy chain-only antibodies (hcabs), with antigen-binding fragments in each arm of the hcabs having a single heavy chain variable domain (VHH) that can have high affinity for antigen without the aid of a light chain, VHH is known as the smallest functional antigen-binding fragment, with a molecular weight of about 15Kd, and is widely used in CAR receptors. Furthermore, humanized antibodies are often required in the course of human therapy.
Currently, scFv and VHH are mostly obtained by conventional antibody preparation methods, which mainly comprise the following steps: 1. preparing an antigen and an adjuvant; 2. animal immunization; 3. collecting antiserum; 4.B lymphocyte isolation; 5. preparing hybridoma/amplifying antibody sequence and building a library; 6. screening antibodies; 7. obtaining an antibody sequence; further preparation of scFv and VHH sequences. In addition, the prepared antibody needs to be subjected to humanization treatment, the application of humanized mice is involved, or the splicing of the antibodies is involved, the whole process is complicated in steps, time-consuming and labor-consuming, and the cost is high.
Disclosure of Invention
The invention aims to provide a method for constructing a chimeric antigen receptor modified cell library with an automatically optimized antigen binding domain.
The second objective of the invention is to provide a library of chimeric antigen receptor-modified cells prepared by the above construction method.
The third purpose of the invention is to provide a method for screening the chimeric antigen receptor modified cell library with automatically optimized antigen binding domain.
The fourth purpose of the invention is to provide the application of the screening method in preparing the antibody.
The fifth object of the present invention is to provide an antibody screened by the above method.
In order to achieve the purpose, the invention adopts the following technical scheme:
in a first aspect, the invention provides a method for constructing a chimeric antigen receptor modified cell library with an automatically optimized antigen binding domain, wherein one or more vectors comprising a first gene element, a second gene element, a third gene element, a fourth gene element and a fifth gene element are transfected into cells to obtain the chimeric antigen receptor modified cell library;
the first gene element is a nucleotide sequence for coding a receptor 1, and the receptor 1 comprises an extracellular domain, a transmembrane domain and an intracellular domain; the extracellular domain may recognize a biotin or 6 × His tag labeled on a target antigen, and the intracellular domain includes tobacco etch virus protease TEVP;
the second genetic element is a nucleotide sequence encoding a receptor 2, the receptor 2 comprising an extracellular antigen-binding domain, a transmembrane domain, and an intracellular signal domain; the antigen binding domain is an antibody sequence dynamic library, and the dynamic library is obtained by inducing a series of mutations under the action of a fourth gene element and introducing sequence diversity; the intracellular signaling domain comprises a tTA transcription factor domain and a linking sequence that connects the tTA transcription factor domain and the transmembrane domain, comprising a sequence that is recognizable by TEVP for cleavage;
the third gene element is a nucleotide sequence for coding a screening gene, and the tTA transcription factor can start the expression of the screening gene, so that a host generates fluorescence, obtains certain resistance or obtains a growth advantage under certain conditions;
the fourth gene element is a nucleotide sequence encoding one or more cis-regulatory elements and one or more trans-acting factors; the cis-form regulatory element can enable DNA to generate a DNA sequence with a special structure, the special structure refers to that the DNA structure contains a DNA single-chain structure without base complementary pairing, and the special structure comprises R-loop, G-triplet and G-quadruplet; the trans-acting factor is a Cas protein family and a variant of the Cas protein family, gRNA, uracil glycosylase inhibitor, adenine deaminase, cytidine deaminase, RNA-DNA hybrid chain binding protein, photosensitive protein, nucleolin, DNA helicase, error-prone DNA polymerase, recombinase, endonuclease, exonuclease and one or more combinations of alkyl adenine glycosylase;
the fifth gene element is a nucleotide sequence for coding a suppression system, and a tTA transcription factor can start the expression of the suppression system, so that a trans-acting factor is knocked down or knocked out, and an antibody sequence dynamic library is maintained to be stable; or the fifth genetic element is a nucleotide sequence encoding an photocontrol system capable of regulating expression of the fourth genetic element: starting the expression of the fourth gene element under the illumination condition, and starting to construct an antibody dynamic sequence library; after the light irradiation is stopped, the function of the fourth gene element is inhibited, and the antibody dynamic sequence library is maintained to be stable.
Preferably, the cell is a eukaryotic cell or a prokaryotic cell, further preferably, the cell is a cell of human or murine origin, and more preferably, the cell is 293T.
Preferably, the antibody sequence dynamic library comprises a traditional antibody library, a single-chain antibody library and a nano-antibody library.
Preferably, the nucleotide sequence of the receptor 1 is shown as SEQ ID NO. 1.
Preferably, the receptor 2 is a synNotch receptor modified from a Notch receptor, and the nucleotide sequence of the synNotch receptor is shown as SEQ ID NO.2 or SEQ ID NO. 3.
Preferably, the trans-acting factor comprises the following Cas protein family members and partial domains thereof: cas3-8s, cas10s, cas11s, cas9s, xCas9, cas12s, cas13s, and Cas14s.
Preferably, the trans-acting factors include the following adenine deaminases and partial domains thereof: ecTadA, mADA, hADAR2 and hADAT2.
Preferably, the trans-acting factors include the following cytidine deaminases and partial domains thereof: AID (activation-induced cytidine deaminase), APOBEC3G, APOBEC and CDA1.
Preferably, the nucleotide sequence encoding the light control system comprises the following photoproteins and partial domains thereof: bphS, cph1, PCB, phyB-PIFs, P Φ B, bphP-PpsR 2, bphP1-Q-PAS1, LOV2-J α, phyB, PIF6, epdz and Photometer visual (VVD).
Preferably, the Cas protein family is a family of proteins that recognize and direct specific sites on the genome through grnas.
Preferably, the light control system exerts a regulation effect on the fourth genetic element and requires coordination of illumination, wherein the illumination comprises visible light, invisible light, blue light, red light, far infrared light and ultraviolet light.
Preferably, the screening genes comprise GFP, mCherry, luciferase, puromycin resistance genes, bleomycin and neomycin resistance genes.
Preferably, the inhibition system enables the expression of negative regulatory protein, repressor protein, siRNA, CAS9/gRNA through tTA transcription factor or knockdown or knock-out of trans-acting factor through reverse transcription mode, so that the dynamic library of antibody sequences is kept stable.
In a second aspect, the present invention provides an antigen-binding domain auto-optimized chimeric antigen receptor-modified cell library obtained by the above-described construction method.
In a third aspect, the present invention provides a method for screening a library of chimeric antigen receptor-modified cells that are automatically optimized for the antigen binding domain described above, comprising the steps of:
1) Preparing a target antigen carrying a tag capable of being recognized by the chimeric receptor 2, the tag comprising biotin or 6 × His;
2) Co-incubating a target antigen and a chimeric antigen receptor modified cell library, and screening positive chimeric antigen receptor expression cells according to the expression condition of the screened genes;
3) Performing amplification sequencing on the chimeric antigen receptor extracellular antigen binding domain of the positive cell to obtain an antibody nucleotide sequence capable of being specifically bound with a target antigen;
preferably, after obtaining the nucleotide sequence of the antibody capable of specifically recognizing and binding to the target antigen, the antibody against the target antigen is obtained by genetic engineering.
Preferably, the target antigen is expressed on the surface of a cell, coated on the surface of a carrier, or is a soluble protein.
Preferably, the carrier comprises magnetic microspheres, non-magnetic microspheres, graphene, agarose microspheres, nanoparticles, silica-based magnetic beads, GMA magnetic beads and polystyrene magnetic microspheres.
In a fourth aspect, the present invention provides the use of the above screening method for the production of antibodies against a particular target antigen.
In a fifth aspect, the present invention provides an antibody screened by the above method.
The GFP nano antibody is obtained by using GFP-biotin as a target antigen and constructing a chimeric receptor modified cell library in different modes and screening, wherein an amino acid sequence of the anti-GFP nano antibody comprises any one of SEQ ID NO.4-13 or any combination of CDR1, CDR2 and CDR3 regions in SEQ ID NO. 4-13.
The invention has the beneficial effects that:
the library constructed by the construction method of the chimeric antigen receptor modified cell library is a dynamic library, can be screened and automatically optimized in an antigen binding domain, and overcomes the defect of limited sequence diversity of a static library in the prior art; and the whole process can be optimized by selecting a human antibody as a framework, so that the humanization of the antibody is directly realized. The dynamic library constructed by the method can be repeatedly utilized, and corresponding antigen binding domain sequences aiming at various antigens can be obtained according to the screening method of the chimeric antigen receptor modified cell library provided by the invention. Compared with the traditional antigen binding domain sequence/antibody sequence acquisition method, the efficiency is greatly improved, and the cost is greatly reduced.
Drawings
FIG. 1 is a schematic view of the present invention;
FIG. 2 is a schematic diagram of a gRNA-guided base editor;
FIG. 3 is a schematic diagram of a G-quadruplex guide base editor;
FIG. 4 is a schematic diagram of an optimized gRNA guide base editor;
FIG. 5 is a schematic view of the structure of the carrier 1;
FIG. 6 is a schematic structural view of the carrier 2;
FIG. 7 is a schematic structural view of the carrier 3;
FIG. 8 is a schematic view of the structure of the carrier 4;
FIG. 9 is a schematic view of the structure of the carrier 5;
FIG. 10 is a schematic diagram of the structure of dCas9 fused adenosine deaminase;
FIG. 11 is a schematic diagram of the structure of dCas9 fused cytidine deaminase;
FIG. 12 is a schematic structural view of dCas9-Vivid-Mcm 7;
FIG. 13 is a schematic representation of the structure of Vivid fused cytidine deaminase and adenosine deaminase;
FIG. 14 is a graph showing the results of eGFP recognition of VHH sequences obtained by ELISA;
in the figure, a, base editor positioning and library building are guided according to G-quadruplet of DNA, and screened nano-antibodies are identified; b, positioning and establishing a library according to a gRNA guide base editor and identifying the screened nano antibody; c, positioning and establishing a library according to a gRNA guide improved base editor and identifying the screened nano antibody.
FIG. 15 is a graph showing the results of PCR amplification of all antibody heavy chains;
FIG. 16 is a graph showing the results of a large number of PCR amplifications of all antibody heavy chains;
FIG. 17 is a graph showing the results of PCR amplification of nanobodies;
FIG. 18 is a flow cytometry validation of receptor 1 and receptor 2 expression, respectively;
FIG. 19 is a cell ELISA and immunofluorescence validation of receptor 1 and receptor 2 expression;
in the figure, a, the dimerization activated double receptor system expresses the structural pattern in the cell and the detection method is shown schematically; b, detecting the expression condition of streptavidin (receptor 1) by using cell ELISA; and c, incubating GFP and cells expressing the dimerization activation double-receptor system for 15 min under a fluorescence microscope to observe the expression condition of the receptor 2.
FIG. 20 shows the screening of nanobodies with biotin-labeled GFP protein;
FIG. 21 shows the results of the specific identification of nanobodies.
In the figure, a, the flow type of unlabelled GFP protein is used for detecting 5 positive cell clones screened; detecting the specificity of the 5 nano antibodies after prokaryotic expression and purification to GFP protein by ELISA, and taking the anti-CD19 nano antibody as a negative control; and c, incubating the positive cells carrying the VHH5 gene and unlabeled GFP for 30min, and observing the binding condition of the GFP and the cells under a fluorescence microscope.
Detailed Description
The invention will be further described with reference to specific embodiments, but the scope of the invention is not limited thereto; the equipment and reagents used in the examples are, unless otherwise specified, conventionally available commercially.
The invention constructs a vector for expressing a receptor 1 and a receptor 2, wherein the receptor 1 can recognize a biotin tag, an extracellular antigen binding domain of the receptor 2 can display a nano antibody library, when a target antigen with the biotin tag is incubated with a chimeric antigen receptor modified cell library, the target antigen can induce the receptor 1 and the receptor 2 to generate a dimer, and after dimerization, tobacco etch virus protease (TEV protease, TEVP) of an intracellular domain of the receptor 1 recognizes and cuts a tTA transcription factor structural domain which releases an intracellular signaling domain of the receptor 2, and the tTA transcription factor can start the expression of a screening gene and a suppression system (as shown in figure 1).
And then taking camel peripheral blood mononuclear cells to obtain a natural nano antibody sequence, replacing a nano antibody sequence region outside a receptor 2 cell with a natural nano antibody sequence library, packaging lentiviruses by using a vector and transfecting 293T cells, and screening and transfecting positive cells by using puromycin, so that the nano antibody library is displayed on the 293T cells through the receptor 2, and the chimeric antigen receptor modified cell library is obtained.
GFP protein is obtained through prokaryotic expression and purification, biotin-labeled GFP protein (GFP-biotin) is prepared to serve as a target antigen, the modified cell library is screened, and the fact that the chimeric receptor modified cell library activated through dimerization of the receptor 1 and the receptor 2 is successfully constructed and can be screened to obtain the GFP protein nano antibody is proved.
Furthermore, the invention introduces a fourth gene element into the chassis cells, namely, one or more cis-regulatory elements and one or more trans-acting factors are introduced, mutation is continuously induced in an antigen binding domain, and sequence diversity is introduced, so that a dynamic library of a nano antibody sequence is established, a dynamic chimeric antigen receptor modified cell library is constructed and screened, and a nano antibody of GFP protein is obtained, thereby proving the feasibility of the construction and screening methods of the chimeric antigen receptor modified cell library provided by the invention.
Example 1: vector construction
The vector inserted with a series of gene elements can express receptor 1 and receptor 2 in 293T cells, receptor 1 can recognize biotin tags, the extracellular antigen binding domain of receptor 2 can display a nanobody library, when the target antigen with the biotin tags is incubated with a library of chimeric antigen receptor modified cells, the target antigen can induce receptor 1 and receptor 2 to dimerize, and after dimerization, tobacco etch virus protease (TEV protease, TEVP) of the receptor 1 intracellular domain recognizes and cleaves a tTA transcription factor domain releasing the receptor 2 intracellular signaling domain, and the tTA transcription factor can start the expression of a screening gene and a suppression system (as shown in FIG. 1).
Preferably, the vector 1 (shown in FIG. 5) has a key DNA sequence shown in SEQ ID NO.14 (the sequence of SEQ ID NO.14 is a sequence between the cPPT/CTS element and the EF-1. Alpha. Core promoter element shown in FIG. 5, and the sequence can be connected to any lentiviral vector with similar structure). The key DNA sequence of the vector 2 (see FIG. 6) is shown as SEQ ID NO.15 (SEQ ID NO.15 is a sequence between the cPPT/CTS element and the EF-1. Alpha. Core promoter element in FIG. 6, and this sequence can be linked to any lentiviral vector with similar structure). The vector was subjected to whole-gene synthesis by Gene Synthesis.
Example 2: construction of Nanobody libraries
Purchasing 200ml camel blood from Tianjin desert visitor, performing camel blood mononuclear cell separation experiment, and finally separating to obtain 2.03 × 10 9 The mononuclear cells were resuspended in Trizol and then aliquoted into 10 centrifuge tubes (2 ml Trizol/centrifuge tube) and frozen in a-80 ℃ freezer.
RNA was extracted from cells In One of the tubes, and 95.8. Mu.g (A260/A280 = 2.0) In total was extracted, and All of them were reverse transcribed into cDNA using 5 × All In One RT MasterMix (Cat # G490, abm) and frozen In a freezer at-20 ℃.
Figure BDA0003014033580000051
1) First PCR amplification of all antibody heavy chains
Experimental materials:
Hieff Canace R gold High-Fidelity DNA Polymerase, product number 10148ES10;
an amplification primer:
CALL001:5′-GTCCTGGCTGCTCTTCTACAAGG-3′;
CALL002:5′-GGTACGTGCTGTTGAACTGTTCC-3′;
reaction system:
Figure BDA0003014033580000052
Figure BDA0003014033580000061
reaction procedure:
Figure BDA0003014033580000062
and (3) reaction results:
the PCR amplification results are shown in FIG. 15, which shows that the effect of 0.5. Mu.g of cDNA in a total amount of 5. Mu.l is the best.
re-PCR amplification: the cDNA was amplified once more with 5. Mu.l, and 8 tubes were amplified.
And (3) recovering PCR amplification products:
cutting 700bp band, using SanPrep column DNA gel recovery kit (REF B518131-0100, OLD # SK8132, LOT E710KA 8969) to recover target band DNA (as shown in FIG. 16), recovering 8-tube PCR product with total volume of 240 μ l, product concentration of 42ng/μ l, and purity (OD 260/280= 1.81).
2) Second PCR amplification of the Nanobody (8 tube PCR products from the recovery using nested primers amplification)
Experimental materials:
Hieff Canace R gold High-Fidelity DNA Polymerase, product number 10148ES10.
The primers are as follows: xba: i TCTAGA, ecoR: i GAATTC
Figure BDA0003014033580000063
Reaction system:
Figure BDA0003014033580000064
reaction procedure: in the same way as before
And (3) amplification results: as shown in fig. 17
Reaction system:
Figure BDA0003014033580000065
Figure BDA0003014033580000071
reaction procedure: in the same way as before
3) PCR product purification
Experimental materials: DNA product purification kit (D1300);
the experimental results are as follows: the concentration of the purified product is 150 ng/mu l, and the total volume is 240 mu l; purity a260/a280=1.84
4) And (3) carrying out enzyme digestion on the vector 1 or the vector 2, carrying out enzyme digestion on the PCR product and carrying out enzyme ligation. Experimental materials:
XmaI(NEB,R0180S),
Figure BDA0003014033580000075
(NEB, R3136S), T4 DNA ligase (Takara, cat #2011A, lot # AIF 2071A), sanPrep column PCR product purification kit (REF # B518141-0100, LOT # B206KA 5188).
The experimental steps are as follows:
a) Enzyme digestion plasmid vector
Figure BDA0003014033580000072
b) Enzyme digestion of PCR product
Figure BDA0003014033580000073
c) Purification of the cleavage product after completion of the cleavage
The cleavage products were purified using a SanPrep column PCR product purification kit.
Carrier 1 gave 60 μ L of purified product 150ng/μ L A/A280 =1.86
VHH PCR product 40 μ L100 ng/μ L A/A280 =1.85
d) Enzymatic ligation
Figure BDA0003014033580000074
Figure BDA0003014033580000081
Ligation was carried out overnight at 16 ℃.
e) Ligation product purification
The ligation product was purified using a SanPrep column PCR product purification kit, using 100. Mu.L ddH 2 And eluting with O buffer solution.
Example 3: preparation of competent cells of Escherichia coli
This study used the electrical transformation method to transfer the recombinant plasmid into the E.coli strain Stbl 3. The preparation method of competent cells of E.coli by electrotransformation (note: it needs to be operated before alcohol burner):
1) Streaking an escherichia coli Stbl3 bacterial liquid on an LB solid culture medium plate without antibiotics by using an inoculating loop (operation in an ultra-clean workbench), and inverting the plate and culturing at 37 ℃ for 24h to obtain a single colony with the diameter of about 1 mm;
2) Selecting a Stbl3 single colony to be placed in 3ml of LB liquid culture medium without antibiotics, placing the LB liquid culture medium in a constant temperature shaking table at 37 ℃, and shaking the LB liquid culture medium at 220rpm for overnight culture;
3) Transferring 3ml of overnight culture bacterial liquid into 250ml of LB liquid culture medium (without antibiotics), placing the mixture in a constant temperature shaking bed at 37 ℃, carrying out shaking culture at 220rpm for about 3-5h, and stopping culture when the OD value of the bacterial liquid reaches 0.4-0.5;
4) Respectively packaging 250ml of bacterial liquid into 2 85ml sterile centrifuge tubes (divided for 2 times), placing the tubes into a low-temperature centrifuge, centrifuging the tubes at 4 ℃ and 4000rpm for 10min, pouring out supernate, and placing the tubes into an ice box;
note that the following operations need to be performed at low temperature (ice bath operation).
5) Using 30ml sterile ddH 2 O (precooling in refrigerator at 4 ℃) to fully suspend the bacterial sediment again, placing the bacterial sediment in a low-temperature centrifuge, centrifuging the bacterial sediment for 10min at the temperature of 4 ℃ and the rpm of 4000, pouring out the supernatant, and placing the centrifugal tube in a centrifugal tubeIn an ice box;
6) Repeating the previous step for 1 time;
7) Fully suspending the bacterial precipitate again by using 30ml of 10% glycerol (precooling in a refrigerator at 4 ℃), placing the bacterial precipitate in a low-temperature centrifuge, centrifuging the bacterial precipitate for 10min at 4 ℃ and 4000rpm, pouring out supernatant, and placing a centrifugal tube in an ice box;
8) Repeating the previous step for 1 time;
9) Resuspend the pellet with 0.5ml 10% glycerol (pre-chilled in a refrigerator at 4 ℃), gently blow it with a pipette to break up small clumps, dispense the pellet into 1.5ml sterile centrifuge tubes, 45 μ l per tube, dispense and place in an ice box.
10 The subpackaged centrifuge tubes are placed in a foam box, a proper amount of liquid nitrogen is poured into the foam box, and after freezing for 1min, the centrifuge tubes are stored at the temperature of minus 20 ℃ for standby.
Example 4: electrotransformation and plating of recombinant vectors
Experimental materials: U.S. Bio-Rad MicroPulser electroporator, bio-Rad electric rotor (cat # 165-2089).
The experimental method comprises the following steps: 100 μ L of purified ligation product +1mL of electrocompetent cells were electroporated 20 times (50 μ L each) by:
1) Pre-cooling the electric rotary cup (fresh and sterile) in a refrigerator at the temperature of-20 ℃;
2) Setting the spot punch instrument to be 'bacterio' and 'Time ms', and carrying out an experiment in an automatic mode;
3) Transferring the uniformly mixed competent cells into a precooled sterile electric transfer cup, covering a cover, and tapping for several times to ensure that the bacterial liquid fully enters an electric shock groove;
4) Placing the electric rotating cup on a point punching instrument, and clicking to normally display for 3-5 ms;
5) After the completion of the electroporation, 0.5mL of the preheated SOC recovery medium was added to each of the electroporation cuvettes, and then 20 cells were transferred to the same 50mL centrifuge tube and incubated at 37 ℃ and 170rpm for 1 hour.
6) 100 μ L of the cells after electroporation was diluted with LB medium at 10 × gradient (1,000,1, 1,000,1 -1 ampicillin,2%(wt/vol)glucose),37℃,Overnight.
7) The remaining cells were divided into 4 portions and plated on 245mm square LB plates (100. Mu.g ml) -1 ampicillin and 2% (wt/vol) glucose), 37 ℃, overnight.
Example 5: computational electrotransfer efficiency collection library
1) The number of colonies on 9cm LB agar plates was counted, the library size was calculated by colony number × dilution factor, 20 single colonies were picked and colony PCR was performed using vF and vR as primers, and the PCR product size was analyzed to ensure that >75% of the colonies contained the correct size DNA fragment.
2) 100 single colonies are picked and used for vF and vR as primers for sequencing to obtain the library size of 100 single colonies, and then the size of the whole nano antibody library is calculated to be 2.15 multiplied by 10 7
3) Add 4mL LB media to each dish, collect cells with sterile cell scraper and transfer to 50mL centrifuge tube, rinse each dish once with 2mL LB media, collect cells, add 20% volume glycerol, measure OD 600 And 20 aliquots of 150 μ L volume of cell suspension were separated and the remainder was kept in large centrifuge tubes and frozen at-80 ℃.
4) Taking out one part of the bacterial liquid to amplify and extract the plasmid, and the extraction step is carried out according to the kit instruction.
Example 6: preparation of lentivirus and selection of stable transformant
Mu.g of the ligated vector 1 or vector 2 plasmid and 17.5. Mu.g of the two lentiviral packaging plasmids PSPAX 2. Mu.g and PMD2. G5.8. Mu.g were added to 1.8mL of calcium chloride in the ratio of 4. Adding the mixed solution into 1.8mL BBS, standing for 20min, and adding 175cm BBS 2 293T cell culture flasks. The virus supernatants were harvested at 48h and 72h, respectively, and concentrated using 5 × PEG. The resulting virus was transfected with polybrene in 293T dishes. After 2 days, selection was performed with puromycin at 6. Mu.g/mL, and the puromycin concentration was maintained for 5 days by changing the solution every day.
Example 7: detection of stably transformed plants
Since the 293T stable transformant of the transfection vector 1 screened in example 6 expresses the receptor 1 and the receptor 2, and the extracellular domains of the two receptors carry Flag and HA tags, respectively, we verified the expression of the receptor 1 and the receptor 2 by flow cytometry by identifying the flow antibodies of the two tags, as shown in fig. 18, the two receptors are successfully expressed.
Since the extracellular domain of receptor 1 expressed by 293T stable transformant of transfection vector 2 screened in example 6 is single-domain streptavidin capable of recognizing biotin, we detected the expression of receptor 1 by cell ELISA using biotin-labeled antibody and HRP-labeled streptavidin (see FIG. 19 b). Receptor 2 extracellular domain has a nanobody domain, and we also detected the expression of receptor 2 with a Goat antibody (coat Anti-Llama IgG H & L, abcam, ab 112785) labeled with FITC that recognizes nanobodies (see FIG. 19 c).
Example 8: GFP protein purification and GFP-biotin ligand preparation
We pronucleus expressed and purified GFP protein by the following steps:
1) The eGFP protein expression vector is pET-28a (+), and the host bacterium is E.coli BL21 (DE 3);
2) Streaking an escherichia coli BL21 (DE 3) bacterial liquid on an LB solid culture medium plate containing kanamycin by using an inoculating loop (operation in an ultra-clean workbench), and inversely placing the plate at 37 ℃ for culturing for 24 hours to obtain a single bacterial colony with the diameter of about 1 mm;
3) Selecting a single colony to be placed in 3ml of LB liquid culture medium without antibiotics, placing the single colony in a constant temperature shaking table at 37 ℃, and shaking at 220rpm for overnight culture;
4) Transferring 3ml of overnight culture bacterial liquid into 200ml of LB liquid culture medium (without antibiotics), placing the mixture in a constant temperature shaking bed at 37 ℃, carrying out shaking culture at 220rpm for about 3-5h, and stopping culture when the OD value of the bacterial liquid reaches 0.8;
5) Adding 0.5mM IPTG to induce protein expression (IPTG mother liquor concentration is 1M,200ml LB liquid culture medium, adding 100. Mu.l), placing in a constant temperature shaking table at 16 ℃, and carrying out shake culture at 170rpm for 16h;
6) Centrifuging at 4000g for 5min, discarding the supernatant, and washing with 30ml Buffer A once;
7) Adding 25ml Buffer A, mixing, inserting on ice, performing ultrasonic crushing for 2s, 5s for gap time, and 40 times for working times.
8) Centrifuging at 10000rpm at 4 deg.C for 30min, and filtering the supernatant with 0.45 μm filter;
9) Washing the nickel column with 10 times volume of Buffer A, and adding a clear solution after washing;
10 ) after the supernatant had flowed through, 5 volumes of Buffer A washout protein containing 10mM imidazole were added once, 5 volumes of Buffer A washout protein containing 20mM imidazole were added once, 5 volumes of Buffer A washout protein containing 40mM imidazole were added once, 5 volumes of Buffer A washout protein containing 250mM imidazole were added once, and eluates were collected into different 1.5ml centrifuge tubes. Note that: when the protein is washed by imidazole at low concentration, quick Start is used TM The Bradford Protein Assay solution was used to observe whether any Protein was eluted.
11 Wash the nickel column with 10 volumes of Buffer a, then wash the nickel column with 10 volumes of ddH2O, and finally keep the nickel column in 20% ethanol for use.
12 SDS-PAGE gels to determine protein content and purity in each tube.
13 ) the protein solution in the target tube is combined, and the protein solution is concentrated by using a proper ultrafiltration tube, and 3 times of protein preservation solution is added to replace the eluent.
14 The elongated tip is used to transfer the protein solution.
15 Biotin-labeled GFP protein (GFP-Biotin) was prepared using a Biotin super Biotin rapid labeling kit (ARL 0020S-30K-0.5mL, available from forneddtechnology (wuhan) ltd.) and the Biotin labeling procedure was performed as described.
Example 9: nano antibody screening and specificity identification
Experimental materials: sequencing primer 5'-GAGGGCAGAGGAAGTCTGCT-3'; blastidin (Solibao);
and (2) incubating a GFP (GFP-biotin, 0.1 mu g/ml) ligand marked by biotin and the transfected 293T cells for 24h, screening positive cells (5 mu g/ml) by using blastcidin, carrying out monoclonal amplification on the positive cells, and sequencing a nano antibody region to obtain the GFP-specific nano antibody. On the left side of FIG. 20 are 293T cells not screened with blastcidin and one of the monoclonal cells after blast screening (on the right side of FIG. 20).
A total of 5 positive cell clones, VHH1, VHH2, VHH3, VHH4 and VHH5, were obtained by screening, and the results of flow assay with unlabeled GFP protein are shown in FIG. 21a, with staining positive for 2 cell clones, VHH3 and VHH 5.
The sequence of 5 nano-antibodies was obtained by sequencing, and the specificity of the 5 nano-antibodies to GFP protein was verified and screened by ELISA after prokaryotic expression and purification (step of prokaryotic expression and purification, expression vector, and induction expression conditions were as described in example 8), the results are shown in fig. 21b, which are consistent with the flow results, and the flow-positive VHH3 and VHH5 nano-antibody ELISA results corresponding to the 2 cell lines were also positive.
The ELISA assay procedure was as follows:
1) mu.L of PBS containing GFP protein (1. Mu.g/mL) was added to each well of the plate, mixed well by gentle shaking for 1min, the plate was sealed, and coated at room temperature for 2h.
2) The Solution was decanted, and 400. Mu.L of Wash Solution was added to each well for washing 4 times, 1min each time. After the last wash, the liquid was drained and the residue was blotted dry with clean absorbent paper.
3) mu.L of PBS containing VHH1-5 protein (1. Mu.g/mL) and PBS containing anti-CD19 VHH protein (1. Mu.g/mL) (control) were added to each well, the plates were sealed, and coated for 2h at room temperature.
4) mu.L of HRP-labeled anti-His tag antibody working solution was added to each well, the plate was sealed, and the plate was coated at room temperature for 2 hours.
5) The Solution was decanted and washed with 400 μ L of Wash Solution; repeating for three times; after the last wash, the liquid was drained and the residue was blotted dry with clean absorbent paper.
6) Add 200. Mu.L of Substrate Solution to each well and coat for 20-30min at room temperature in the dark.
Add 50. Mu.L of Stop Solution to each well and shake well. And detecting the light absorption value within 30min, wherein the detection wavelength of the microplate reader is set to be 450nm, and the reference wavelength is set to be 540 or 570nm.
Finally, positive cells carrying the VHH5 gene were incubated with unlabeled GFP for 30min, and the results are shown in FIG. 21c, where the GFP protein was found to bind efficiently to the cells by observation under a fluorescence microscope.
Then, in order to increase the affinity of the VHH5 nanobody to GFP protein, we performed a series of artificial mutations to the three CDR regions of the VHH5 gene, and finally obtained a series of nanobodies with different affinities to GFP, including the VHH5 gene. Wherein the VHH5 nanobody comprises any one of SEQ ID No.16-25, or any combination of the CDR1, CDR2, CDR3 regions of SEQ ID No. 16-25.
Example 10: base editor positioning and library building are guided according to G-quadruplet of DNA, and nano antibody screening and identification are carried out
This example is to perform base editing and library building in vitro on the base editor guided by the G-quadruplet higher structure of DNA in the CDRs region of a nano antibody with a known sequence.
As shown in the principle of FIG. 3, since all base editors can only act on single-stranded DNA at present, one DNA single strand can be generated by the helicase action of dCas9 and gRNA, and in addition, a high-level structure, such as G-quadruplex, can be induced on one DNA single strand, so that another DNA single strand is generated, and the formation of G-quadruplex can be induced by a DNA sequence which is rich in G base and has a minimum length of 25 bp. Nucleolin-linked cytidine deaminase (promoting the mutation of G or C base to any base) and Nucleolin-linked adenosine deaminase (promoting the mutation of A base to any base) are designed at the same time, and because Nucleolin can recognize and combine with G-quadruplex, two base editors are positioned in CDRs. The two base editor genes connected by Nucleolin-Vivid and Vivid are transferred into 293T cells together through a sleeping beauty transposon system SB100X to construct a stable transformant. The method realizes the wide mutation induction of CDRs of VHH by optimizing the length of a Linker sequence between Vivid and deaminase and the blue light irradiation time.
Vector 2 (see example 1) was packaged into lentivirus and transferred into 293T cells and selected for stable transformants by puromycin screening.
Constructing a vector 3 (shown in FIG. 7), wherein the key DNA sequence of the vector 3 is shown as SEQ ID NO.26 (the sequence of SEQ ID NO.26 is the sequence between the cPPT/CTS element and the EF-1. Alpha. Core promoter element in FIG. 7, and the sequence can be connected to any lentiviral vector with similar structure);
constructing a vector 4 (as shown in FIG. 8), wherein the key DNA sequence of the vector 4 is shown as SEQ ID NO.27 (the sequence of SEQ ID NO.27 is a sequence between the cPPT/CTS element and the EF-1 alpha core promoter element in FIG. 8, and the sequence can be connected to any lentivirus vector with a similar structure); (vector delivery to Gene Synthesis Co., ltd for Total Gene Synthesis)
The vector 3 and the vector 4 are sequentially transferred into 293T cells by packaging lentiviruses and constructing 293T cell stable transformants.
After the vector transfection is finished, culturing for 5 days, then extracting cell genome DNA, and amplifying the nano antibody fragment after the library is built by using nested PCR, wherein the sequences of two pairs of nested PCR primers are as follows: f1:5'-CTAGAGCCACCATGGCCC-3'; r1: 5'-CCAGGATGTGGCACAGCA-3'; f2:5'-TCTAGATGGCCCTGCTGCTGCACG-3'; r2: 5'-GAATTCAGGTGCCCTGGTTGTAGC-3', after the fragment ends are amplified, the fragments are connected to pET-28a-c (+) vector (Novagen, cat. No. 69864-3) through enzyme digestion (Xba I/EcoR I) enzyme connection (T4 ligase), and the size of the cell display nano antibody library is calculated to be about 2.67 x 10 by the steps of electrotransformation, plate coating, monoclonal picking sequencing and the like 6 (see reference examples 2-5 for specific procedures).
And (3) incubating a GFP-biotin ligand and the transfected 293T cells for 24h, screening positive cells by using blastcidin, carrying out monoclonal amplification on the positive cells, and sequencing a nano antibody region to obtain the GFP specific nano antibody.
And selecting 3 nano antibody sequences in the obtained positive cells, and performing prokaryotic expression and purification (the protein expression and purification method is shown in example 8) to obtain the VHH antibody protein.
Detecting whether the obtained VHH sequence can identify eGFP by ELISA, wherein the specific steps comprise 1, coating a 96-hole plate with eGFP, and cleaning for 3 times after coating; 2. adding 3 purified VHH antibody proteins, simultaneously using the VHH antibody protein for resisting CD19 as negative control, and cleaning for 3 times after coating; 3. an HRP-labeled Anti-lama IgG (H + L) secondary antibody was added, coated and washed 3 times. 4. Adding TMB color development solution, and identifying whether the obtained VHH antibody protein can identify eGFP. As a result, 1 of the 3 antibodies showed better recognition of eGFP in FIG. 14a.
Then, in order to increase the affinity of the nanobody to GFP protein, we performed a series of artificial mutations on three CDR regions of the selected VHH3 gene, and finally obtained a series of nanobodies containing VHH3 gene with different affinity to GFP. Wherein the VHH5 nanobody comprises any one of SEQ ID No.4-13, or any combination of the CDR1, CDR2, CDR3 regions of SEQ ID No. 4-13.
Example 11: base editor positioning and library building are guided according to gRNA, and nano antibody screening and identification are carried out
In this example, base editing and library building are performed in vitro on a gRNA-guided base editor in a nano antibody CDRs region of a known sequence.
As shown in fig. 2, firstly, a VHH sequence is obtained, 3 grnas targeting CDR1, CDR2 and CDR3 regions of VHH are designed, a Vivid photosensitive protein (dCas 9-Vivid) linked to an inactivated Cas9 (dCas 9) is designed, and then two high-activity base editors, namely, a Vivid fused cytidine deaminase (promoting mutation of G or C base to any base) and a Vivid fused adenosine deaminase (promoting mutation of a base to any base), are designed, respectively, and under the condition of blue light irradiation, the Vivid photosensitive protein forms homodimers, so that the protein containing the Vivid domain randomly forms dimers, resulting in random binding of the two base editors to the dCas9-Vivid protein, thereby locating to the CDRs regions. gRNAs, dCas9-Vivid and two base editor genes were transferred into 293T cells together by the sleeping beauty transposon system SB100X to construct stable transformants. The method is characterized in that the method realizes the wide mutation induction of CDRs (complementary variable domain) regions of VHH (very high frequency) by optimizing the length of a Linker sequence between Vivid photosensitive protein and deaminase and the blue light irradiation time, so that a single VHH sequence is diversified, the establishment of a nano antibody is realized, and the length of the Linker sequence between Vivid and deaminase and the blue light irradiation time are determined by detecting the diversity of the nano antibody library.
Vector 2 (see example 1) was packaged into lentivirus and transferred into 293T cells and selected for stable transformants by puromycin screening.
Constructing a vector 5 (shown in figure 9), wherein the key DNA sequence of the vector 5 is shown as SEQ ID NO.28 (the sequence of SEQ ID NO.28 is the sequence between the U6 promoter element and the EF-1 alpha core promoter element in figure 9, and the sequence can be connected to any pLL7 series lentiviral vector with a similar structure);
constructing slow virus expressing carrier 6 (as shown in FIG. 10), the key DNA sequence of the carrier 6 is shown in SEQ ID NO.29 (the sequence can be connected to any proper position of the slow virus expressing carrier), in another preferred embodiment, the homology between the amino acid sequence expressed by the carrier 6 and the SEQ ID NO.29 sequence is more than or equal to 85%.
Constructing a lentivirus expression vector 7 (as shown in FIG. 11), wherein the key DNA sequence of the vector 7 is shown as SEQ ID NO.30 (the sequence can be connected to a proper position of any lentivirus expression vector), (the homology of the amino acid sequence expressed by the vector 7 and the sequence of the SEQ ID NO.30 is more than or equal to 85 percent in another preferred example);
the vector 5,6,7 was submitted to gene synthesis.
Vector 5, vector 6 and vector 7 were sequentially transferred into 293T cells by packaging lentiviruses and constructing 293T cell stable transformants.
Specific procedure for detection of Nanobody library size referring to examples 2-5, the detected Nanobody library size is about 2.75X 10 7
And (3) incubating the GFP-biotin ligand and the transfected 293T cells for 24h, screening positive cells by using blastcidin, carrying out monoclonal amplification on the positive cells, and sequencing a nano antibody region to obtain the GFP specific nano antibody.
And selecting 5 nano antibody sequences in the obtained positive cells, and performing prokaryotic expression and purification (the protein expression and purification method is shown in example 8) to obtain the VHH antibody protein.
The resulting VHH sequences were tested for the ability to recognize eGFP by ELISA. The results are shown in FIG. 14b, with 2 of the 5 antibodies recognizing eGFP well.
Then, in order to increase the affinity of the nanobody to GFP protein, we performed a series of artificial mutations on the three CDR regions of the two VHH genes that were screened, and finally obtained a series of nanobodies with different affinities to GFP, including the two VHH genes. Wherein the VHH nanobody comprises any two of SEQ ID No.31-40, or any combination of CDR1, CDR2, CDR3 regions of SEQ ID No. 31-40.
Example 12: base editor positioning and library building are guided according to gRNA, and nano antibody screening and identification are carried out
In this example, base editing and library building can be performed in vitro on the basis of guide of gRNA in the CDRs region of a nanobody of unknown sequence.
As shown in fig. 4, since mutation library construction is performed on the CDRs region of the nanobody with a known sequence, and after several rounds of mutation, base editor can not recognize the CDRs region due to the sequence change of the gRNA recognition region or the G-quadruplet region, so that continuous library construction cannot be realized, and in addition, affinity maturation mutation cannot be performed after obtaining a specific nanobody, we improved on the basis of the scheme of fig. 1, 3 grnas respectively targeting the adjacent regions on the right side of CDR1, CDR2 and CDR3 of VHH are designed, and simultaneously, a complete hexamer containing an inactivated Cas9 (dCas 9) guide domain and a viid photoprotein and a helicase Mcm7 (with the N-terminal closer to the CDR region) are designed, wherein the Mcm7 and Mcm2-6 expressed in 293T cells form a cdrdinase activity, and the complete hexamer forms cdrdase activity, and the cddr-active protein hexamer is fused with the cdrd-active protein under the conditions of providing drive of ATP hydrolysis to open the double-stranded region (3 '-5's helicase activity) and guide the cdrd-6 expressed in 293T cells to promote the high base editing region, so that the cdrd-active protein is fused to the cdnas-active region, and the cdnas-active region, so that the cdnas-active protein is fused to the cdnas-active region through a-light-active region, and the random base deaminase, so that the cdnas-active region is fused to promote the cdnas-active region, so that two cdnas-active region, so that the high-active region is fused to form a high-active region under the high-active region, and the high-active deaminase is fused to promote the high-active site of the cdnas-active site. A stable transformant was constructed by transferring (dCas 9-Vivid-Mcm 7) and two base editor genes into 293T cells through the sleeping beauty transposon system SB 100X. The method realizes the wide induction mutation of CDRs of VHH by optimizing the length of Linker sequence between dCas9-Vivid-Mcm7, the length of Linker sequence between Vivid and deaminase and blue light irradiation time, and determines an optimization scheme by detecting the diversity of a nano antibody library.
Vector 2 was packaged into lentivirus and transferred into 293T cells and stable transformants were obtained by puromycin screening.
A vector 8 (shown in figure 12) is constructed, the vector 8 is a lentiviral vector same as the vector 1, the vector 8 can express a fusion protein containing three domains of Mcm7 (SEQ ID NO. 41), vivid (SEQ ID NO. 42) and dCAS9 (the sequence is consistent with or has homology of more than or equal to 85% with the inactivated CAS9, namely dCAS9, in Streptococcus pyogenes commonly used in the literature), wherein the fusion protein contains Mcm7 (the amino acid sequences of the two domains of Mcm7 and Vivid expressed by the vector 8 have homology of more than or equal to 85% with the sequences of SEQ ID NO.41 and SEQ ID NO. 42), and the three domains are sequentially connected by a5 xGGGGS Linker (SEQ ID NO. 43) (the length of the Linker can be optimized between 2 xGGGGS and 10 xGGS in another embodiment).
Constructing a lentivirus expression vector 9 (as shown in figure 13), wherein the vector 9 can express a fusion protein containing three structural domains of Vivid, rAPOBEC1 and ecTadA, the Vivid amino acid sequence is shown as SEQ ID NO.42, the ecTadA amino acid sequence is shown as SEQ ID NO.44 (in another preferred embodiment, the homology of the amino acid sequence expressed by the ecTadA and the SEQ ID NO.44 sequence is more than or equal to 85%), the rAPOBEC1 amino acid sequence is shown as SEQ ID NO.45 (in another preferred embodiment, the homology of the amino acid sequence expressed by the rAPOBEC1 and the SEQ ID NO.45 sequence is more than or equal to 85%, and in another preferred embodiment, the rAPOBEC1 can be replaced by cytidine deaminase AID and mutants thereof), and sequentially transferring the vector 8 and the vector 9 into 293T cells by packaging lentiviruses and constructing 293T cell stable strains.
Finally, vector 10 (vector structure is shown in FIG. 9) was transformed into 293T cells, wherein the vector 10 expresses 3 gRNAs to localize the protein comprising dCAS9 domain to 3 different positions, and the key DNA sequence of the vector 10 is shown in SEQ ID NO.46 (SEQ ID NO.46 is a sequence between the U6 promoter element and the EF-1. Alpha. Core promoter element in FIG. 9, and the sequence can be connected to any pLL7 series lentivirus vector with similar structure).
After 293T cells were irradiated with blue light for 2 days (10 s per 5s on, blue light intensity 0.84W/m 2 ) Calculating the size of the nano antibody library, and the specific steps of the detection of the size of the nano antibody library are shown in the examples2-5, detected nanoconsubes size of about 6.75X 10 7 . And (3) incubating a GFP-biotin ligand and the transfected 293T cells for 24h, screening positive cells by using blastcidin, selecting the positive cells, performing monoclonal amplification on the positive cells, and sequencing a nano antibody region to obtain the GFP specific nano antibody.
And selecting 5 nano antibody sequences in the obtained positive cells, and performing prokaryotic expression and purification (the protein expression and purification method is shown in example 8) to obtain the VHH antibody protein.
The resulting VHH sequences were tested for their ability to recognize eGFP by ELISA. The results are shown in fig. 14c, with 1 of 5 antibodies recognizing eGFP better.
Then, in order to increase the affinity of the nanobody to GFP protein, we performed a series of artificial mutations on the three CDR regions of the screened VHH gene, and finally obtained a series of nanobodies with different affinities to GFP, including the VHH gene. Wherein the VHH nanobody comprises any one of SEQ ID No.31-40, or any combination of the CDR1, CDR2, CDR3 regions of SEQ ID No. 31-40.
<110> New countryside medical college
<120> construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application thereof
<160> 46
<170> PatentIn version 3.5
<210> 1
<211> 1416
<212> DNA
<213> Artificial sequence
<221> receptor 1 sequence
<400> 1
atggccctgc tactggccct cagcctgctg gttctctgga cttccccagc cccaactctg 60
agtggcacca atgattaccc atacgatgtt ccagattacg ctgcggaagc gggtatcacc 120
ggcacgtggt acaaccagca tggttctacc ttcaccgtta ccgcgggtgc ggacggtaac 180
ctgaccggtc agtacgaaaa ccgtgcgcag ggcactggtt gccagaactc tccgtacacc 240
ctgaccggtc gttacaacgg taccaaactg gaatggcgtg ttgaatggaa caactctacc 300
gaaaactgcc actctcgtac cgaatggcgt ggtcagtacc agggtggtgc ggaagcgcgt 360
atcaacaccc agtggaacct gacctacgaa ggtggttctg gtccggcgac cgaacagggt 420
caggacacct tcaccaaagt taaaatgtac ttcagccact tcgtgccggt cttcctgcca 480
gcgaagccca ccacgacgcc agcgccgcga ccaccaacac cggcgcccac catcgcgtcg 540
cagcccctgt ccctgcgccc agaggcgagc cggccagcgg cggggggcgc agtgcacacg 600
agggggctgg acttcgccag cgatatctac atctgggcgc ccttggccgg gacttgtggg 660
gtccttctcc tgtcactggt tatcaccctt tactgcggag gcggggagag tttgtttaag 720
gggccaaggg actataaccc aatatcatcc actatttgcc acctcactaa cgagagcgat 780
ggacatacaa cctctctcta cgggataggc ttcggtcctt tcatcattac caataagcat 840
ctgtttcgcc gaaacaacgg tactcttctg gttcaatctc ttcatggtgt cttcaaggtg 900
aaaaacacca ctacgcttca gcaacacctg attgatggta gggatatgat aattatcaga 960
atgccgaaag atttcccacc ttttccacag aagctgaaat tcagggaacc gcagagagag 1020
gagaggattt gtttggtaac gaccaacttc cagacgaaga gtatgagttc tatggtgtcc 1080
gacactagct gcacgttccc ctcaagtgat gggatattct ggaaacactg gatacagact 1140
aaagacggac agtgtggaag cccattggtt tccacccgag atggttttat cgtgggtatc 1200
catagcgcct ctaatttcac aaacacgaac aactatttca cttcagtgcc caaaaacttt 1260
atggagctgc tcacaaacca agaagcgcag cagtgggtaa gcggttggag acttaacgct 1320
gactcagttc tctggggggg gcacaaagta ttcatggtaa agccagagga gccattccaa 1380
ccagtcaaag aagccacaca acttatgaac agctaa 1416
<210> 2
<211> 2394
<212> DNA
<213> Artificial sequence
<221> receptor 2 sequence 1
<400> 2
atggccctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccagg 60
cccgactaca aggacgacga cgacaagccc gggatggccc aggtgcagct ggtggagagc 120
ggcggcggcc tggtgcaggc cggcggcagc ctgaggctga gctgcgccgc cccggggcgg 180
gccgggggcg gggtcccggc ggggtggttc aggcaggccc ccggcaagga gagggagttc 240
gtggccgcgg ggcgcttatg gggagggtgg ggagggtggg gaaggtgggg aggaggcagg 300
ttcaccatca gcagggacaa cgacaagaac accgtgtacg tgcagatgaa cagcctgatc 360
cccgaggaca ccgccatcta ctactgcgcc gcccgcggag gggcgggcgc gggaggaagg 420
gggcgggagc ggggctgtgg cgactactgg ggccagggca cccaggtgac cgtgggatcc 480
ccctgcgtgg gcagcaaccc ctgctacaac cagggcacct gcgagcccac cagcgagaac 540
cccttctaca ggtgcctgtg ccccgccaag ttcaacggcc tgctgtgcca catcctggac 600
tacagcttca ccggcggcgc cggcagggac atcccccccc cccagatcga ggaggcctgc 660
gagctgcccg agtgccaggt ggacgccggc aacaaggtgt gcaacctgca gtgcaacaac 720
cacgcctgcg gctgggacgg cggcgactgc agcctgaact tcaacgaccc ctggaagaac 780
tgcacccaga gcctgcagtg ctggaagtac ttcagcgacg gccactgcga cagccagtgc 840
aacagcgccg gctgcctgtt cgacggcttc gactgccagc tgaccgaggg ccagtgcaac 900
cccctgtacg accagtactg caaggaccac ttcagcgacg gccactgcga ccagggctgc 960
aacagcgccg agtgcgagtg ggacggcctg gactgcgccg agcacgtgcc cgagaggctg 1020
gccgccggca ccctggtgct ggtggtgctg ctgccccccg accagctgag gaacaacagc 1080
ttccacttcc tgagggagct gagccacgtg ctgcacacca acgtggtgtt caagagggac 1140
gcccagggcc agcagatgat cttcccctac tacggccacg aggaggagct gaggaagcac 1200
cccatcaaga ggagcaccgt gggctgggcc accagcagcc tgctgcccgg caccagcggc 1260
ggcaggcaga ggagggagct ggaccccatg gacatcaggg gcagcatcgt gtacctggag 1320
atcgacaaca ggcagtgcgt gcagagcagc agccagtgct tccagagcgc caccgacgtg 1380
gccgccttcc tgggcgccct ggccagcctg ggcagcctga acatccccta caagatcgag 1440
gcccataaga gcgagcccgt ggagcccccc ctgcccagcc agctgcacct gatgtacgtg 1500
gccgccgccg ccttcgtgct gctgttcttc gtgctccttt tctttctgct gagcaggaag 1560
aggaggaggc agctgtgcat ccagaagctg ctcgggatcg agggaagggg aggaggcgag 1620
ttcgctagcg agaacctgta tttccagggc atgtctagac tggacaagag caaagtcata 1680
aactctgctc tggaattact caatgaagtc ggtatcgaag gcctgacgac aaggaaactc 1740
gctcaaaagc tgggagttga gcagcctacc ctgtactggc acgtgaagaa caagcgggcc 1800
ctgctcgatg ccctggcaat cgagatgctg gacaggcatc atacccactt ctgccccctg 1860
gaaggcgagt catggcaaga ctttctgcgg aacaacgcca agtcattccg ctgtgctctc 1920
ctctcacatc gcgacggggc taaagtgcat ctcggcaccc gcccaacaga gaaacagtac 1980
gaaaccctgg aaaatcagct cgcgttcctg tgtcagcaag gcttctccct ggagaacgca 2040
ctgtacgctc tgtccgccgt gggccacttt acactgggct gcgtattgga ggatcaggag 2100
catcaagtag caaaagagga aagagagaca cctaccaccg attctatgcc cccacttctg 2160
agacaagcaa ttgagctgtt cgaccatcag ggagccgaac ctgccttcct tttcggcctg 2220
gaactaatca tatgtggcct ggagaaacag ctaaagtgcg aaagcggcgg gccggccgac 2280
gcccttgacg attttgactt agacatgctc ccagccgatg cccttgacga ctttgacctt 2340
gatatgctgc ctgctgacgc tcttgacgat tttgaccttg acatgctccc aggg 2394
<210> 3
<211> 1584
<212> DNA
<213> Artificial sequence
<221> receptor 2 sequence 2
<400> 3
atggccctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccagg 60
ccctacccat acgatgttcc agattacgct cccgggatgg cccaggtgca gctggtggag 120
agcggcggcg gcctggtgca ggccggcggc agcctgaggc tgagctgcgc cgccagcggc 180
aggaccttca gcaactacgc catgggctgg ttcaggcagg cccccggcaa ggagagggag 240
ttcgtggccg ccatcagctg gaccggcgtg agcacctact acgccgacag cgtgaagggc 300
aggttcacca tcagcaggga caacgacaag aacaccgtgt acgtgcagat gaacagcctg 360
atccccgagg acaccgccat ctactactgc gccgccgtga gggccaggag cttcagcgac 420
acctacagca gggtgaacga gtacgactac tggggccagg gcacccaggt gaccgtggga 480
tccatgtact tcagccactt cgtgccggtc ttcctgccag cgaagcccac cacgacgcca 540
gcgccgcgac caccaacacc ggcgcccacc atcgcgtcgc agcccctgtc cctgcgccca 600
gaggcgagcc ggccagcggc ggggggcgca gtgcacacga gggggctgga cttcgccagc 660
gatatctaca tctgggcgcc cttggccggg acttgtgggg tccttctcct gtcactggtt 720
atcacccttt actgcaattc gagctcgaac aacaacaaca ataacaataa caacaacctc 780
gggatcgagg gaaggggagg aggcgagttc gctagcgaga acctgtattt ccagggcatg 840
tctagactgg acaagagcaa agtcataaac tctgctctgg aattactcaa tgaagtcggt 900
atcgaaggcc tgacgacaag gaaactcgct caaaagctgg gagttgagca gcctaccctg 960
tactggcacg tgaagaacaa gcgggccctg ctcgatgccc tggcaatcga gatgctggac 1020
aggcatcata cccacttctg ccccctggaa ggcgagtcat ggcaagactt tctgcggaac 1080
aacgccaagt cattccgctg tgctctcctc tcacatcgcg acggggctaa agtgcatctc 1140
ggcacccgcc caacagagaa acagtacgaa accctggaaa atcagctcgc gttcctgtgt 1200
cagcaaggct tctccctgga gaacgcactg tacgctctgt ccgccgtggg ccactttaca 1260
ctgggctgcg tattggagga tcaggagcat caagtagcaa aagaggaaag agagacacct 1320
accaccgatt ctatgccccc acttctgaga caagcaattg agctgttcga ccatcaggga 1380
gccgaacctg ccttcctttt cggcctggaa ctaatcatat gtggcctgga gaaacagcta 1440
aagtgcgaaa gcggcgggcc ggccgacgcc cttgacgatt ttgacttaga catgctccca 1500
gccgatgccc ttgacgactt tgaccttgat atgctgcctg ctgacgctct tgacgatttt 1560
gaccttgaca tgctcccagg gtaa 1584
<210> 4
<211> 127
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 1
<400> 4
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Gly Arg Ala Gly Gly
20 25 30
Gly Val Pro Ala Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Gly Arg Leu Trp Arg Gly Trp Gly Gly Trp Arg Arg
50 55 60
Trp Gly Gly Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Thr Arg Gly Gly Ala Gly Ala Gly Gly Arg Gly Arg Glu
100 105 110
Arg Gly Cys Gly Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 5
<211> 121
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 2
<400> 5
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Gly Arg Ala Gly Gly
20 25 30
Gly Val Pro Ala Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Gly Arg Leu Trp Gly Arg Trp Gly Gly Gly Arg Phe
50 55 60
Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr Val Tyr Val Gln Met Asn
65 70 75 80
Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala Ala Arg Gly
85 90 95
Gly Ala Gly Ala Gly Gly Arg Gly Arg Glu Arg Gly Cys Gly Asp Tyr
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val
115 120
<210> 6
<211> 124
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 3
<400> 6
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Gly Arg Ala Gly Gly
20 25 30
Gly Val Pro Ala Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Gly Arg Leu Trp Gly Gly Trp Gly Arg Trp Gly Gly
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr Val Tyr Val
65 70 75 80
Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala
85 90 95
Ala Arg Gly Gly Ala Gly Ala Gly Gly Arg Gly Arg Glu Arg Gly Cys
100 105 110
Gly Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120
<210> 7
<211> 127
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 4
<400> 7
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Gly Arg Ala Gly Gly
20 25 30
Gly Val Pro Ala Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Ile Ser Trp Thr Gly Val Ser Thr Tyr Tyr Ala Asp
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Ala Val Arg Ala Arg Ser Phe Ser Asp Thr Tyr Ser Arg
100 105 110
Val Asn Glu Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 8
<211> 127
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 5
<400> 8
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Gly Arg Ala Gly Gly
20 25 30
Gly Val Pro Ala Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Ile Ser Trp Thr Gly Val Ser Thr Tyr Tyr Ala Asp
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Ala Val Arg Ala Arg Ser Phe Ser Asp Thr Tyr Ser Arg
100 105 110
Val Asn Glu Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 9
<211> 127
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 6
<400> 9
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser
20 25 30
Thr Ser Ala Met Ala Trp Phe Arg Gln Ala Pro Gly Arg Glu Arg Glu
35 40 45
Phe Val Ala Ala Ile Thr Trp Thr Val Gly Asn Thr Ile Leu Gly Asp
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Arg Ala Lys Asn Thr
65 70 75 80
Val Asp Leu Gln Met Asp Asn Leu Glu Pro Glu Asp Thr Ala Val Tyr
85 90 95
Tyr Cys Ser Ala Arg Ser Arg Gly Tyr Val Leu Ser Val Leu Arg Ser
100 105 110
Val Asp Ser Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 10
<211> 124
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 7
<400> 10
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Arg Leu Val Gln Ala
1 5 10 15
Gly Asp Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser
20 25 30
Thr Ser Ala Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Gly Arg Leu Trp Gly Gly Trp Gly Arg Trp Gly Gly
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr Val Tyr Val
65 70 75 80
Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala
85 90 95
Ala Arg Gly Gly Ala Gly Ala Gly Gly Arg Gly Arg Glu Arg Gly Cys
100 105 110
Gly Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120
<210> 11
<211> 121
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 8
<400> 11
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser
20 25 30
Asn Tyr Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Gly Arg Leu Trp Gly Arg Trp Gly Gly Gly Arg Phe
50 55 60
Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr Val Tyr Val Gln Met Asn
65 70 75 80
Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala Ala Arg Gly
85 90 95
Gly Ala Gly Ala Gly Gly Arg Gly Arg Glu Arg Gly Cys Gly Asp Tyr
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val
115 120
<210> 12
<211> 127
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 9
<400> 12
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Arg Leu Val Gln Ala
1 5 10 15
Gly Asp Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser
20 25 30
Thr Ser Ala Met Ala Trp Phe Arg Gln Ala Pro Gly Arg Glu Arg Glu
35 40 45
Phe Val Ala Ala Ile Thr Trp Thr Val Gly Asn Thr Ile Leu Gly Asp
50 55 60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Ala Arg Gly Gly Ala Gly Ala Gly Gly Arg Gly Arg Glu
100 105 110
Arg Gly Cys Gly Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 13
<211> 121
<212> PRT
<213> Artificial sequence
<221> G4 Nanobody 10
<400> 13
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Tyr Ala Ala Pro Gly Arg Ala Gly Gly
20 25 30
Gly Val Pro Ala Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ala Ala Gly Arg Leu Trp Gly Arg Trp Gly Gly Gly Arg Phe
50 55 60
Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr Val Tyr Val Gln Met Asn
65 70 75 80
Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala Ala Arg Gly
85 90 95
Gly Ala Gly Ala Gly Gly Arg Gly Arg Glu Arg Gly Cys Gly Asp Tyr
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val
115 120
<210> 14
<211> 4946
<212> DNA
<213> Artificial sequence
<221> vector 1 Key sequence
<400> 14
tccctatcag tgatagagaa aagtgaaagt cgagtttacc actccctatc agtgatagag 60
aaaagtgaaa gtcgagttta ccactcccta tcagtgatag agaaaagtga aagtcgagtt 120
taccactccc tatcagtgat agagaaaagt gaaagtcgag tttaccactc cctatcagtg 180
atagagaaaa gtgaaagtcg agtttaccac tccctatcag tgatagagaa aagtgaaagt 240
cgagtttacc actccctatc agtgatagag aactagttag gcgtgtacgg tgggaggcct 300
atataagcag agctcgttta gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt 360
ttgacctcca tagaagacac cgggaccgat ccagcctctc gacattcgtt ggatcgccgc 420
tagcgccacc atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat 480
gcgcttcaag gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga 540
gggcgagggc cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg 600
ccccctgccc ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta 660
cgtgaagcac cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa 720
ttgggagcgc gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc 780
cctgcaggac ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga 840
cggccccgta atgcagtgtc gtaccatggg ctgggaggcc tccactgagc ggatgtaccc 900
cgaggacggc gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca 960
ctacgacgct gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc 1020
ctacaacgtc gacatcaagt tggacatcct ttcccacaac gaggactaca ccatcgtgga 1080
acagtacgaa cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagga 1140
gggcagagga agtctgctaa catgcggtga cgtcgaggag aatcctggcc caatggccaa 1200
gcctttgtct caagaagaat ccaccctcat tgaaagagca acggctacaa tcaacagcat 1260
ccccatctct gaagactaca gcgtcgccag cgcagctctc tctagcgacg gccgcatctt 1320
cactggtgtc aatgtatatc attttactgg gggaccttgt gcagaactcg tggtgctggg 1380
cactgctgct gctgcggcag ctggcaacct gacttgtatc gtcgcgatcg gaaatgagaa 1440
caggggcatc ttgagcccct gcggacggtg ccgacaggtg cttctcgatc tgcatcctgg 1500
gatcaaagcc atagtgaagg acagtgatgg acagccgacg gcagttggga ttcgtgaatt 1560
gctgccctct ggttatgtgt gggagggctg atacgtatta gtcatcgcta ttaccatggt 1620
gatgcggttt tggcagtaca tcaatgggcg tggatagcgg tttgactcac ggggatttcc 1680
aagtctccac cccattgacg tcaatgggag tttgttttgg caccaaaatc aacgggactt 1740
tccaaaatgt cgtaacaact ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg 1800
ggaggtttat ataagcagag ctcgtttagt gaaccgtcag atcgcctgga gacgccatcc 1860
acgctgtttt gacctccata gaagattcta gagccaccat ggccctgcta ctggccctca 1920
gcctgctggt tctctggact tccccagccc caactctgag tggcaccaat gatgactaca 1980
aagacgatga cgacaaggcg gaagcgggta tcaccggcac gtggtacaac cagcatggtt 2040
ctaccttcac cgttaccgcg ggtgcggacg gtaacctgac cggtcagtac gaaaaccgtg 2100
cgcagggcac tggttgccag aactctccgt acaccctgac cggtcgttac aacggtacca 2160
aactggaatg gcgtgttgaa tggaacaact ctaccgaaaa ctgccactct cgtaccgaat 2220
ggcgtggtca gtaccagggt ggtgcggaag cgcgtatcaa cacccagtgg aacctgacct 2280
acgaaggtgg ttctggtccg gcgaccgaac agggtcagga caccttcacc aaagttaaaa 2340
tgtacttcag ccacttcgtg ccggtcttcc tgccagcgaa gcccaccacg acgccagcgc 2400
cgcgaccacc aacaccggcg cccaccatcg cgtcgcagcc cctgtccctg cgcccagagg 2460
cgagccggcc agcggcgggg ggcgcagtgc acacgagggg gctggacttc gccagcgata 2520
tctacatctg ggcgcccttg gccgggactt gtggggtcct tctcctgtca ctggttatca 2580
ccctttactg cggaggcggg gagagtttgt ttaaggggcc aagggactat aacccaatat 2640
catccactat ttgccacctc actaacgaga gcgatggaca tacaacctct ctctacggga 2700
taggcttcgg tcctttcatc attaccaata agcatctgtt tcgccgaaac aacggtactc 2760
ttctggttca atctcttcat ggtgtcttca aggtgaaaaa caccactacg cttcagcaac 2820
acctgattga tggtagggat atgataatta tcagaatgcc gaaagatttc ccaccttttc 2880
cacagaagct gaaattcagg gaaccgcaga gagaggagag gatttgtttg gtaacgacca 2940
acttccagac gaagagtatg agttctatgg tgtccgacac tagctgcacg ttcccctcaa 3000
gtgatgggat attctggaaa cactggatac agactaaaga cggacagtgt ggaagcccat 3060
tggtttccac ccgagatggt tttatcgtgg gtatccatag cgcctctaat ttcacaaaca 3120
cgaacaacta tttcacttca gtgcccaaaa actttatgga gctgctcaca aaccaagaag 3180
cgcagcagtg ggtaagcggt tggagactta acgctgactc agttctctgg ggggggcaca 3240
aagtattcat ggtaaagcca gaggagccat tccaaccagt caaagaagcc acacaactta 3300
tgaacagcga gggcagagga agtctgctaa catgcggtga cgtcgaggag aatcctggcc 3360
caatggccct gcccgtgacc gccctgctgc tgcccctggc cctgctgctg cacgccgcca 3420
ggccctaccc atacgatgtt ccagattacg ctcccgggat ggcccaggtg cagctggtgg 3480
agagcggcgg cggcctggtg caggccggcg gcagcctgag gctgagctgc gccgccagcg 3540
gcaggacctt cagcaactac gccatgggct ggttcaggca ggcccccggc aaggagaggg 3600
agttcgtggc cgccatcagc tggaccggcg tgagcaccta ctacgccgac agcgtgaagg 3660
gcaggttcac catcagcagg gacaacgaca agaacaccgt gtacgtgcag atgaacagcc 3720
tgatccccga ggacaccgcc atctactact gcgccgccgt gagggccagg agcttcagcg 3780
acacctacag cagggtgaac gagtacgact actggggcca gggcacccag gtgaccgtgg 3840
gatccatgta cttcagccac ttcgtgccgg tcttcctgcc agcgaagccc accacgacgc 3900
cagcgccgcg accaccaaca ccggcgccca ccatcgcgtc gcagcccctg tccctgcgcc 3960
cagaggcgag ccggccagcg gcggggggcg cagtgcacac gagggggctg gacttcgcca 4020
gcgatatcta catctgggcg cccttggccg ggacttgtgg ggtccttctc ctgtcactgg 4080
ttatcaccct ttactgcaat tcgagctcga acaacaacaa caataacaat aacaacaacc 4140
tcgggatcga gggaagggga ggaggcgagt tcgctagcga gaacctgtat ttccagggca 4200
tgtctagact ggacaagagc aaagtcataa actctgctct ggaattactc aatgaagtcg 4260
gtatcgaagg cctgacgaca aggaaactcg ctcaaaagct gggagttgag cagcctaccc 4320
tgtactggca cgtgaagaac aagcgggccc tgctcgatgc cctggcaatc gagatgctgg 4380
acaggcatca tacccacttc tgccccctgg aaggcgagtc atggcaagac tttctgcgga 4440
acaacgccaa gtcattccgc tgtgctctcc tctcacatcg cgacggggct aaagtgcatc 4500
tcggcacccg cccaacagag aaacagtacg aaaccctgga aaatcagctc gcgttcctgt 4560
gtcagcaagg cttctccctg gagaacgcac tgtacgctct gtccgccgtg ggccacttta 4620
cactgggctg cgtattggag gatcaggagc atcaagtagc aaaagaggaa agagagacac 4680
ctaccaccga ttctatgccc ccacttctga gacaagcaat tgagctgttc gaccatcagg 4740
gagccgaacc tgccttcctt ttcggcctgg aactaatcat atgtggcctg gagaaacagc 4800
taaagtgcga aagcggcggg ccggccgacg cccttgacga ttttgactta gacatgctcc 4860
cagccgatgc ccttgacgac tttgaccttg atatgctgcc tgctgacgct cttgacgatt 4920
ttgaccttga catgctccca gggtaa 4946
<210> 15
<211> 5762
<212> DNA
<213> Artificial sequence
<221> vector 2 Key sequence
<400> 15
tccctatcag tgatagagaa aagtgaaagt cgagtttacc actccctatc agtgatagag 60
aaaagtgaaa gtcgagttta ccactcccta tcagtgatag agaaaagtga aagtcgagtt 120
taccactccc tatcagtgat agagaaaagt gaaagtcgag tttaccactc cctatcagtg 180
atagagaaaa gtgaaagtcg agtttaccac tccctatcag tgatagagaa aagtgaaagt 240
cgagtttacc actccctatc agtgatagag aactagttag gcgtgtacgg tgggaggcct 300
atataagcag agctcgttta gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt 360
ttgacctcca tagaagacac cgggaccgat ccagcctctc gacattcgtt ggatcgccgc 420
tagcgccacc atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat 480
gcgcttcaag gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga 540
gggcgagggc cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg 600
ccccctgccc ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta 660
cgtgaagcac cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa 720
ttgggagcgc gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc 780
cctgcaggac ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga 840
cggccccgta atgcagtgtc gtaccatggg ctgggaggcc tccactgagc ggatgtaccc 900
cgaggacggc gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca 960
ctacgacgct gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc 1020
ctacaacgtc gacatcaagt tggacatcct ttcccacaac gaggactaca ccatcgtgga 1080
acagtacgaa cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagga 1140
gggcagagga agtctgctaa catgcggtga cgtcgaggag aatcctggcc caatggccaa 1200
gcctttgtct caagaagaat ccaccctcat tgaaagagca acggctacaa tcaacagcat 1260
ccccatctct gaagactaca gcgtcgccag cgcagctctc tctagcgacg gccgcatctt 1320
cactggtgtc aatgtatatc attttactgg gggaccttgt gcagaactcg tggtgctggg 1380
cactgctgct gctgcggcag ctggcaacct gacttgtatc gtcgcgatcg gaaatgagaa 1440
caggggcatc ttgagcccct gcggacggtg ccgacaggtg cttctcgatc tgcatcctgg 1500
gatcaaagcc atagtgaagg acagtgatgg acagccgacg gcagttggga ttcgtgaatt 1560
gctgccctct ggttatgtgt gggagggctg atacgtatta gtcatcgcta ttaccatggt 1620
gatgcggttt tggcagtaca tcaatgggcg tggatagcgg tttgactcac ggggatttcc 1680
aagtctccac cccattgacg tcaatgggag tttgttttgg caccaaaatc aacgggactt 1740
tccaaaatgt cgtaacaact ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg 1800
ggaggtttat ataagcagag ctcgtttagt gaaccgtcag atcgcctgga gacgccatcc 1860
acgctgtttt gacctccata gaagattcta gagccaccat ggccctgccc gtgaccgccc 1920
tgctgctgcc cctggccctg ctgctgcacg ccgccaggcc cgactacaag gacgacgacg 1980
acaagcccgg gatggcccag gtgcagctgg tggagagcgg cggcggcctg gtgcaggccg 2040
gcggcagcct gaggctgagc tgcgccgccc cggggcgggc cgggggcggg gtcccggcgg 2100
ggtggttcag gcaggccccc ggcaaggaga gggagttcgt ggccgcgggg cgcttatggg 2160
gagggtgggg agggtgggga aggtggggag gaggcaggtt caccatcagc agggacaacg 2220
acaagaacac cgtgtacgtg cagatgaaca gcctgatccc cgaggacacc gccatctact 2280
actgcgccgc ccgcggaggg gcgggcgcgg gaggaagggg gcgggagcgg ggctgtggcg 2340
actactgggg ccagggcacc caggtgaccg tgggatcccc ctgcgtgggc agcaacccct 2400
gctacaacca gggcacctgc gagcccacca gcgagaaccc cttctacagg tgcctgtgcc 2460
ccgccaagtt caacggcctg ctgtgccaca tcctggacta cagcttcacc ggcggcgccg 2520
gcagggacat cccccccccc cagatcgagg aggcctgcga gctgcccgag tgccaggtgg 2580
acgccggcaa caaggtgtgc aacctgcagt gcaacaacca cgcctgcggc tgggacggcg 2640
gcgactgcag cctgaacttc aacgacccct ggaagaactg cacccagagc ctgcagtgct 2700
ggaagtactt cagcgacggc cactgcgaca gccagtgcaa cagcgccggc tgcctgttcg 2760
acggcttcga ctgccagctg accgagggcc agtgcaaccc cctgtacgac cagtactgca 2820
aggaccactt cagcgacggc cactgcgacc agggctgcaa cagcgccgag tgcgagtggg 2880
acggcctgga ctgcgccgag cacgtgcccg agaggctggc cgccggcacc ctggtgctgg 2940
tggtgctgct gccccccgac cagctgagga acaacagctt ccacttcctg agggagctga 3000
gccacgtgct gcacaccaac gtggtgttca agagggacgc ccagggccag cagatgatct 3060
tcccctacta cggccacgag gaggagctga ggaagcaccc catcaagagg agcaccgtgg 3120
gctgggccac cagcagcctg ctgcccggca ccagcggcgg caggcagagg agggagctgg 3180
accccatgga catcaggggc agcatcgtgt acctggagat cgacaacagg cagtgcgtgc 3240
agagcagcag ccagtgcttc cagagcgcca ccgacgtggc cgccttcctg ggcgccctgg 3300
ccagcctggg cagcctgaac atcccctaca agatcgaggc ccataagagc gagcccgtgg 3360
agccccccct gcccagccag ctgcacctga tgtacgtggc cgccgccgcc ttcgtgctgc 3420
tgttcttcgt gctccttttc tttctgctga gcaggaagag gaggaggcag ctgtgcatcc 3480
agaagctgct cgggatcgag ggaaggggag gaggcgagtt cgctagcgag aacctgtatt 3540
tccagggcat gtctagactg gacaagagca aagtcataaa ctctgctctg gaattactca 3600
atgaagtcgg tatcgaaggc ctgacgacaa ggaaactcgc tcaaaagctg ggagttgagc 3660
agcctaccct gtactggcac gtgaagaaca agcgggccct gctcgatgcc ctggcaatcg 3720
agatgctgga caggcatcat acccacttct gccccctgga aggcgagtca tggcaagact 3780
ttctgcggaa caacgccaag tcattccgct gtgctctcct ctcacatcgc gacggggcta 3840
aagtgcatct cggcacccgc ccaacagaga aacagtacga aaccctggaa aatcagctcg 3900
cgttcctgtg tcagcaaggc ttctccctgg agaacgcact gtacgctctg tccgccgtgg 3960
gccactttac actgggctgc gtattggagg atcaggagca tcaagtagca aaagaggaaa 4020
gagagacacc taccaccgat tctatgcccc cacttctgag acaagcaatt gagctgttcg 4080
accatcaggg agccgaacct gccttccttt tcggcctgga actaatcata tgtggcctgg 4140
agaaacagct aaagtgcgaa agcggcgggc cggccgacgc ccttgacgat tttgacttag 4200
acatgctccc agccgatgcc cttgacgact ttgaccttga tatgctgcct gctgacgctc 4260
ttgacgattt tgaccttgac atgctcccag gggagggcag aggaagtctg ctaacatgcg 4320
gtgacgtcga ggagaatcct ggcccaatgg ccctgctact ggccctcagc ctgctggttc 4380
tctggacttc cccagcccca actctgagtg gcaccaatga ttacccatac gatgttccag 4440
attacgctgc ggaagcgggt atcaccggca cgtggtacaa ccagcatggt tctaccttca 4500
ccgttaccgc gggtgcggac ggtaacctga ccggtcagta cgaaaaccgt gcgcagggca 4560
ctggttgcca gaactctccg tacaccctga ccggtcgtta caacggtacc aaactggaat 4620
ggcgtgttga atggaacaac tctaccgaaa actgccactc tcgtaccgaa tggcgtggtc 4680
agtaccaggg tggtgcggaa gcgcgtatca acacccagtg gaacctgacc tacgaaggtg 4740
gttctggtcc ggcgaccgaa cagggtcagg acaccttcac caaagttaaa atgtacttca 4800
gccacttcgt gccggtcttc ctgccagcga agcccaccac gacgccagcg ccgcgaccac 4860
caacaccggc gcccaccatc gcgtcgcagc ccctgtccct gcgcccagag gcgagccggc 4920
cagcggcggg gggcgcagtg cacacgaggg ggctggactt cgccagcgat atctacatct 4980
gggcgccctt ggccgggact tgtggggtcc ttctcctgtc actggttatc accctttact 5040
gcggaggcgg ggagagtttg tttaaggggc caagggacta taacccaata tcatccacta 5100
tttgccacct cactaacgag agcgatggac atacaacctc tctctacggg ataggcttcg 5160
gtcctttcat cattaccaat aagcatctgt ttcgccgaaa caacggtact cttctggttc 5220
aatctcttca tggtgtcttc aaggtgaaaa acaccactac gcttcagcaa cacctgattg 5280
atggtaggga tatgataatt atcagaatgc cgaaagattt cccacctttt ccacagaagc 5340
tgaaattcag ggaaccgcag agagaggaga ggatttgttt ggtaacgacc aacttccaga 5400
cgaagagtat gagttctatg gtgtccgaca ctagctgcac gttcccctca agtgatggga 5460
tattctggaa acactggata cagactaaag acggacagtg tggaagccca ttggtttcca 5520
cccgagatgg ttttatcgtg ggtatccata gcgcctctaa tttcacaaac acgaacaact 5580
atttcacttc agtgcccaaa aactttatgg agctgctcac aaaccaagaa gcgcagcagt 5640
gggtaagcgg ttggagactt aacgctgact cagttctctg gggggggcac aaagtattca 5700
tggtaaagcc agaggagcca ttccaaccag tcaaagaagc cacacaactt atgaacagct 5760
aa 5762
<210> 16
<211> 124
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 1
<400> 16
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Ala Ile Ser Ile Asp Gly Ser His Thr Thr Tyr Thr Ala Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Thr Leu Arg Leu Gln Tyr Gly Leu Ala Tyr Asp Leu Asp Tyr
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 17
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 2
<400> 17
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Tyr Phe Val Ile Pro Asp Ala Gln
20 25 30
His Gly Met Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Asn Lys Asp Thr Gly Cys Tyr His Val Ala Arg Leu Pro Met Glu
50 55 60
Gln Phe Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Asn Thr Arg Glu Ile His Gly Lys Met Gln Trp Leu Phe Ser Val
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 18
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 3
<400> 18
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Pro Phe Ser Leu Gly Cys Gln Glu
20 25 30
Arg Ala Tyr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Thr Glu Asn Lys His Ala Pro Leu Val Gln Tyr Asp Trp Ile Gly
50 55 60
Met Cys Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Val Met Asn Arg Ala Ile Glu Asp Gly Phe Lys Cys Ser Trp Gln
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 19
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 4
<400> 19
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Trp Thr Gly Pro Asp Arg Glu Val
20 25 30
Met Phe Lys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Thr Gln Ile Met Asp Arg Leu Phe Lys Val Pro Asn Ala Ser Glu
50 55 60
Gly Trp Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Trp Cys Ala Arg Val His Gly Asp Pro Asn Phe Tyr Met Ile Glu
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 20
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 5
<400> 20
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Cys Tyr Gly Ile His Val Trp Asn
20 25 30
Ala Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Asn Met Gln Pro Leu Ser Ala Ile Arg Glu Phe Trp Tyr Cys Val
50 55 60
His Asp Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Val Cys Phe Pro Thr Asn Arg Tyr Glu His Met Asp Leu Gln Ile
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 21
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 6
<400> 21
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Tyr Phe Asn Glu Trp His Gln Pro
20 25 30
Thr Gly Lys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Cys Glu Ala Trp Pro Ile Ser Asp Thr Asn Met Phe Tyr Gln Leu
50 55 60
His Val Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Phe Ala Pro Gln Glu Ser Leu Asp Gly Ile Asn Arg Trp Tyr Lys
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 22
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 7
<400> 22
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala His Ile Phe Pro Thr Gly Trp Asn
20 25 30
Cys Lys Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Glu Met Thr Ile Tyr Ala Gly Val Trp His Asp Cys Pro Gln Lys
50 55 60
Asn Phe Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Gln Met Cys Asn Arg Val Pro Phe Glu Ala Thr Gly Asp Leu Trp
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 23
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 8
<400> 23
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Lys Leu Phe Val Asn Gly Cys Tyr
20 25 30
Ser His Glu Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Ala Cys Ser Gly Val Ile Pro Asp Met His Thr Gln Glu Leu Trp
50 55 60
Tyr Asn Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Cys Arg Ser Phe Asn Ile Gln Gly Met Asp Thr Tyr Val Trp His
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 24
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 9
<400> 24
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Met Val Tyr Pro Ala Thr Glu Ile
20 25 30
His Trp Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Tyr Asp Ala Glu Met Trp Lys Gln Thr Asn Arg Val Gly His Cys
50 55 60
Ser Phe Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Tyr Val Ala Gly Gln Leu Asn Asp Cys Pro Glu Met Lys Phe His
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 25
<211> 123
<212> PRT
<213> Artificial sequence
<221> Natural Nanobody 10
<400> 25
Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Phe Thr Trp Glu Arg Gly Ile Pro
20 25 30
Ser Ala Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Ser Glu Lys Asn Pro Thr Ser Phe Cys Leu Tyr Ile Asp Ala Gly Met
50 55 60
Trp Arg Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Lys Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Thr Arg Lys Ala Cys Phe Ser Met Gln Val Pro Ile Asp His Glu
100 105 110
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 26
<211> 3378
<212> DNA
<213> Artificial sequence
<221> vector 3
<400> 26
gactacaaag acgatgacga caagtccgaa gtcgagtttt cccatgagta ctggatgaga 60
cacgcattga ctctcgcaaa gagggcttgg gatgaacgcg aggtgcccgt gggggcagta 120
ctcgtgcata acaatcgcgt aatcggcgaa ggttggaata ggccgatcgg acgccacgac 180
cccactgcac atgcggaaat catggccctt cgacagggag ggcttgtgat gcagaattat 240
cgacttatcg atgcgacgct gtacgtcacg cttgaacctt gcgtaatgtg cgcgggagct 300
atgattcact cccgcattgg acgagttgta ttcggtgccc gcgacgccaa gacgggtgcc 360
gcaggttcac tgatggacgt gctgcatcac ccaggcatga accaccgggt agaaatcaca 420
gaaggcatat tggcggacga atgtgcggcg ctgttgtccg acttttttcg catgcggagg 480
caggagatca aggcccagaa aaaagcacaa tcctctactg actctggtgg ttcttctggt 540
ggttctagcg gcagcgagac tcccgggacc tcagagtccg ccacacccga aagttctggt 600
ggttcttctg gtggttcttc cgaagtcgag ttttcccatg agtactggat gagacacgca 660
ttgactctcg caaagagggc tcgagatgaa cgcgaggtgc ccgtgggggc agtactcgtg 720
ctcaacaatc gcgtaatcgg cgaaggttgg aatagggcaa tcggactcca cgaccccact 780
gcacatgcgg aaatcatggc ccttcgacag ggagggcttg tgatgcagaa ttatcgactt 840
atcgatgcga cgctgtacgt cacgtttgaa ccttgcgtaa tgtgcgcggg agctatgatt 900
cactcccgca ttggacgagt tgtattcggt gttcgcaacg ccaagacggg tgccgcaggt 960
tcactgatgg acgtgctgca ttacccaggc atgaaccacc gggtagaaat cacagaaggc 1020
atattggcgg acgaatgtgc ggcgctgttg tgttactttt ttcgcatgcc caggcaggtc 1080
tttaacgccc agaaaaaagc acaatcctct actgactctg gtggttcttc tggtggttct 1140
agcggcagcg agactcccgg gacctcagag tccgccacac ccgaaagttc tggtggttct 1200
tctggtggtt ctatggtgaa gctcgcgaag gcaggtaaaa atcaaggtga ccccaagaaa 1260
atggctcctc ctccaaagga ggtagaagaa gatagtgaag atgaggaaat gtcagaagat 1320
gaagaagatg atagcagtgg agaagaggtc gtcatacctc agaagaaagg caagaaggct 1380
gctgcaacct cagcaaagaa ggtggtcgtt tccccaacaa aaaaggttgc agttgccaca 1440
ccagccaaga aagcagctgt cactccaggc aaaaaggcag cagcaacacc tgccaagaag 1500
acagttacac cagccaaagc agttaccaca cctggcaaga agggagccac accaggcaaa 1560
gcattggtag caactcctgg taagaagggt gctgccatcc cagccaaggg ggcaaagaat 1620
ggcaagaatg ccaagaagga agacagtgat gaagaggagg atgatgacag tgaggaggat 1680
gaggaggatg acgaggacga ggatgaggat gaagatgaaa ttgaaccagc agcgatgaaa 1740
gcagcagctg ctgcccctgc ctcagaggat gaggacgatg aggatgacga agatgatgag 1800
gatgacgatg acgatgagga agatgactct gaagaagaag ctatggagac tacaccagcc 1860
aaaggaaaga aagctgcaaa agttgttcct gtgaaagcca agaacgtggc tgaggatgaa 1920
gatgaagaag aggatgatga ggacgaggat gacgacgacg acgaagatga tgaagatgat 1980
gatgatgaag atgatgagga ggaggaagaa gaggaggagg aagagcctgt caaagaagca 2040
cctggaaaac gaaagaagga aatggccaaa cagaaagcag ctcctgaagc caagaaacag 2100
aaagtggaag gcacagaacc gactacggct ttcaatctct ttgttggaaa cctaaacttt 2160
aacaaatctg ctcctgaatt aaaaactggt atcagcgatg tttttgctaa aaatgatctt 2220
gctgttgtgg atgtcagaat tggtatgact aggaaatttg gttatgtgga ttttgaatct 2280
gctgaagacc tggagaaagc gttggaactc actggtttga aagtctttgg caatgaaatt 2340
aaactagaga aaccaaaagg aaaagacagt aagaaagagc gagatgcgag aacacttttg 2400
gctaaaaatc tcccttacaa agtcactcag gatgaattga aagaagtgtt tgaagatgct 2460
gcggagatca gattagtcag caaggatggg aaaagtaaag ggattgctta tattgaattt 2520
aagacagaag ctgatgcaga gaaaaccttt gaagaaaagc agggaacaga gatcgatggg 2580
cgatctattt ccctgtacta tactggagag aaaggtcaaa atcaagacta tagaggtgga 2640
aagaatagca cttggagtgg tgaatcaaaa actctggttt taagcaacct ctcctacagt 2700
gcaacagaag aaactcttca ggaagtattt gagaaagcaa cttttatcaa agtaccccag 2760
aaccaaaatg gcaaatctaa agggtatgca tttatagagt ttgcttcatt cgaagacgct 2820
aaagaagctt taaattcctg taataaaagg gaaattgagg gcagagcaat caggctggag 2880
ttgcaaggac ccaggggatc acctaatgcc agaagccagc catccaaaac tctgtttgtc 2940
aaaggcctgt ctgaggatac cactgaagag acattaaagg agtcatttga cggctccgtt 3000
cgggcaagga tagttactga ccgggaaact gggtcctcca aagggtttgg ttttgtagac 3060
ttcaacagtg aggaggatgc caaagctgcc aaggaggcca tggaagacgg tgaaattgat 3120
ggaaataaag ttaccttgga ctgggccaaa cctaagggtg aaggtggctt cgggggtcgt 3180
ggtggaggca gaggcggctt tggaggacga ggtggtggta gaggaggccg aggaggattt 3240
ggtggcagag gccggggagg ctttggaggg cgaggaggct tccgaggagg cagaggagga 3300
ggaggtgacc acaagccaca aggaaagaag acgaagtttg aatctggtgg ttctcccaag 3360
aagaagagga aagtctag 3378
<210> 27
<211> 3183
<212> DNA
<213> Artificial sequence
<221> vector 4
<400> 27
gactacaaag acgatgacga caagagctca gagactggcc cagtggctgt ggaccccaca 60
ttgagacggc ggatcgagcc ccatgagttt gaggtattct tcgatccgag agagctccgc 120
aaggagacct gcctgcttta cgaaattaat tgggggggcc ggcactccat ttggcgacat 180
acatcacaga acactaacaa gcacgtcgaa gtcaacttca tcgagaagtt cacgacagaa 240
agatatttct gtccgaacac aaggtgcagc attacctggt ttctcagctg gagcccatgc 300
ggcgaatgta gtagggccat cactgaattc ctgtcaaggt atccccacgt cactctgttt 360
atttacatcg caaggctgta ccaccacgct gacccccgca atcgacaagg cctgcgggat 420
ttgatctctt caggtgtgac tatccaaatt atgactgagc aggagtcagg atactgctgg 480
agaaactttg tgaattatag cccgagtaat gaagcccact ggcctaggta tccccatctg 540
tgggtacgac tgtacgttct tgaactgtac tgcatcatac tgggcctgcc tccttgtctc 600
aacattctga gaaggaagca gccacagctg acattcttta ccatcgctct tcagtcttgt 660
cattaccagc gactgccccc acacattctc tgggccaccg ggttgaaaag cggcagcgag 720
actcccggga cctcagagtc cgccacaccc gaaagtatgg tgaagctcgc gaaggcaggt 780
aaaaatcaag gtgaccccaa gaaaatggct cctcctccaa aggaggtaga agaagatagt 840
gaagatgagg aaatgtcaga agatgaagaa gatgatagca gtggagaaga ggtcgtcata 900
cctcagaaga aaggcaagaa ggctgctgca acctcagcaa agaaggtggt cgtttcccca 960
acaaaaaagg ttgcagttgc cacaccagcc aagaaagcag ctgtcactcc aggcaaaaag 1020
gcagcagcaa cacctgccaa gaagacagtt acaccagcca aagcagttac cacacctggc 1080
aagaagggag ccacaccagg caaagcattg gtagcaactc ctggtaagaa gggtgctgcc 1140
atcccagcca agggggcaaa gaatggcaag aatgccaaga aggaagacag tgatgaagag 1200
gaggatgatg acagtgagga ggatgaggag gatgacgagg acgaggatga ggatgaagat 1260
gaaattgaac cagcagcgat gaaagcagca gctgctgccc ctgcctcaga ggatgaggac 1320
gatgaggatg acgaagatga tgaggatgac gatgacgatg aggaagatga ctctgaagaa 1380
gaagctatgg agactacacc agccaaagga aagaaagctg caaaagttgt tcctgtgaaa 1440
gccaagaacg tggctgagga tgaagatgaa gaagaggatg atgaggacga ggatgacgac 1500
gacgacgaag atgatgaaga tgatgatgat gaagatgatg aggaggagga agaagaggag 1560
gaggaagagc ctgtcaaaga agcacctgga aaacgaaaga aggaaatggc caaacagaaa 1620
gcagctcctg aagccaagaa acagaaagtg gaaggcacag aaccgactac ggctttcaat 1680
ctctttgttg gaaacctaaa ctttaacaaa tctgctcctg aattaaaaac tggtatcagc 1740
gatgtttttg ctaaaaatga tcttgctgtt gtggatgtca gaattggtat gactaggaaa 1800
tttggttatg tggattttga atctgctgaa gacctggaga aagcgttgga actcactggt 1860
ttgaaagtct ttggcaatga aattaaacta gagaaaccaa aaggaaaaga cagtaagaaa 1920
gagcgagatg cgagaacact tttggctaaa aatctccctt acaaagtcac tcaggatgaa 1980
ttgaaagaag tgtttgaaga tgctgcggag atcagattag tcagcaagga tgggaaaagt 2040
aaagggattg cttatattga atttaagaca gaagctgatg cagagaaaac ctttgaagaa 2100
aagcagggaa cagagatcga tgggcgatct atttccctgt actatactgg agagaaaggt 2160
caaaatcaag actatagagg tggaaagaat agcacttgga gtggtgaatc aaaaactctg 2220
gttttaagca acctctccta cagtgcaaca gaagaaactc ttcaggaagt atttgagaaa 2280
gcaactttta tcaaagtacc ccagaaccaa aatggcaaat ctaaagggta tgcatttata 2340
gagtttgctt cattcgaaga cgctaaagaa gctttaaatt cctgtaataa aagggaaatt 2400
gagggcagag caatcaggct ggagttgcaa ggacccaggg gatcacctaa tgccagaagc 2460
cagccatcca aaactctgtt tgtcaaaggc ctgtctgagg ataccactga agagacatta 2520
aaggagtcat ttgacggctc cgttcgggca aggatagtta ctgaccggga aactgggtcc 2580
tccaaagggt ttggttttgt agacttcaac agtgaggagg atgccaaagc tgccaaggag 2640
gccatggaag acggtgaaat tgatggaaat aaagttacct tggactgggc caaacctaag 2700
ggtgaaggtg gcttcggggg tcgtggtgga ggcagaggcg gctttggagg acgaggtggt 2760
ggtagaggag gccgaggagg atttggtggc agaggccggg gaggctttgg agggcgagga 2820
ggcttccgag gaggcagagg aggaggaggt gaccacaagc cacaaggaaa gaagacgaag 2880
tttgaatctg gtggttctac taatctgtca gatattattg aaaaggagac cggtaagcaa 2940
ctggttatcc aggaatccat cctcatgctc ccagaggagg tggaagaagt cattgggaac 3000
aagccggaaa gcgatatact cgtgcacacc gcctacgacg agagcaccga cgagaatgtc 3060
atgcttctga ctagcgacgc ccctgaatac aagccttggg ctctggtcat acaggatagc 3120
aacggtgaga acaagattaa gatgctctct ggtggttctc ccaagaagaa gaggaaagtc 3180
taa 3183
<210> 28
<211> 589
<212> DNA
<213> Artificial sequence
<221> vector 5
<400> 28
gaaacaccga acaaagcacc agtggtctag tggtagaata gtaccctgcc acggtacaga 60
cccgggttcg attcccggct ggtgcacccc gccgggaccc cgccccgttt tagagctaga 120
aatagcaagt taaaataagg ctagtccgtt atcaacttga aaaagtggca ccgagtcggt 180
gcaacaaagc accagtggtc tagtggtaga atagtaccct gccacggtac agacccgggt 240
tcgattcccg gctggtgcag agggtgggga gggtggggag ttttagagct agaaatagca 300
agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcaacaa 360
agcaccagtg gtctagtggt agaatagtac cctgccacgg tacagacccg ggttcgattc 420
ccggctggtg cactcccgcg cccgcccctc cggttttaga gctagaaata gcaagttaaa 480
ataaggctag tccgttatca acttgaaaaa gtggcaccga gtcggtgctt ttttggatcc 540
agcgcttagg tcttgaaagg agtgggaatt ggctccggtg cccgtcagt 589
<210> 29
<211> 5328
<212> PRT
<213> Artificial sequence
<221> vector 6
<400> 29
atgtccgaag tcgagttttc ccatgagtac tggatgagac acgcattgac tctcgcaaag 60
agggcttggg atgaacgcga ggtgcccgtg ggggcagtac tcgtgcataa caatcgcgta 120
atcggcgaag gttggaatag gccgatcgga cgccacgacc ccactgcaca tgcggaaatc 180
atggcccttc gacagggagg gcttgtgatg cagaattatc gacttatcga tgcgacgctg 240
tacgtcacgc ttgaaccttg cgtaatgtgc gcgggagcta tgattcactc ccgcattgga 300
cgagttgtat tcggtgcccg cgacgccaag acgggtgccg caggttcact gatggacgtg 360
ctgcatcacc caggcatgaa ccaccgggta gaaatcacag aaggcatatt ggcggacgaa 420
tgtgcggcgc tgttgtccga cttttttcgc atgcggaggc aggagatcaa ggcccagaaa 480
aaagcacaat cctctactga ctctggtggt tcttctggtg gttctagcgg cagcgagact 540
cccgggacct cagagtccgc cacacccgaa agttctggtg gttcttctgg tggttcttcc 600
gaagtcgagt tttcccatga gtactggatg agacacgcat tgactctcgc aaagagggct 660
cgagatgaac gcgaggtgcc cgtgggggca gtactcgtgc tcaacaatcg cgtaatcggc 720
gaaggttgga atagggcaat cggactccac gaccccactg cacatgcgga aatcatggcc 780
cttcgacagg gagggcttgt gatgcagaat tatcgactta tcgatgcgac gctgtacgtc 840
acgtttgaac cttgcgtaat gtgcgcggga gctatgattc actcccgcat tggacgagtt 900
gtattcggtg ttcgcaacgc caagacgggt gccgcaggtt cactgatgga cgtgctgcat 960
tacccaggca tgaaccaccg ggtagaaatc acagaaggca tattggcgga cgaatgtgcg 1020
gcgctgttgt gttacttttt tcgcatgccc aggcaggtct ttaacgccca gaaaaaagca 1080
caatcctcta ctgactctgg tggttcttct ggtggttcta gcggcagcga gactcccggg 1140
acctcagagt ccgccacacc cgaaagttct ggtggttctt ctggtggttc tgataaaaag 1200
tattctattg gtttagccat cggcactaat tccgttggat gggctgtcat aaccgatgaa 1260
tacaaagtac cttcaaagaa atttaaggtg ttggggaaca cagaccgtca ttcgattaaa 1320
aagaatctta tcggtgccct cctattcgat agtggcgaaa cggcagaggc gactcgcctg 1380
aaacgaaccg ctcggagaag gtatacacgt cgcaagaacc gaatatgtta cttacaagaa 1440
atttttagca atgagatggc caaagttgac gattctttct ttcaccgttt ggaagagtcc 1500
ttccttgtcg aagaggacaa gaaacatgaa cggcacccca tctttggaaa catagtagat 1560
gaggtggcat atcatgaaaa gtacccaacg atttatcacc tcagaaaaaa gctagttgac 1620
tcaactgata aagcggacct gaggttaatc tacttggctc ttgcccatat gataaagttc 1680
cgtgggcact ttctcattga gggtgatcta aatccggaca actcggatgt cgacaaactg 1740
ttcatccagt tagtacaaac ctataatcag ttgtttgaag agaaccctat aaatgcaagt 1800
ggcgtggatg cgaaggctat tcttagcgcc cgcctctcta aatcccgacg gctagaaaac 1860
ctgatcgcac aattacccgg agagaagaaa aatgggttgt tcggtaacct tatagcgctc 1920
tcactaggcc tgacaccaaa ttttaagtcg aacttcgact tagctgaaga tgccaaattg 1980
cagcttagta aggacacgta cgatgacgat ctcgacaatc tactggcaca aattggagat 2040
cagtatgcgg acttattttt ggctgccaaa aaccttagcg atgcaatcct cctatctgac 2100
atactgagag ttaatactga gattaccaag gcgccgttat ccgcttcaat gatcaaaagg 2160
tacgatgaac atcaccaaga cttgacactt ctcaaggccc tagtccgtca gcaactgcct 2220
gagaaatata aggaaatatt ctttgatcag tcgaaaaacg ggtacgcagg ttatattgac 2280
ggcggagcga gtcaagagga attctacaag tttatcaaac ccatattaga gaagatggat 2340
gggacggaag agttgcttgt aaaactcaat cgcgaagatc tactgcgaaa gcagcggact 2400
ttcgacaacg gtagcattcc acatcaaatc cacttaggcg aattgcatgc tatacttaga 2460
aggcaggagg atttttatcc gttcctcaaa gacaatcgtg aaaagattga gaaaatccta 2520
acctttcgca taccttacta tgtgggaccc ctggcccgag ggaactctcg gttcgcatgg 2580
atgacaagaa agtccgaaga aacgattact ccatggaatt ttgaggaagt tgtcgataaa 2640
ggtgcgtcag ctcaatcgtt catcgagagg atgaccaact ttgacaagaa tttaccgaac 2700
gaaaaagtat tgcctaagca cagtttactt tacgagtatt tcacagtgta caatgaactc 2760
acgaaagtta agtatgtcac tgagggcatg cgtaaacccg cctttctaag cggagaacag 2820
aagaaagcaa tagtagatct gttattcaag accaaccgca aagtgacagt taagcaattg 2880
aaagaggact actttaagaa aattgaatgc ttcgattctg tcgagatctc cggggtagaa 2940
gatcgattta atgcgtcact tggtacgtat catgacctcc taaagataat taaagataag 3000
gacttcctgg ataacgaaga gaatgaagat atcttagaag atatagtgtt gactcttacc 3060
ctctttgaag atcgggaaat gattgaggaa agactaaaaa catacgctca cctgttcgac 3120
gataaggtta tgaaacagtt aaagaggcgt cgctatacgg gctggggacg attgtcgcgg 3180
aaacttatca acgggataag agacaagcaa agtggtaaaa ctattctcga ttttctaaag 3240
agcgacggct tcgccaatag gaactttatg cagctgatcc atgatgactc tttaaccttc 3300
aaagaggata tacaaaaggc acaggtttcc ggacaagggg actcattgca cgaacatatt 3360
gcgaatcttg ctggttcgcc agccatcaaa aagggcatac tccagacagt caaagtagtg 3420
gatgagctag ttaaggtcat gggacgtcac aaaccggaaa acattgtaat cgagatggca 3480
cgcgaaaatc aaacgactca gaaggggcaa aaaaacagtc gagagcggat gaagagaata 3540
gaagagggta ttaaagaact gggcagccag atcttaaagg agcatcctgt ggaaaatacc 3600
caattgcaga acgagaaact ttacctctat tacctacaaa atggaaggga catgtatgtt 3660
gatcaggaac tggacataaa ccgtttatct gattacgacg tcgatcacat tgtaccccaa 3720
tcctttttga aggacgattc aatcgacaat aaagtgctta cacgctcgga taagaaccga 3780
gggaaaagtg acaatgttcc aagcgaggaa gtcgtaaaga aaatgaagaa ctattggcgg 3840
cagctcctaa atgcgaaact gataacgcaa agaaagttcg ataacttaac taaagctgag 3900
aggggtggct tgtctgaact tgacaaggcc ggatttatta aacgtcagct cgtggaaacc 3960
cgccaaatca caaagcatgt tgcacagata ctagattccc gaatgaatac gaaatacgac 4020
gagaacgata agctgattcg ggaagtcaaa gtaatcactt taaagtcaaa attggtgtcg 4080
gacttcagaa aggattttca attctataaa gttagggaga taaataacta ccaccatgcg 4140
cacgacgctt atcttaatgc cgtcgtaggg accgcactca ttaagaaata cccgaagcta 4200
gaaagtgagt ttgtgtatgg tgattacaaa gtttatgacg tccgtaagat gatcgcgaaa 4260
agcgaacagg agataggcaa ggctacagcc aaatacttct tttattctaa cattatgaat 4320
ttctttaaga cggaaatcac tctggcaaac ggagagatac gcaaacgacc tttaattgaa 4380
accaatgggg agacaggtga aatcgtatgg gataagggcc gggacttcgc gacggtgaga 4440
aaagttttgt ccatgcccca agtcaacata gtaaagaaaa ctgaggtgca gaccggaggg 4500
ttttcaaagg aatcgattct tccaaaaagg aatagtgata agctcatcgc tcgtaaaaag 4560
gactgggacc cgaaaaagta cggtggcttc gatagcccta cagttgccta ttctgtccta 4620
gtagtggcaa aagttgagaa gggaaaatcc aagaaactga agtcagtcaa agaattattg 4680
gggataacga ttatggagcg ctcgtctttt gaaaagaacc ccatcgactt ccttgaggcg 4740
aaaggttaca aggaagtaaa aaaggatctc ataattaaac taccaaagta tagtctgttt 4800
gagttagaaa atggccgaaa acggatgttg gctagcgccg gagagcttca aaaggggaac 4860
gaactcgcac taccgtctaa atacgtgaat ttcctgtatt tagcgtccca ttacgagaag 4920
ttgaaaggtt cacctgaaga taacgaacag aagcaacttt ttgttgagca gcacaaacat 4980
tatctcgacg aaatcataga gcaaatttcg gaattcagta agagagtcat cctagctgat 5040
gccaatctgg acaaagtatt aagcgcatac aacaagcaca gggataaacc catacgtgag 5100
caggcggaaa atattatcca tttgtttact cttaccaacc tcggcgctcc agccgcattc 5160
aagtattttg acacaacgat agatcgcaaa cgatacactt ctaccaagga ggtgctagac 5220
gcgacactga ttcaccaatc catcacggga ttatatgaaa ctcggataga tttgtcacag 5280
cttgggggtg actctggtgg ttctcccaag aagaagagga aagtctaa 5328
<210> 30
<211> 5130
<212> DNA
<213> Artificial sequence
<221> vector 7
<400> 30
atgagctcag agactggccc agtggctgtg gaccccacat tgagacggcg gatcgagccc 60
catgagtttg aggtattctt cgatccgaga gagctccgca aggagacctg cctgctttac 120
gaaattaatt gggggggccg gcactccatt tggcgacata catcacagaa cactaacaag 180
cacgtcgaag tcaacttcat cgagaagttc acgacagaaa gatatttctg tccgaacaca 240
aggtgcagca ttacctggtt tctcagctgg agcccatgcg gcgaatgtag tagggccatc 300
actgaattcc tgtcaaggta tccccacgtc actctgttta tttacatcgc aaggctgtac 360
caccacgctg acccccgcaa tcgacaaggc ctgcgggatt tgatctcttc aggtgtgact 420
atccaaatta tgactgagca ggagtcagga tactgctgga gaaactttgt gaattatagc 480
ccgagtaatg aagcccactg gcctaggtat ccccatctgt gggtacgact gtacgttctt 540
gaactgtact gcatcatact gggcctgcct ccttgtctca acattctgag aaggaagcag 600
ccacagctga cattctttac catcgctctt cagtcttgtc attaccagcg actgccccca 660
cacattctct gggccaccgg gttgaaaagc ggcagcgaga ctcccgggac ctcagagtcc 720
gccacacccg aaagtgataa aaagtattct attggtttag ccatcggcac taattccgtt 780
ggatgggctg tcataaccga tgaatacaaa gtaccttcaa agaaatttaa ggtgttgggg 840
aacacagacc gtcattcgat taaaaagaat cttatcggtg ccctcctatt cgatagtggc 900
gaaacggcag aggcgactcg cctgaaacga accgctcgga gaaggtatac acgtcgcaag 960
aaccgaatat gttacttaca agaaattttt agcaatgaga tggccaaagt tgacgattct 1020
ttctttcacc gtttggaaga gtccttcctt gtcgaagagg acaagaaaca tgaacggcac 1080
cccatctttg gaaacatagt agatgaggtg gcatatcatg aaaagtaccc aacgatttat 1140
cacctcagaa aaaagctagt tgactcaact gataaagcgg acctgaggtt aatctacttg 1200
gctcttgccc atatgataaa gttccgtggg cactttctca ttgagggtga tctaaatccg 1260
gacaactcgg atgtcgacaa actgttcatc cagttagtac aaacctataa tcagttgttt 1320
gaagagaacc ctataaatgc aagtggcgtg gatgcgaagg ctattcttag cgcccgcctc 1380
tctaaatccc gacggctaga aaacctgatc gcacaattac ccggagagaa gaaaaatggg 1440
ttgttcggta accttatagc gctctcacta ggcctgacac caaattttaa gtcgaacttc 1500
gacttagctg aagatgccaa attgcagctt agtaaggaca cgtacgatga cgatctcgac 1560
aatctactgg cacaaattgg agatcagtat gcggacttat ttttggctgc caaaaacctt 1620
agcgatgcaa tcctcctatc tgacatactg agagttaata ctgagattac caaggcgccg 1680
ttatccgctt caatgatcaa aaggtacgat gaacatcacc aagacttgac acttctcaag 1740
gccctagtcc gtcagcaact gcctgagaaa tataaggaaa tattctttga tcagtcgaaa 1800
aacgggtacg caggttatat tgacggcgga gcgagtcaag aggaattcta caagtttatc 1860
aaacccatat tagagaagat ggatgggacg gaagagttgc ttgtaaaact caatcgcgaa 1920
gatctactgc gaaagcagcg gactttcgac aacggtagca ttccacatca aatccactta 1980
ggcgaattgc atgctatact tagaaggcag gaggattttt atccgttcct caaagacaat 2040
cgtgaaaaga ttgagaaaat cctaaccttt cgcatacctt actatgtggg acccctggcc 2100
cgagggaact ctcggttcgc atggatgaca agaaagtccg aagaaacgat tactccatgg 2160
aattttgagg aagttgtcga taaaggtgcg tcagctcaat cgttcatcga gaggatgacc 2220
aactttgaca agaatttacc gaacgaaaaa gtattgccta agcacagttt actttacgag 2280
tatttcacag tgtacaatga actcacgaaa gttaagtatg tcactgaggg catgcgtaaa 2340
cccgcctttc taagcggaga acagaagaaa gcaatagtag atctgttatt caagaccaac 2400
cgcaaagtga cagttaagca attgaaagag gactacttta agaaaattga atgcttcgat 2460
tctgtcgaga tctccggggt agaagatcga tttaatgcgt cacttggtac gtatcatgac 2520
ctcctaaaga taattaaaga taaggacttc ctggataacg aagagaatga agatatctta 2580
gaagatatag tgttgactct taccctcttt gaagatcggg aaatgattga ggaaagacta 2640
aaaacatacg ctcacctgtt cgacgataag gttatgaaac agttaaagag gcgtcgctat 2700
acgggctggg gacgattgtc gcggaaactt atcaacggga taagagacaa gcaaagtggt 2760
aaaactattc tcgattttct aaagagcgac ggcttcgcca ataggaactt tatgcagctg 2820
atccatgatg actctttaac cttcaaagag gatatacaaa aggcacaggt ttccggacaa 2880
ggggactcat tgcacgaaca tattgcgaat cttgctggtt cgccagccat caaaaagggc 2940
atactccaga cagtcaaagt agtggatgag ctagttaagg tcatgggacg tcacaaaccg 3000
gaaaacattg taatcgagat ggcacgcgaa aatcaaacga ctcagaaggg gcaaaaaaac 3060
agtcgagagc ggatgaagag aatagaagag ggtattaaag aactgggcag ccagatctta 3120
aaggagcatc ctgtggaaaa tacccaattg cagaacgaga aactttacct ctattaccta 3180
caaaatggaa gggacatgta tgttgatcag gaactggaca taaaccgttt atctgattac 3240
gacgtcgatc acattgtacc ccaatccttt ttgaaggacg attcaatcga caataaagtg 3300
cttacacgct cggataagaa ccgagggaaa agtgacaatg ttccaagcga ggaagtcgta 3360
aagaaaatga agaactattg gcggcagctc ctaaatgcga aactgataac gcaaagaaag 3420
ttcgataact taactaaagc tgagaggggt ggcttgtctg aacttgacaa ggccggattt 3480
attaaacgtc agctcgtgga aacccgccaa atcacaaagc atgttgcaca gatactagat 3540
tcccgaatga atacgaaata cgacgagaac gataagctga ttcgggaagt caaagtaatc 3600
actttaaagt caaaattggt gtcggacttc agaaaggatt ttcaattcta taaagttagg 3660
gagataaata actaccacca tgcgcacgac gcttatctta atgccgtcgt agggaccgca 3720
ctcattaaga aatacccgaa gctagaaagt gagtttgtgt atggtgatta caaagtttat 3780
gacgtccgta agatgatcgc gaaaagcgaa caggagatag gcaaggctac agccaaatac 3840
ttcttttatt ctaacattat gaatttcttt aagacggaaa tcactctggc aaacggagag 3900
atacgcaaac gacctttaat tgaaaccaat ggggagacag gtgaaatcgt atgggataag 3960
ggccgggact tcgcgacggt gagaaaagtt ttgtccatgc cccaagtcaa catagtaaag 4020
aaaactgagg tgcagaccgg agggttttca aaggaatcga ttcttccaaa aaggaatagt 4080
gataagctca tcgctcgtaa aaaggactgg gacccgaaaa agtacggtgg cttcgatagc 4140
cctacagttg cctattctgt cctagtagtg gcaaaagttg agaagggaaa atccaagaaa 4200
ctgaagtcag tcaaagaatt attggggata acgattatgg agcgctcgtc ttttgaaaag 4260
aaccccatcg acttccttga ggcgaaaggt tacaaggaag taaaaaagga tctcataatt 4320
aaactaccaa agtatagtct gtttgagtta gaaaatggcc gaaaacggat gttggctagc 4380
gccggagagc ttcaaaaggg gaacgaactc gcactaccgt ctaaatacgt gaatttcctg 4440
tatttagcgt cccattacga gaagttgaaa ggttcacctg aagataacga acagaagcaa 4500
ctttttgttg agcagcacaa acattatctc gacgaaatca tagagcaaat ttcggaattc 4560
agtaagagag tcatcctagc tgatgccaat ctggacaaag tattaagcgc atacaacaag 4620
cacagggata aacccatacg tgagcaggcg gaaaatatta tccatttgtt tactcttacc 4680
aacctcggcg ctccagccgc attcaagtat tttgacacaa cgatagatcg caaacgatac 4740
acttctacca aggaggtgct agacgcgaca ctgattcacc aatccatcac gggattatat 4800
gaaactcgga tagatttgtc acagcttggg ggtgactctg gtggttctac taatctgtca 4860
gatattattg aaaaggagac cggtaagcaa ctggttatcc aggaatccat cctcatgctc 4920
ccagaggagg tggaagaagt cattgggaac aagccggaaa gcgatatact cgtgcacacc 4980
gcctacgacg agagcaccga cgagaatgtc atgcttctga ctagcgacgc ccctgaatac 5040
aagccttggg ctctggtcat acaggatagc aacggtgaga acaagattaa gatgctctct 5100
ggtggttctc ccaagaagaa gaggaaagtc 5130
<210> 31
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 1
<400> 31
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Leu Thr Ala Trp Phe
20 25 30
Arg Gln Ile His Cys Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ser Trp Val Pro Ala Lys Met Phe Cys Gln Ile Leu Thr Asp
50 55 60
Glu Arg Asn Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Leu Glu Phe His Arg Met Lys Asp Val Trp Ser Gly Pro
100 105 110
Tyr Ala Asn Gln Thr Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 32
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 2
<400> 32
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Val Asn Leu Gln Gly
20 25 30
Ala Tyr Met Ile Cys Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Ile Ala Ser Gly Lys Val Glu Asp Tyr Met His Cys Trp Leu
50 55 60
Pro Asn Thr Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Ile Gln Tyr His Trp Glu Asn Val Phe Thr Cys Pro Ser
100 105 110
Gly Arg Met Ala Leu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 33
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 3
<400> 33
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Asp Ser Val Ile Pro
20 25 30
Glu Ala Asn Cys Met Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Met Ser Asn Gln Tyr Lys Phe Cys Asp His Ile Arg Gly Pro
50 55 60
Val Glu Ala Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Met Ala Glu Ile His Arg Thr Pro Val Leu Ser Tyr Lys
100 105 110
Phe Asn Cys Gln Gly Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 34
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA nanobody 4
<400> 34
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Pro Thr Cys Ser Gly
20 25 30
Ile Asn Tyr Val Glu Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Arg Gln Tyr Ala Pro Glu Val Asn Ser Gly Thr Phe Met Leu
50 55 60
Trp Ile Asp Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Gln Trp Ser Arg Ile Asn His Gly Phe Asp Leu Tyr Met
100 105 110
Ala Thr Lys Val Cys Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 35
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 5
<400> 35
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Asp Pro Ile Met Trp
20 25 30
Asn Gln Ala Tyr Arg Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Val Ser Phe Gln Pro Cys Tyr Leu His Glu Lys Ile Asn Trp
50 55 60
Thr Met Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Gln Met Ser Asp Arg Ala Tyr Pro His Ile Asn Phe Val
100 105 110
Leu Thr Trp Cys Glu Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 36
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 6
<400> 36
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Trp Arg Gln Pro Glu
20 25 30
Met Cys Tyr Ile Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Gln Arg Phe Ile Gly Pro Asn Leu His Lys Ala Met Trp Glu
50 55 60
Thr Asp Tyr Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Trp Gly Met Pro Arg Phe Tyr Cys Asp Thr Ser Lys His
100 105 110
Val Gln Asn Leu Ala Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 37
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 7
<400> 37
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Val Ser Thr Cys Tyr
20 25 30
Lys Pro Trp Leu Phe Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Asp Phe His Thr Gln Gly Ala Leu Ser Glu Met Asn Pro Tyr
50 55 60
Cys Lys Ile Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Gln Tyr Met Glu Arg Val His Lys Cys Gly Ala Leu Thr
100 105 110
Ser Phe Trp Asn Ile Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 38
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 8
<400> 38
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Thr His Gly Leu Ser
20 25 30
Ile Asn Phe Met Cys Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Pro Met Tyr Ser Ala Lys Glu Ile Thr Asn Trp Cys Val Leu
50 55 60
Asp Arg Gln Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Gln Glu Phe Thr Asp Arg Trp Ala Leu Cys Ser His Met
100 105 110
Pro Lys Ile Asn Tyr Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 39
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA Nanobody 9
<400> 39
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Gly Arg Gln Glu His
20 25 30
Cys Asn Lys Ala Tyr Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Gly Glu Cys Ser Lys Asn Val Gln Asp Arg Tyr Pro Ala Leu
50 55 60
His Trp Ile Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Gln Phe Pro Thr Ala Lys Leu Met Gly His Glu Trp Tyr
100 105 110
Cys Arg Asn Ser Ile Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 40
<211> 127
<212> PRT
<213> Artificial sequence
<221> gRNA nanobody 10
<400> 40
Met Ala Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala
1 5 10 15
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Pro Arg Lys Thr Cys Tyr
20 25 30
Asn Pro Asp Phe His Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu
35 40 45
Phe Val Pro Val Gln Arg Met Ala Asp Asn Lys Cys Phe Leu Ile Thr
50 55 60
Trp Tyr Gly Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr
65 70 75 80
Val Tyr Val Gln Met Asn Ser Leu Ile Pro Glu Asp Thr Ala Ile Tyr
85 90 95
Tyr Cys Ala Ile Arg Gln Pro Cys His Leu Tyr Thr Lys Val Phe Asn
100 105 110
Met Ser Glu Ala Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
<210> 41
<211> 719
<212> PRT
<213> person (Homo sapiens)
<221> Mcm7
<400> 41
Met Ala Leu Lys Asp Tyr Ala Leu Glu Lys Glu Lys Val Lys Lys Phe
1 5 10 15
Leu Gln Glu Phe Tyr Gln Asp Asp Glu Leu Gly Lys Lys Gln Phe Lys
20 25 30
Tyr Gly Asn Gln Leu Val Arg Leu Ala His Arg Glu Gln Val Ala Leu
35 40 45
Tyr Val Asp Leu Asp Asp Val Ala Glu Asp Asp Pro Glu Leu Val Asp
50 55 60
Ser Ile Cys Glu Asn Ala Arg Arg Tyr Ala Lys Leu Phe Ala Asp Ala
65 70 75 80
Val Gln Glu Leu Leu Pro Gln Tyr Lys Glu Arg Glu Val Val Asn Lys
85 90 95
Asp Val Leu Asp Val Tyr Ile Glu His Arg Leu Met Met Glu Gln Arg
100 105 110
Ser Arg Asp Pro Gly Met Val Arg Ser Pro Gln Asn Gln Tyr Pro Ala
115 120 125
Glu Leu Met Arg Arg Phe Glu Leu Tyr Phe Gln Gly Pro Ser Ser Asn
130 135 140
Lys Pro Arg Val Ile Arg Glu Val Arg Ala Asp Ser Val Gly Lys Leu
145 150 155 160
Val Thr Val Arg Gly Ile Val Thr Arg Val Ser Glu Val Lys Pro Lys
165 170 175
Met Val Val Ala Thr Tyr Thr Cys Asp Gln Cys Gly Ala Glu Thr Tyr
180 185 190
Gln Pro Ile Gln Ser Pro Thr Phe Met Pro Leu Ile Met Cys Pro Ser
195 200 205
Gln Glu Cys Gln Thr Asn Arg Ser Gly Gly Arg Leu Tyr Leu Gln Thr
210 215 220
Arg Gly Ser Arg Phe Ile Lys Phe Gln Glu Met Lys Met Gln Glu His
225 230 235 240
Ser Asp Gln Val Pro Val Gly Asn Ile Pro Arg Ser Ile Thr Val Leu
245 250 255
Val Glu Gly Glu Asn Thr Arg Ile Ala Gln Pro Gly Asp His Val Ser
260 265 270
Val Thr Gly Ile Phe Leu Pro Ile Leu Arg Thr Gly Phe Arg Gln Val
275 280 285
Val Gln Gly Leu Leu Ser Glu Thr Tyr Leu Glu Ala His Arg Ile Val
290 295 300
Lys Met Asn Lys Ser Glu Asp Asp Glu Ser Gly Ala Gly Glu Leu Thr
305 310 315 320
Arg Glu Glu Leu Arg Gln Ile Ala Glu Glu Asp Phe Tyr Glu Lys Leu
325 330 335
Ala Ala Ser Ile Ala Pro Glu Ile Tyr Gly His Glu Asp Val Lys Lys
340 345 350
Ala Leu Leu Leu Leu Leu Val Gly Gly Val Asp Gln Ser Pro Arg Gly
355 360 365
Met Lys Ile Arg Gly Asn Ile Asn Ile Cys Leu Met Gly Asp Pro Gly
370 375 380
Val Ala Lys Ser Gln Leu Leu Ser Tyr Ile Asp Arg Leu Ala Pro Arg
385 390 395 400
Ser Gln Tyr Thr Thr Gly Arg Gly Ser Ser Gly Val Gly Leu Thr Ala
405 410 415
Ala Val Leu Arg Asp Ser Val Ser Gly Glu Leu Thr Leu Glu Gly Gly
420 425 430
Ala Leu Val Leu Ala Asp Gln Gly Val Cys Cys Ile Asp Glu Phe Asp
435 440 445
Lys Met Ala Glu Ala Asp Arg Thr Ala Ile His Glu Val Met Glu Gln
450 455 460
Gln Thr Ile Ser Ile Ala Lys Ala Gly Ile Leu Thr Thr Leu Asn Ala
465 470 475 480
Arg Cys Ser Ile Leu Ala Ala Ala Asn Pro Ala Tyr Gly Arg Tyr Asn
485 490 495
Pro Arg Arg Ser Leu Glu Gln Asn Ile Gln Leu Pro Ala Ala Leu Leu
500 505 510
Ser Arg Phe Asp Leu Leu Trp Leu Ile Gln Asp Arg Pro Asp Arg Asp
515 520 525
Asn Asp Leu Arg Leu Ala Gln His Ile Thr Tyr Val His Gln His Ser
530 535 540
Arg Gln Pro Pro Ser Gln Phe Glu Pro Leu Asp Met Lys Leu Met Arg
545 550 555 560
Arg Tyr Ile Ala Met Cys Arg Glu Lys Gln Pro Met Val Pro Glu Ser
565 570 575
Leu Ala Asp Tyr Ile Thr Ala Ala Tyr Val Glu Met Arg Arg Glu Ala
580 585 590
Trp Ala Ser Lys Asp Ala Thr Tyr Thr Ser Ala Arg Thr Leu Leu Ala
595 600 605
Ile Leu Arg Leu Ser Thr Ala Leu Ala Arg Leu Arg Met Val Asp Val
610 615 620
Val Glu Lys Glu Asp Val Asn Glu Ala Ile Arg Leu Met Glu Met Ser
625 630 635 640
Lys Asp Ser Leu Leu Gly Asp Lys Gly Gln Thr Ala Arg Thr Gln Arg
645 650 655
Pro Ala Asp Val Ile Phe Ala Thr Val Arg Glu Leu Val Ser Gly Gly
660 665 670
Arg Ser Val Arg Phe Ser Glu Ala Glu Gln Arg Cys Val Ser Arg Gly
675 680 685
Phe Thr Pro Ala Gln Phe Gln Ala Ala Leu Asp Glu Tyr Glu Glu Leu
690 695 700
Asn Val Trp Gln Val Asn Ala Ser Arg Thr Arg Ile Thr Phe Val
705 710 715
SEQ ID NO. 76
<210> 42
<211> 150
<212> PRT
<213> Neurospora crassa species (Neurospora crassa)
<221> Vivid
<400> 42
His Thr Leu Tyr Ala Pro Gly Gly Tyr Asp Ile Met Gly Tyr Leu Ile
1 5 10 15
Gln Ile Met Asn Arg Pro Asn Pro Gln Val Glu Leu Gly Pro Val Asp
20 25 30
Thr Ser Cys Ala Leu Ile Leu Cys Asp Leu Lys Gln Lys Asp Thr Pro
35 40 45
Ile Val Tyr Ala Ser Glu Ala Phe Leu Tyr Met Thr Gly Tyr Ser Asn
50 55 60
Ala Glu Val Leu Gly Arg Asn Cys Arg Phe Leu Gln Ser Pro Asp Gly
65 70 75 80
Met Val Lys Pro Lys Ser Thr Arg Lys Tyr Val Asp Ser Asn Thr Ile
85 90 95
Asn Thr Met Arg Lys Ala Ile Asp Arg Asn Ala Glu Val Gln Val Glu
100 105 110
Val Val Asn Phe Lys Lys Asn Gly Gln Arg Phe Val Asn Phe Leu Thr
115 120 125
Met Ile Pro Val Arg Asp Glu Thr Gly Glu Tyr Arg Tyr Ser Met Gly
130 135 140
Phe Gln Cys Glu Thr Glu
145 150
<210> 43
<211> 25
<212> PRT
<213> Artificial sequence
<221> Linker
<400> 43
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
1 5 10 15
Gly Gly Gly Ser Gly Gly Gly Gly Ser
20 25
SEQ ID NO. 79
<210> 44
<211> 166
<212> PRT
<213> Escherichia coli (Escherichia coli)
<221> ecTadA*
<400> 44
Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu Thr
1 5 10 15
Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly Ala Val
20 25 30
Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Ala Ile
35 40 45
Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg Gln
50 55 60
Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu Tyr
65 70 75 80
Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His Ser
85 90 95
Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ala Lys Thr Gly Ala
100 105 110
Ala Gly Ser Leu Met Asp Val Leu His Tyr Pro Gly Met Asn His Arg
115 120 125
Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu Leu
130 135 140
Cys Tyr Phe Phe Arg Met Pro Arg Gln Val Phe Asn Ala Gln Lys Lys
145 150 155 160
Ala Gln Ser Ser Thr Asp
165
<210> 45
<211> 228
<212> PRT
<213> rat (ratus norvegicus)
<221> rAPOBEC1
<400> 45
Ser Ser Glu Thr Gly Pro Val Ala Val Asp Pro Thr Leu Arg Arg Arg
1 5 10 15
Ile Glu Pro His Glu Phe Glu Val Phe Phe Asp Pro Arg Glu Leu Arg
20 25 30
Lys Glu Thr Cys Leu Leu Tyr Glu Ile Asn Trp Gly Gly Arg His Ser
35 40 45
Ile Trp Arg His Thr Ser Gln Asn Thr Asn Lys His Val Glu Val Asn
50 55 60
Phe Ile Glu Lys Phe Thr Thr Glu Arg Tyr Phe Cys Pro Asn Thr Arg
65 70 75 80
Cys Ser Ile Thr Trp Phe Leu Ser Trp Ser Pro Cys Gly Glu Cys Ser
85 90 95
Arg Ala Ile Thr Glu Phe Leu Ser Arg Tyr Pro His Val Thr Leu Phe
100 105 110
Ile Tyr Ile Ala Arg Leu Tyr His His Ala Asp Pro Arg Asn Arg Gln
115 120 125
Gly Leu Arg Asp Leu Ile Ser Ser Gly Val Thr Ile Gln Ile Met Thr
130 135 140
Glu Gln Glu Ser Gly Tyr Cys Trp Arg Asn Phe Val Asn Tyr Ser Pro
145 150 155 160
Ser Asn Glu Ala His Trp Pro Arg Tyr Pro His Leu Trp Val Arg Leu
165 170 175
Tyr Val Leu Glu Leu Tyr Cys Ile Ile Leu Gly Leu Pro Pro Cys Leu
180 185 190
Asn Ile Leu Arg Arg Lys Gln Pro Gln Leu Thr Phe Phe Thr Ile Ala
195 200 205
Leu Gln Ser Cys His Tyr Gln Arg Leu Pro Pro His Ile Leu Trp Ala
210 215 220
Thr Gly Leu Lys
225
<210> 46
<211> 589
<212> DNA
<213> Artificial sequence
<221> vector 10 Key sequence
<400> 46
gaaacaccga acaaagcacc agtggtctag tggtagaata gtaccctgcc acggtacaga 60
cccgggttcg attcccggct ggtgcagttc aggcaggccc ccggcagttt tagagctaga 120
aatagcaagt taaaataagg ctagtccgtt atcaacttga aaaagtggca ccgagtcggt 180
gcaacaaagc accagtggtc tagtggtaga atagtaccct gccacggtac agacccgggt 240
tcgattcccg gctggtgcaa ggcaggttca ccatcagcag ttttagagct agaaatagca 300
agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcaacaa 360
agcaccagtg gtctagtggt agaatagtac cctgccacgg tacagacccg ggttcgattc 420
ccggctggtg cactactggg gccagggcac ccgttttaga gctagaaata gcaagttaaa 480
ataaggctag tccgttatca acttgaaaaa gtggcaccga gtcggtgctt ttttggatcc 540
agcgcttagg tcttgaaagg agtgggaatt ggctccggtg cccgtcagt 589

Claims (19)

1. A construction method of a chimeric antigen receptor modified cell library with an automatically optimized antigen binding domain is characterized in that a vector containing a first gene element, a second gene element, a third gene element, a fourth gene element and a fifth gene element is transfected into a cell, and the number of the vectors is one or more, so that the chimeric antigen receptor modified cell library is obtained;
the first gene element is a nucleotide sequence for coding a receptor 1, and the receptor 1 comprises an extracellular domain, a transmembrane domain and an intracellular domain; the extracellular domain may recognize a biotin or 6 × His tag tagged on a target antigen, the intracellular domain including tobacco etch virus protease TEVP;
the second genetic element is a nucleotide sequence encoding a receptor 2, the receptor 2 comprising an extracellular antigen-binding domain, a transmembrane domain, and an intracellular signal domain; the antigen binding domain is an antibody sequence dynamic library, and the dynamic library is obtained by inducing a series of mutations under the action of a fourth gene element and introducing sequence diversity; the intracellular signaling domain comprises a tTA transcription factor domain and a linking sequence that connects the tTA transcription factor domain and the transmembrane domain, comprising a sequence that is recognizable by TEVP for cleavage;
the third gene element is a nucleotide sequence for coding a screening gene, and a tTA transcription factor can start the expression of the screening gene, so that a host generates fluorescence, obtains certain resistance or obtains a growth advantage under certain conditions;
the fourth gene element is a nucleotide sequence encoding one or more cis-regulatory elements and one or more trans-acting factors; the cis-form regulatory element can enable DNA to generate a DNA sequence with a special structure, the special structure refers to that the DNA structure contains a DNA single-chain structure without base complementary pairing, and the special structure comprises R-loop, G-triplet and G-quadruplet; the trans-acting factor is a Cas protein family and a variant of the Cas protein family, gRNA, a uracil glycosylase inhibitor, adenine deaminase, cytidine deaminase, RNA-DNA hybrid chain binding protein, photosensitive protein, nucleolin, DNA helicase, error-prone DNA polymerase, recombinase, endonuclease, exonuclease and one or more combinations of alkyl adenine glycosylase;
the fifth gene element is a nucleotide sequence for coding a suppression system, and a tTA transcription factor can start the expression of the suppression system, so that a trans-acting factor is knocked down or knocked out, and an antibody sequence dynamic library is maintained to be stable; or the fifth genetic element is a nucleotide sequence encoding an photocontrol system capable of regulating expression of the fourth genetic element: starting a fourth gene element to play a role under the illumination condition, and starting to construct an antibody dynamic sequence library; after the light is stopped, the function of the fourth gene element is inhibited, and the dynamic sequence library of the antibody is maintained to be stable.
2. The method of claim 1, wherein the cells are human or murine cells.
3. The method of claim 1, wherein the dynamic library of antibody sequences comprises a classical antibody library, a single chain antibody library, and a nanobody library.
4. The method for constructing the library of chimeric antigen receptor-modified cells according to claim 1, wherein the nucleotide sequence of the receptor 1 is represented by SEQ ID No. 1.
5. The method for constructing the library of chimeric antigen receptor-modified cells according to claim 1, wherein the receptor 2 is a synNotch receptor modified from a Notch receptor, and the nucleotide sequence of the synNotch receptor is shown in SEQ ID No.2 or SEQ ID No. 3.
6. The method of constructing a library of chimeric antigen receptor-modified cells according to claim 1, wherein the trans-acting factor comprises the following Cas protein family members and their partial domains: cas3-8s, cas10s, cas11s, cas9s, xCas9, cas12s, cas13s, and Cas14s.
7. The method for constructing a library of chimeric antigen receptor-modified cells according to claim 1, wherein the trans-acting factor comprises the following adenine deaminase and partial domain thereof: ecTadA, mADA, hADAR2 and hADAT2.
8. The method for constructing a library of chimeric antigen receptor-modified cells according to claim 1, wherein the trans-acting factor comprises the following cytidine deaminase and partial domain thereof: AID (activation-induced cytidine deaminase), APOBEC3G, APOBEC and CDA1.
9. The method for constructing the library of chimeric antigen receptor-modified cells according to claim 1, wherein the nucleotide sequence encoding the light control system comprises the following photoproteins and partial domains thereof: bphS, cph1, PCB, phyB-PIFs, P Φ B, bphP-PpsR 2, bphP1-Q-PAS1, LOV2-J α, phyB, PIF6, epdz and Photometer visual (VVD).
10. The method of claim 1, wherein the light control system is adapted to control the fourth genetic element in response to light selected from the group consisting of visible light, invisible light, blue light, red light, far infrared light, and ultraviolet light.
11. The method for constructing a library of chimeric antigen receptor-modified cells according to claim 1, wherein the selection gene comprises GFP, mCherry, luciferase, puromycin resistance gene, bleomycin, and neomycin resistance gene.
12. The method for constructing the library of chimeric antigen receptor-modified cells according to claim 1, wherein the suppression system is used to stabilize the dynamic library of antibody sequences by activating a negative regulatory protein, repressor, siRNA, CAS9/gRNA expression via tTA transcription factor or by knocking down or knocking out a trans-acting factor via reverse transcription.
13. A library of chimeric antigen receptor-modified cells whose antigen binding domain is automatically optimized, wherein the library of chimeric antigen receptor-modified cells is constructed by the method of any one of claims 1 to 12.
14. A method for screening a library of chimeric antigen receptor-modified cells whose antigen binding domain is automatically optimized, wherein the screening is performed using the library of chimeric antigen receptor-modified cells according to claim 13, comprising the steps of:
1) Preparing a target antigen, wherein the target antigen is marked with a label capable of being recognized by a receptor 1, and the label comprises biotin or 6 XHis;
2) Co-incubating a target antigen and a chimeric antigen receptor modified cell library, and screening positive chimeric antigen receptor expression cells according to the expression condition of a screened gene;
3) And performing amplification sequencing on the chimeric antigen receptor extracellular antigen binding domain of the positive cell to obtain an antibody nucleotide sequence capable of being specifically bound with a target antigen.
15. The method for screening a library of chimeric antigen receptor-modified cells according to claim 14, further comprising the following steps after obtaining the nucleotide sequence of the antibody capable of specifically binding to the target antigen: the antibody aiming at the target antigen is obtained by adopting a genetic engineering method.
16. The method of claim 14, wherein the target antigen is expressed on the surface of a cell, coated on the surface of a vector, or is a soluble protein.
17. The method of claim 16, wherein the carrier comprises magnetic microspheres, non-magnetic microspheres, graphene, agarose microspheres, nanoparticles, silica-based magnetic beads, GMA magnetic beads, and polystyrene magnetic microspheres.
18. Use of a method of screening a library of chimeric antigen receptor-modified cells according to any one of claims 14 to 17 for the production of antibodies to a particular target antigen.
19. An antibody selected by the method of any one of claims 14 to 17.
CN202110383729.1A 2021-04-09 2021-04-09 Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application of chimeric antigen receptor modified cell library Active CN115197968B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110383729.1A CN115197968B (en) 2021-04-09 2021-04-09 Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application of chimeric antigen receptor modified cell library

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110383729.1A CN115197968B (en) 2021-04-09 2021-04-09 Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application of chimeric antigen receptor modified cell library

Publications (2)

Publication Number Publication Date
CN115197968A true CN115197968A (en) 2022-10-18
CN115197968B CN115197968B (en) 2024-07-26

Family

ID=83570532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110383729.1A Active CN115197968B (en) 2021-04-09 2021-04-09 Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application of chimeric antigen receptor modified cell library

Country Status (1)

Country Link
CN (1) CN115197968B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643852A (en) * 2011-02-28 2012-08-22 华东理工大学 Optical controllable gene expression system
CN109576292A (en) * 2018-12-21 2019-04-05 深圳市爱思迪生物科技有限公司 A kind of construction method of antibody library and its application
WO2020148206A1 (en) * 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643852A (en) * 2011-02-28 2012-08-22 华东理工大学 Optical controllable gene expression system
CN109576292A (en) * 2018-12-21 2019-04-05 深圳市爱思迪生物科技有限公司 A kind of construction method of antibody library and its application
WO2020148206A1 (en) * 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAELEN T. HESS 等: ""Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells"", 《NAT METHODS》, vol. 13, no. 12, pages 1036, XP055832741, DOI: 10.1038/nmeth.4038 *
王召阳 等: ""抗犬瘟热病毒VHH抗体噬菌体库的构建与筛选"", 《中国畜牧兽医》, vol. 47, no. 6, pages 1685 - 1693 *

Also Published As

Publication number Publication date
CN115197968B (en) 2024-07-26

Similar Documents

Publication Publication Date Title
US8187884B2 (en) Method of enhancing homologous recombination of somatic cells and method of constructing specific antibody
EP3789521B1 (en) Antibody library construction method and application thereof
KR101732552B1 (en) Screening and Engineering Method of Super-Stable Immunoglobulin Variable Domains and Their Uses
CN109970858B (en) CD22 single domain antibody, nucleotide sequence and kit
CN109844125A (en) The preparation method and application of the CLDN18.2 specific chimeric antigen receptor T cell of people&#39;s PD-1 gene knockout
US20090264320A1 (en) Methods for transforming yeast
KR20180104149A (en) Increased production of immunoglobulins
CN110003336B (en) PD-1 single domain antibody, nucleotide sequence and kit
JP2009535063A (en) Heterogeneous and multi-species presentation systems
TW201819621A (en) Method for preparing electrocompetent yeast cells, and method for using said cells
JP2023518900A (en) Construction method and use of antigen-specific binding polypeptide gene display vector
Chen et al. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells
CN111410695B (en) Chimeric molecule based on autophagy mechanism mediated Tau protein degradation and application thereof
CN111499744B (en) Lactoferrin nano antibody, preparation method and application
CN115197968B (en) Construction and screening method of chimeric antigen receptor modified cell library with automatically optimized antigen binding domain and application of chimeric antigen receptor modified cell library
JP6854342B2 (en) Presentation of bispecific antibody on phage surface
CN109486850B (en) Optogenetic tool for UV-B light-down regulation of chromatin long-distance interaction
EP2831223A2 (en) Stable expression system for eukaryotic cells
CN114276447B (en) Bovine-derived single-chain antibody for inhibiting growth of staphylococcus aureus and preparation method and application thereof
CN114560930B (en) Broad-spectrum neutralizing antibody for resisting novel coronavirus and application thereof
CN114560931B (en) Neutralizing antibody against SARS-CoV-2 and its use
CN114085289B (en) Construction method and application of semisynthetic single-domain antibody library
CN114539412B (en) Single domain antibody of anti-HLA-A 2/WT1 complex, preparation method and application thereof
CN110003334B (en) Polypeptide, CD19 single domain antibody, preparation method thereof, nucleotide sequence and kit
WO1999064583A2 (en) Compositions and methods for modulating proteolytic degradation of intracellular targets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant