CN115196943A - 一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法 - Google Patents

一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法 Download PDF

Info

Publication number
CN115196943A
CN115196943A CN202210804338.7A CN202210804338A CN115196943A CN 115196943 A CN115196943 A CN 115196943A CN 202210804338 A CN202210804338 A CN 202210804338A CN 115196943 A CN115196943 A CN 115196943A
Authority
CN
China
Prior art keywords
zirconium silicate
ceramic
phase
reinforcing phase
prestress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210804338.7A
Other languages
English (en)
Other versions
CN115196943B (zh
Inventor
李月明
何定坤
孙熠
李恺
万德田
包亦望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN202210804338.7A priority Critical patent/CN115196943B/zh
Publication of CN115196943A publication Critical patent/CN115196943A/zh
Application granted granted Critical
Publication of CN115196943B publication Critical patent/CN115196943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种以硅酸锆为增强相的预应力强化日用陶瓷,其原料由基料与增强相组成;所述基料的原料组成为高岭土25~45wt%、钾长石25~38wt%、石英24~36wt%、烧滑石0.4~2.2wt%;所述增强相为硅酸锆微粉,其用量为基料的6~10wt%。此外,还公开了上述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法及其陶瓷制品。本发明通过配方设计,以硅酸锆为增强相以弥散分布在陶瓷坯体内部,通过调整二者之间的热膨胀系数差异和弹性模量差异,而在陶瓷坯体内部产生预应力,显著提高了日用陶瓷制品的强度和质量。本发明所提出的新的预应力增强方法,为日用陶瓷的强化提供了新的途径;且原材料在陶瓷行业运用广泛,适用于工业化生产。

Description

一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法
技术领域
本发明涉及日用陶瓷材料领域,尤其涉及一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法。
背景技术
陶瓷产品具有热稳定性好、耐磨损、耐腐蚀等优良性能,但陶瓷产品因脆性高易被破坏。为了解决这一难题,许多研究人员开展了陶瓷材料增强的研究,但与通过预应力增强的混凝土和玻璃材料相比,目前的研究还存在较大的差距。预应力是指预先在材料之中引入应力以抵抗外部的破坏载荷,从而增加了材料开裂所需的应变量,提高材料断裂强度以及可靠性。通过预应力能够使混凝土的强度增加2~3倍、玻璃的强度增加4~5倍。相比而言,预应力增强陶瓷材料仍处于研究与探索阶段。预应力强化主要为外部强化和内部强化,目前日用陶瓷领域通过预应力进行内部强化研究较少。
硅酸锆是陶瓷行业必不可少的原料之一,常用于坯、釉料中作为乳浊剂,起乳浊增白的作用;硅酸锆性质稳定,不受陶瓷烧成气氛的影响,晶体硬度高,热膨胀系数低,同时还具有耐高温和耐化学腐蚀等诸多优点,在陶瓷行业使用范围十分广泛,但其对日用陶瓷增强作用却少有人研究。
发明内容
本发明的目的在于克服现有技术的不足,提供一种以硅酸锆为增强相的预应力强化日用陶瓷,通过配方设计,以硅酸锆微粉为增强相以弥散分布在陶瓷坯体内部,通过调整陶瓷坯体与硅酸锆之间的热膨胀系数差异和弹性模量差异,而在陶瓷坯体内部产生预应力,从而实现提升日用陶瓷制品强度的目的。本发明的另一目的在于提供上述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法及其陶瓷制品。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种以硅酸锆为增强相的预应力强化日用陶瓷,其原料由基料与增强相组成;所述基料的原料组成为高岭土25~45wt%、钾长石25~38wt%、石英24~36wt%、烧滑石0.4~2.2wt%;所述增强相为硅酸锆微粉,其用量为基料的6~10wt%。
进一步地,本发明所述高岭土的粒度为200~500目,钾长石的粒度为180~400目,石英的粒度为250~600目,硅酸锆微粉的粒度为1200~2000目。
上述方案中,本发明所述高岭土的化学组成为SiO2 42.2~51.4wt%、Al2O3 32.3~38.9wt%、Fe2O3 0.21~0.51wt%、K2O 0.67~0.92wt%、I.L 9.6~18.4wt%;
所述钾长石的化学组成为SiO2 68.2~72.4wt%、Al2O3 14.3~17.9wt%、Fe2O30.06~0.13wt%、K2O 8.67~9.92wt%、Na2O 2.67~3.92wt%、I.L 0.11~0.23wt%;
所述石英的化学组成为SiO2 96.5~98.20wt%、Al2O3 0.43~0.56wt%、Fe2O30.11~0.19wt%、CaO 0.21~0.42wt%、Na2O 0.35~0.49wt%、I.L 0.21~2.33wt%;
所述烧滑石的化学组成为SiO2 60.2~63.4wt%、Al2O3 0.77~0.94wt%、Fe2O30.17~0.29wt%、CaO 3.3~4.2wt%、MgO 30.6~33.9wt%、I.L 0.21~1.36wt%。
本发明的另一目的通过以下技术方案予以实现:
本发明提供的上述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,包括以下步骤:
(1)将所述基料与增强相进行配比混合,以水为球磨介质进行球磨混合,球磨筛余控制在0.1~0.2%,得到料浆;
(2)所述料浆经脱水、真空练泥、陈腐后,得到泥段;
(3)所述泥段经可塑成型、修坯、干燥后得到的生坯,以5℃/min升温至1240~1320℃进行烧结,保温15~120min,待保温结束后自然冷却至室温,即得到日用陶瓷制品。
进一步地,本发明制备方法所述步骤(1)中按照质量比料∶球∶水=1∶1.8~2.2∶0.8~1.2进行球磨混合。所述步骤(2)中陈腐时间为10~20h。所述步骤(3)中生坯的含水率为18~24%。
利用上述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法得到的陶瓷制品,其物相组成为玻璃相、石英、莫来石以及硅酸锆晶相,其中所述硅酸锆晶相弥散分布于陶瓷制品内部而形成预应力。
上述方案中,本发明所述陶瓷制品的热膨胀系数∶硅酸锆晶相的热膨胀系数=1.6~2.1∶1,陶瓷制品的弹性模量∶硅酸锆晶相的弹性模量=0.16~0.24∶1。
本发明具有以下有益效果:
(1)本发明通过配方设计,以硅酸锆微粉为增强相以弥散分布在陶瓷坯体内部,烧滑石用于调节陶瓷坯体热膨胀系数,通过调整陶瓷坯体与硅酸锆之间的热膨胀系数差异和弹性模量差异,而在陶瓷坯体内部产生预应力,实现提升日用陶瓷制品强度的目的,抗折强度>115MPa,提升幅度达到了114~118%,有效解决了日用陶瓷脆性高、抗折强度低的问题,从而显著提高了日用陶瓷的质量。
(2)本发明原料无污染,对环境友好且方法简单,原材料在陶瓷行业运用广泛,适用于工业化生产。
(3)本发明以硅酸锆为增强相通过预应力增强日用陶瓷,提出了一种新的预应力增强方法,为日用陶瓷的强化提供了新的思考和途径。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例制得的日用陶瓷制品的XRD图;
图2是本发明实施例制得的日用陶瓷制品内部背散射电子图。
具体实施方式
本发明实施例一种以硅酸锆为增强相的预应力强化日用陶瓷,其原料由基料与增强相组成。其中,基料的原料组成为高岭土25~45wt%、钾长石25~38wt%、石英24~36wt%、烧滑石0.4~2.2wt%,增强相为硅酸锆微粉,其用量为基料的6~10wt%。
高岭土的粒度为200~500目,钾长石的粒度为180~400目,石英的粒度为250~600目,硅酸锆微粉的粒度为1200~2000目。
高岭土的化学组成为SiO2 48.14wt%、Al2O3 36.91wt%、Fe2O3 0.42wt%、K2O0.88wt%、I.L 13.65wt%;
钾长石的化学组成为SiO2 70.25wt%、Al2O3 16.39wt%、Fe2O3 0.11wt%、K2O9.27wt%、Na2O 3.13wt%、I.L 0.85wt%;
石英的化学组成为SiO2 97.95wt%、Al2O3 0.53wt%、Fe2O3 0.19wt%、CaO0.33wt%、Na2O 0.44wt%、I.L 0.56wt%;
烧滑石的化学组成为SiO2 62.05wt%、Al2O3 0.94wt%、Fe2O3 0.29wt%、CaO3.37wt%、MgO 32.37wt%、I.L 0.98wt%。
实施例一:
1、本实施例以硅酸锆为增强相的预应力强化日用陶瓷,其原料由基料与增强相组成。其中,基料的原料组成为高岭土35wt%、钾长石33wt%、石英30wt%、烧滑石2.0wt%,增强相为硅酸锆微粉,其用量为基料的8wt%。
2、上述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,其步骤如下:
(1)将上述基料与增强相进行配比混合,以水为球磨介质进行球磨(按照质量比料∶球∶水=1∶2∶1)混合4h,球磨后过250目筛,筛余控制在0.15%,得到料浆;
(2)上述料浆经脱水、真空练泥、陈腐10h后,得到泥段;
(3)上述泥段经可塑成型、修坯、干燥后得到的含水率为22%的生坯,以5℃/min升温至1300℃进行烧结,保温30min,待保温结束后自然冷却至室温,即得到日用陶瓷制品。
本实施例得到的日用陶瓷制品,以热膨胀系数,陶瓷制品∶硅酸锆晶相=2.1∶1;以弹性模量,陶瓷制品∶硅酸锆晶相=0.19∶1。
实施例二:
1、本实施例以硅酸锆为增强相的预应力强化日用陶瓷,其原料由基料与增强相组成。其中,基料的原料组成为高岭土30wt%、钾长石35wt%、石英34wt%、烧滑石1.0wt%,增强相为硅酸锆微粉,其用量为基料的10wt%。
2、上述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,其步骤如下:
(1)将上述基料与增强相进行配比混合,以水为球磨介质进行球磨(按照质量比料∶球∶水=1∶1.8∶1.2)混合4h,球磨后过250目筛,筛余控制在0.15%,得到料浆;
(2)上述料浆经脱水、真空练泥、陈腐15h后后,得到泥段;
(3)上述泥段经可塑成型、修坯、干燥后得到的含水率为24%的生坯,以5℃/min升温至1280℃进行烧结,保温60min,待保温结束后自然冷却至室温,即得到日用陶瓷制品。
本实施例得到的日用陶瓷制品,以热膨胀系数,陶瓷制品∶硅酸锆晶相=1.9∶1;以弹性模量,陶瓷制品∶硅酸锆晶相=0.17∶1。
实施例三:
1、本实施例以硅酸锆为增强相的预应力强化日用陶瓷,其原料由基料与增强相组成。其中,基料的原料组成为高岭土43wt%、钾长石28wt%、石英28wt%、烧滑石1.0wt%,增强相为硅酸锆微粉,其用量为基料的6wt%。
2、上述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,其步骤如下:
(1)将上述基料与增强相进行配比混合,以水为球磨介质进行球磨(按照质量比料∶球∶水=1∶2.2∶0.9)混合4h,球磨后过250目筛,筛余控制在0.15%,得到料浆;
(2)上述料浆经脱水、真空练泥、陈腐18h后后,得到泥段;
(3)上述泥段经可塑成型、修坯、干燥后得到的含水率为19%的生坯,以5℃/min升温至1320℃进行烧结,保温15min,待保温结束后自然冷却至室温,即得到日用陶瓷制品。
本实施例得到的日用陶瓷制品,以热膨胀系数,陶瓷制品∶硅酸锆晶相=1.6∶1;以弹性模量,陶瓷制品∶硅酸锆晶相=0.18∶1。
本发明各实施例得到的日用陶瓷制品,物相组成为为石英、莫来石和硅酸锆晶相(见图1)、以及玻璃相,硅酸锆晶相弥散分布于陶瓷制品内部(见图2)而形成预应力。
将上述各实施例未添加硅酸锆、其他条件不变作为相对应的对比例。对各实施例以及对比例得到的陶瓷制品进行以下抗折强度测试:基于长40mm×宽10mm×厚6mm的尺寸规格试条,采用三点法测量,利用型号为LD26.105,LSI的万能试验机进行测试。测试结果如表1所示。
表1本发明实施例和对比例得到的陶瓷制品的抗折强度
Figure BDA0003735986230000051

Claims (10)

1.一种以硅酸锆为增强相的预应力强化日用陶瓷,其特征在于:所述日用陶瓷的原料由基料与增强相组成;所述基料的原料组成为高岭土25~45wt%、钾长石25~38wt%、石英24~36wt%、烧滑石0.4~2.2wt%;所述增强相为硅酸锆微粉,其用量为基料的6~10wt%。
2.根据权利要求1所述的以硅酸锆为增强相的预应力强化日用陶瓷,其特征在于:所述高岭土的粒度为200~500目,钾长石的粒度为180~400目,石英的粒度为250~600目,硅酸锆微粉的粒度为1200~2000目。
3.根据权利要求1所述的以硅酸锆为增强相的预应力强化日用陶瓷,其特征在于:所述高岭土的化学组成为SiO2 42.2~51.4wt%、Al2O3 32.3~38.9wt%、Fe2O30.21~0.51wt%、K2O 0.67~0.92wt%、I.L 9.6~18.4wt%;
所述钾长石的化学组成为SiO2 68.2~72.4wt%、Al2O3 14.3~17.9wt%、Fe2O30.06~0.13wt%、K2O 8.67~9.92wt%、Na2O 2.67~3.92wt%、I.L 0.11~0.23wt%;
所述石英的化学组成为SiO2 96.5~98.20wt%、Al2O3 0.43~0.56wt%、Fe2O30.11~0.19wt%、CaO 0.21~0.42wt%、Na2O 0.35~0.49wt%、I.L 0.21~2.33wt%;
所述烧滑石的化学组成为SiO2 60.2~63.4wt%、Al2O3 0.77~0.94wt%、Fe2O30.17~0.29wt%、CaO 3.3~4.2wt%、MgO 30.6~33.9wt%、I.L 0.21~1.36wt%。
4.权利要求1-3之一所述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,其特征在于包括以下步骤:
(1)将所述基料与增强相进行配比混合,以水为球磨介质进行球磨混合,球磨筛余控制在0.1~0.2%,得到料浆;
(2)所述料浆经脱水、真空练泥、陈腐后,得到泥段;
(3)所述泥段经可塑成型、修坯、干燥后得到的生坯,以5℃/min升温至1240~1320℃进行烧结,保温15~120min,待保温结束后自然冷却至室温,即得到日用陶瓷制品。
5.根据权利要求4所述的以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,其特征在于:所述步骤(1)中按照质量比料∶球∶水=1∶1.8~2.2∶0.8~1.2进行球磨混合。
6.根据权利要求4所述的以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,其特征在于:所述步骤(2)中陈腐时间为10~20h。
7.根据权利要求4所述的以硅酸锆为增强相的预应力强化日用陶瓷的制备方法,其特征在于:所述步骤(3)中生坯的含水率为18~24%。
8.利用权利要求4-7之一所述以硅酸锆为增强相的预应力强化日用陶瓷的制备方法得到的陶瓷制品。
9.根据权利要求8所述的陶瓷制品,其特征在于:所述陶瓷制品物相组成为玻璃相、石英、莫来石以及硅酸锆晶相,其中所述硅酸锆晶相弥散分布于陶瓷制品内部而形成预应力。
10.根据权利要求8或9所述的陶瓷制品,其特征在于:所述陶瓷制品的热膨胀系数∶硅酸锆晶相的热膨胀系数=1.6~2.1∶1,陶瓷制品的弹性模量∶硅酸锆晶相的弹性模量=0.16~0.24∶1。
CN202210804338.7A 2022-07-07 2022-07-07 一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法 Active CN115196943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210804338.7A CN115196943B (zh) 2022-07-07 2022-07-07 一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210804338.7A CN115196943B (zh) 2022-07-07 2022-07-07 一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115196943A true CN115196943A (zh) 2022-10-18
CN115196943B CN115196943B (zh) 2023-05-05

Family

ID=83580045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210804338.7A Active CN115196943B (zh) 2022-07-07 2022-07-07 一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115196943B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109454A (zh) * 1994-03-31 1995-10-04 潮安县枫溪玉宇瓷厂 高韧性强化瓷及生产方法
CN101665347A (zh) * 2009-09-22 2010-03-10 景德镇陶瓷学院 一种高性能日用细瓷及其生产方法
WO2014016423A1 (en) * 2012-07-27 2014-01-30 Imerys Ceramics France Ceramic compositions
CN104556992A (zh) * 2014-12-30 2015-04-29 青岛佳尚创意文化有限公司 一种节能保温地面瓷砖
CN107032755A (zh) * 2017-04-25 2017-08-11 广东天际电器股份有限公司 一种强化瓷质炖盅的制备方法
CN109704719A (zh) * 2019-01-24 2019-05-03 福建华夏金刚科技股份有限公司 一种隔热耐腐蚀的古建陶瓷及其制备方法
CN110117184A (zh) * 2019-05-25 2019-08-13 福建省德化县合和陶瓷技术开发有限公司 一种耐磨损日用陶瓷及其制备方法
CN110759714A (zh) * 2019-11-04 2020-02-07 景德镇陶瓷大学 一种洗碗机用高性能日用陶瓷及其制备方法
CN110950652A (zh) * 2019-12-22 2020-04-03 景德镇陶瓷大学 一种施釉与成型同时进行的陶瓷制备方法及其制得的产品
CN114436626A (zh) * 2022-02-25 2022-05-06 景德镇陶瓷大学 一种高透低变形高温日用瓷坯体及其产品的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109454A (zh) * 1994-03-31 1995-10-04 潮安县枫溪玉宇瓷厂 高韧性强化瓷及生产方法
CN101665347A (zh) * 2009-09-22 2010-03-10 景德镇陶瓷学院 一种高性能日用细瓷及其生产方法
WO2014016423A1 (en) * 2012-07-27 2014-01-30 Imerys Ceramics France Ceramic compositions
CN104556992A (zh) * 2014-12-30 2015-04-29 青岛佳尚创意文化有限公司 一种节能保温地面瓷砖
CN107032755A (zh) * 2017-04-25 2017-08-11 广东天际电器股份有限公司 一种强化瓷质炖盅的制备方法
CN109704719A (zh) * 2019-01-24 2019-05-03 福建华夏金刚科技股份有限公司 一种隔热耐腐蚀的古建陶瓷及其制备方法
CN110117184A (zh) * 2019-05-25 2019-08-13 福建省德化县合和陶瓷技术开发有限公司 一种耐磨损日用陶瓷及其制备方法
CN110759714A (zh) * 2019-11-04 2020-02-07 景德镇陶瓷大学 一种洗碗机用高性能日用陶瓷及其制备方法
CN110950652A (zh) * 2019-12-22 2020-04-03 景德镇陶瓷大学 一种施釉与成型同时进行的陶瓷制备方法及其制得的产品
CN114436626A (zh) * 2022-02-25 2022-05-06 景德镇陶瓷大学 一种高透低变形高温日用瓷坯体及其产品的制备方法

Also Published As

Publication number Publication date
CN115196943B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN101717248B (zh) 一种中低温烧结日用滑石瓷及其生产方法
CN113336534B (zh) 一种不含锂矿物的低热膨胀日用陶瓷及其制备方法
CN113321487B (zh) 一种无锂耐热日用陶瓷及其制备方法
CN108975923B (zh) 一种抗热震及高温体积稳定的陶瓷辊棒及其制备方法
CN106380176A (zh) 高可塑性日用耐热陶瓷及其制备方法
CN101423375B (zh) 一种陶瓷辊棒及其制备方法
US6127298A (en) Compositions for ceramic tiles
CN111548138B (zh) 低温快烧釉面砖的烧成方法及低温快烧釉面砖
CN104944979A (zh) 回转窑用耐火砖的制备方法
CN108530034B (zh) 一种满釉陶瓷及其制备方法
CN111675534B (zh) 一种高抗热震的耐热瓷
CN115196943B (zh) 一种以硅酸锆为增强相的预应力强化日用陶瓷及其制备方法
CN111533547B (zh) 一种低铝高硅高强度不变形釉面砖及其制备方法
US3846098A (en) Manufacture of a white porcelain body of high translucency and high strength
KR101417587B1 (ko) 고 내열성 및 열충격 저항성을 갖는 도자기용 조성물 및 그를 이용한 도자기의 제조방법
US5614448A (en) Method for the manufacture of porcelain
CN1028221C (zh) 红石质瓷的制造方法
CN115259833A (zh) 一种陶瓷薄板及其制备方法
CN112551898A (zh) 一种高强度电瓷白釉及其制备方法
CN109231961B (zh) 一种抗变形快速烧成精陶器坯料及其制备与应用方法
CN1088897A (zh) 一种高铝陶瓷及其生产方法
CN112777999A (zh) 一种废瓷粉回收再利用方法
CN111646817A (zh) 一种烧成陶瓷坯体深层修补材料
JPH1087365A (ja) 耐熱衝撃性セラミックスおよびその製造方法
CN115784709B (zh) 高硅质高级日用细瓷泥料及其增塑的制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant