CN115184425B - 二硫化钼包覆含氮碳纳米管固定cpo生物传感器及检测h2o2的应用 - Google Patents

二硫化钼包覆含氮碳纳米管固定cpo生物传感器及检测h2o2的应用 Download PDF

Info

Publication number
CN115184425B
CN115184425B CN202210810974.0A CN202210810974A CN115184425B CN 115184425 B CN115184425 B CN 115184425B CN 202210810974 A CN202210810974 A CN 202210810974A CN 115184425 B CN115184425 B CN 115184425B
Authority
CN
China
Prior art keywords
cpo
molybdenum disulfide
biosensor
nitrogen
containing carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210810974.0A
Other languages
English (en)
Other versions
CN115184425A (zh
Inventor
蒋育澄
杨红霞
何濛
胡满成
翟全国
李淑妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202210810974.0A priority Critical patent/CN115184425B/zh
Publication of CN115184425A publication Critical patent/CN115184425A/zh
Application granted granted Critical
Publication of CN115184425B publication Critical patent/CN115184425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/908Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Nanotechnology (AREA)
  • Hematology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种二硫化钼包覆含氮碳纳米管固定CPO生物传感器及检测H2O2的应用,首先通过在聚吡咯空心管上原位生长二硫化钼纳米片,并在氢气氛围中高度结晶化得到表面包覆二硫化钼纳米片的含氮碳纳米管(NCNT@MoS2),再采用离子液体(IL)对其进行改性后的NCNT@MoS2/IL具有良好的亲水性以及导电性,并基于材料大的比表面积吸附氯过氧化物酶(CPO),最后以NCNT@MoS2/IL/CPO修饰玻碳电极获得生物传感器。本发明生物传感器对H2O2具有良好的电化学传感性能,检测的线性范围较宽,检出限低,选择性、抗干扰性、重复使用性以及稳定性好,可用于牛奶和果汁中H2O2含量的检测,具有良好的应用前景。

Description

二硫化钼包覆含氮碳纳米管固定CPO生物传感器及检测H2O2的 应用
技术领域
本发明属于生物传感器技术领域,具体涉及一种二硫化钼纳米片包覆含氮碳纳米管固定CPO生物传感器及其检测过氧化氢的应用。
背景技术
电化学生物传感器有三部分组成,生物分子(酶、DNA、RNA、细胞等)作为装置识别系统的主体部分,玻碳电极等作为物理化学信号转换器,物质的浓度与设备检测的电信号(电压、电阻、电流等)组成检测装置系统。与其他检测方法相比,电化学生物传感器具有成本低,体积小,易于构建系统,选择性好,灵敏度高,快速反应,良好的生物相容性等优势,在环境检测、食品安全和医学诊断上有重要的研究价值与发展潜力。如:Nirmal等人将黄嘌呤氧化酶(XO))共价固定在金纳米粒子负载多壁碳纳米管复合材料(Nano-Au/c-MWCNT)修饰的电极上,实现黄嘌呤的高灵敏检测,应用于鱼肉新鲜度的检测。
酶是一种能够加速生化和化学反应的高分子生物催化剂,酶电极是一种微型化学传感器,它通过将电化学过程与固定化酶相结合来发挥作用。基于酶的电化学生物传感器中,酶被用作识别元件,被固定在传感器表面的支持基质上,以保持酶活性。当固定氧化还原酶时,加入底物后,底物与固定的酶发生氧化还原反应产生电活性物质,通过电化学工作站输出信号后进一步分析。
氯过氧化物酶(CPO)是一种从海洋真菌Caldariomyces fumago中提取出来的血红素糖蛋白酶。CPO分子的活性中心具有独特的结构,使得CPO同时具备过氧化物酶、过氧化氢酶和细胞色素P450等多种酶的催化活性,目前被认为是过氧化物酶家族中催化活性最广泛的酶。但是氯过氧化物酶的活性中心深埋于酶分子的内部,所以难以实现CPO与电极之间的直接电子转移,且酶对反应条件较为敏感,极易失活,不易固定在电极表面。
发明内容
本发明的目的是提供一种具有良好的选择性、灵敏度和稳定性的二硫化钼纳米片包覆含氮碳纳米管固定CPO生物传感器,并为该生物传感器提供一种新的应用。
解决上述技术问题所采用的生物传感器是将表面包覆二硫化钼纳米片的含氮碳纳米管通过离子液体改性后固定氯过氧化物酶,再以其修饰玻碳电极获得。
上述生物传感器的制备方法为:将表面包覆二硫化钼纳米片的含氮碳纳米管加入pH为3.0~4.0的PBS缓冲液中,并加入离子液体,常温下超声1~2小时,再加入氯过氧化物酶溶液,混合均匀后,放入恒温水浴振荡器中常温振荡6~8小时,所得浆料浇筑在预处理的玻碳电极上,常温干燥。
上述制备方法中,优选表面包覆二硫化钼纳米片的含氮碳纳米管与离子液体、氯过氧化物酶的用量比为1mg:50~150μL:50~150U,所述浆料中离子液体的体积浓度为10%~20%。
上述制备方法中,所述氯过氧化物酶溶液中氯过氧化物酶的浓度为10000~30000U·mL-1,其采用pH=3.5~4.5的PBS缓冲溶液配制。
上述离子液体为溴化1-乙基-3-甲基咪唑离子液体、溴化1-辛基-3-甲基咪唑离子液体、溴化1-癸基-3-甲基咪唑离子液体、氯化1-辛基-3-甲基咪唑离子液体中任意一种。
上述表面包覆二硫化钼纳米片的含氮碳纳米管(NCNT@MoS2)的制备方法为:将聚吡咯中空纳米管分散在蒸馏水中,加入Na2MoO4·2H2O和L-半胱氨酸,搅拌均匀后,在180~200℃下水热处理23~25小时,然后用超纯水和无水乙醇抽滤洗涤,在60~80℃下真空干燥,最后在氩气和氢气体积比为90~95:5~10的混合氛围中700~750℃退火1~2小时;其中,所述聚吡咯中空纳米管与Na2MoO4·2H2O、L-半胱氨酸的质量比为1:2.5~3.5:25~35。
上述聚吡咯中空纳米管的制备方法为:将FeCl3·6H2O添加到含有甲基橙的去离子水中,随后将吡咯单体缓慢加入其中,搅拌23~25小时,获得的黑色沉淀通过真空抽滤收集,用超纯水和无水乙醇洗涤至滤液无色和中性,最后在60~80℃真空气氛下干燥;其中,所述FeCl3·6H2O与甲基橙、吡咯单体的配比为1g:0.05~0.06g:0.2~0.4mL。
上述预处理的玻碳电极的制备方法为:将玻碳电极依次用直径为0.3μm和0.05μm的氧化铝粉末抛光,再依次用超纯水和无水乙醇进行清洗至电极呈现光滑的镜面,用氮气吹干,再将玻碳电极置于含有0.1mol·L-1KCl的5mmol·L-1K3[Fe(CN)6]/K4[Fe(CN)6]溶液中,在-0.8~0.2V下采用循环伏安法扫描至氧化峰与还原峰电位差值小于70mV时,取出用蒸馏水冲洗,常温晾干。
本发明二硫化钼包覆含氮碳纳米管固定CPO生物传感器可用于电化学检测过氧化氢。
本发明以纳米MoS2为基底,它既是酶固定化的载体,更重要的是本身具有类过氧化物酶的活性,可通过增强电流信号协同CPO对H2O2的传感,具有双功能作用;另一方面通过调控材料的形貌合成薄片状MoS2,形成堆积孔,增大材料的比表面积,实现多点固定,以提升酶的负载量,同时为固载的酶分子提供屏蔽环境起到保护作用,提高酶的稳定性;选用聚吡咯空心管同样为包埋其中的酶分子起到屏蔽保护作用,提高其稳定性。
本发明中NCNT@MoS2疏水性很强,不能有效地分散在水溶液中,且不利于亲水性酶CPO的稳定存在,通过加入具有强导电性离子液体(IL)对材料进行改性,使NCNT@MoS2/IL具有良好的亲水性,可有效提高材料对酶分子的亲和性,有利于酶分子的稳定;且引入离子液体可拓宽酶分子中的底物通道,促进酶分子CPO与电极之间的直接电子转移(DET),因此离子液体在这里也体现了双功能作用。
本发明具有的有益效果如下:
1、本发明生物传感器采用的表面包覆二硫化钼纳米片的含氮碳纳米管比表面积大、生物相容性好、电导率高,进一步通过具有强导电性离子液体进行改性后,使其具有良好的亲水性,可有效提高材料对酶分子的亲和性,增加了CPO的固载量,且有利于酶分子的稳定存在,提高了生物传感器的重复使用性;而且所使用的离子液体具有良好的生物相容性,同时可以打开CPO活性中心的通道,实现电极与酶活中心的直接电子转移(DET);
2、本发明生物传感器对H2O2具有良好的电化学催化性能,可采用循环伏安法和计时-电流法Amperometric i-t两种检测手段检测H2O2,检测的线性范围较宽,检出限低,选择性、抗干扰性、重复使用性以及稳定性好,可用于牛奶和果汁中H2O2含量的检测,具有良好的应用前景。
附图说明
图1是NCNT@MoS2/IL/CPO-GCE的制备过程。
图2是NCNTs@MoS2的SEM(a)、TEM(b)和AFM(c)图像。
图3是不同修饰电极在含有5mmol·L-1K3[Fe(CN)6 3-/4-]和0.1mol·L-1KCl溶液中的奈奎斯特图。
图4是不同修饰电极在含有5mmol·L-1K3[Fe(CN)6 3-/4-]和0.1mol·L-1KCl溶液中的CV图。
图5是不同扫速的NCNT@MoS2/IL/CPO-GCE循环伏安图。
图6是NCNT@MoS2/IL/CPO-GCE的峰值电流与扫描速度关系图。
图7是NCNT@MoS2/IL/CPO-GCE在0.1mol·L-1pH 5.0的PBS缓冲液中连续添加5μmol·L-1H2O2的循环伏安图。
图8是通过计时电流法在-0.3V的电位下研究在动态环境中不同修饰电极协同催化H2O2的能力的电流响应图。
图9是NCNT@MoS2/IL/CPO-GCE对不同浓度H2O2的Amperometric i-t曲线图(插图为低浓度H2O2的Amperometric i-t曲线)。
图10是NCNT@MoS2/IL/CPO-GCE对浓度为200nmol·L-1到520μmol·L-1H2O2与电流之间的线性关系图。
图11是NCNT@MoS2/IL/CPO-GCE在H2O2检测中的抗干扰性能图。
图12是NCNT@MoS2/IL/CPO-GCE在牛奶和果汁中H2O2的检测。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
在不断搅拌下,将1.89g FeCl3·6H2O添加到40mL含有0.1g甲基橙的去离子水中,有絮凝物沉淀产生,随后将0.42mL吡咯单体缓慢加入其中,搅拌24小时,获得的黑色沉淀通过真空抽滤收集,用超纯水和无水乙醇洗涤至滤液无色和中性,最后在60℃的真空气氛下干燥,得到聚吡咯(PPy)中空纳米管。
在50mL去离子水中加入50mg PPy中空纳米管,常温下超声60分钟,随后加入150mgNa2MoO4·2H2O和1.5g L-半胱氨酸,搅拌30分钟后,将悬浮液转移到100mL四氟乙烯内衬不锈钢高压釜中,200℃下水热处理24小时,自然冷却后,用超纯水和无水乙醇真空抽滤洗涤,在80℃下真空干燥12小时。最后在氩气和氢气体积比为95:5的混合氛围中700℃退火1小时,得到高度结晶的表面包覆二硫化钼纳米片的含氮碳纳米管(NCNT@MoS2)。
取2mg NCNT@MoS2加入1mL 0.1mol·L-1pH 3.0的PBS缓冲液中,随后加入150μL溴化1-乙基-3-甲基咪唑离子液体(IL),常温下超声1小时,随后加入5μL 20000U·mL-1CPO溶液(由pH=4.0的PBS缓冲溶液配制),常温搅拌20分钟后,放入25℃的恒温水浴振荡器中振荡6小时,获得固定CPO的NCNT@MoS2/IL(NCNT@MoS2/IL/CPO)浆料,在4℃下储存。
将玻碳电极(GCE)用直径为0.3μm和0.05μm的氧化铝粉末以“8”字形在麂皮上抛光150圈,用超纯水和无水乙醇进行清洗至电极呈现光滑的镜面,用氮气吹干。再将玻碳电极置于含有0.1mol·L-1KCl的5mmol·L-1K3[Fe(CN)6]/K4[Fe(CN)6]溶液中,在-0.8~0.2V下采用循环伏安法扫描至氧化峰与还原峰电位差值小于70mV时,取出用蒸馏水冲洗,常温晾干,得到预处理的GCE。然后通过微量移液枪在预处理的GCE上浇筑6μL NCNT@MoS2/IL/CPO浆料,于常温下干燥8h,图1所示,得到二硫化钼包覆含氮碳纳米管固定CPO生物传感器(NCNT@MoS2/IL/CPO-GCE)。
采用扫描电镜和透射电镜对NCNT@MoS2的制备过程进行了表征。如图2a所示,将PPy中空纳米管作为MoS2锚定的支架,得到的NCNT@MoS2产物表面被随机定向的超薄二硫化钼纳米片均匀覆盖,它们相互连接,形成一个分层的三维结构,并且包覆后仍然保留其中空结构。图2b所示,意味着内部空心无定形碳纳米管和外部毛刷状表面为酶的负载提供了更多通道。图2c也可证明MoS2层由超薄纳米片组装而成,厚度约为3nm左右。
为了进一步确认导电性能的增强,进行了电化学阻抗谱(EIS)分析。根据电极的等效电路(图3中的插图)拟合结果,裸GCE显示出245.6Ω的Rct值,NCNT@MoS2/IL(95.5Ω)的Rct值远低于MoS2(270.6Ω)和NCNT@MoS2(157.2Ω),这表明NCNT@MoS2/IL更快的电子转移,可有效促进修饰电极上的氧化还原反应。此外,EIS还验证了CPO有效地包埋在NCNT@MoS2/IL中,因为电子转移的速率取决于电极上形成的有机层的厚度。电子转移的速度随非导电有机层厚度的增加而减。在这里,CPO固定化后形成致密的有机层,导致电子转移过程减弱,于是NCNT@MoS2/IL/CPO的电阻增加到989.7Ω,证明了酶分子层的有效固定。
在5.0mmol·L-1K3[Fe(CN)6]/K4[Fe(CN)6]和0.1mol·L-1KCl组成的电解质溶液中测试不同改性电极的循环伏安图(CV),并显示在图4中。在纯MoS2电极(d)上观察到一对弱氧化还原峰,峰间距(ΔEp)为0.239V,表明界面处的电子转移速率缓慢,在NCNT@MoS2电极(b)上,[Fe(CN)6]3-/4-的氧化还原峰电流增加,峰间距(ΔEp=0.147V)降低,表明加入PPy支架后的复合材料加速了铁氰化物的电子转移。当加入IL改性后的NCNT@MoS2/IL(a)得到了增强的氧化还原峰,ΔEp为0.114V,归因于IL的高导电性与亲水性。因此,可以得出结论,IL和NCNT@MoS2的组合明显协同增加了电化学信号。
图5是NCNT@MoS2/IL/CPO-GCE在0.1mol·L-1PBS缓冲液中改变扫描速率得到的循环伏安图,可以观察到,随着扫描速率的增加,氧化还原峰电位数值没有明显变化。同时,阳极和阴极的峰值电流根据图6中的校准图呈线性增加。这表明固定化CPO在NCNT@MoS2/IL上的氧化还原反应是一个表面控制的过程。根据法拉第定律,Q=nFAΓ*(通过计算CPO的还原峰积分确定Q,转移电子数n=1,F为法拉第常数,A为电极的表面积),Γ*表示具有催化活性的CPO表面浓度,计算为6.74×10-12mol·cm-2,该值也比CPO的理论单层表面浓度(2.86×10-12mol·cm-2)高出约2.4倍,表明NCNT@MoS2/IL中固定的多层CPO参与了DET的过程。因此表明NCNT@MoS2/IL为固定化CPO提供了有利的空间与环境以及有效的电子传递隧道。
实施例2
实施例1制备的NCNT@MoS2/IL/CPO-GCE在过氧化氢检测中的应用。
使用CV法在N2饱和的电解质溶液中研究NCNT@MoS2/IL/CPO-GCE在静态下对H2O2的电催化性能。具体而言,在0.1mol·L-1pH 5.0的PBS缓冲液中连续添加5μmol·L-1的H2O2,从图7中可知,当连续加入H2O2时,NCNT@MoS2/IL/CPO-GCE的CV曲线上氧化峰电流显着降低,还原峰电流增加。这种现象表明NCNT@MoS2/IL/CPO对H2O2明显的催化还原作用,其中CPO对H2O2的电化学还原可解释为:当加入H2O2后,CPO-Fe(III)转化为compound I和一个H2O分子,compound I为不稳定且具有极强的氧化性的高铁卟啉自由基阳离子[(Fe4+=O)·+],compound I得电子转化为compound II,最终compound II得电子转化回CPO-Fe(III)。
同时,通过计时电流法在-0.3V的电位下进一步研究在动态环境中NCNT@MoS2/IL/CPO-GCE协同催化H2O2的能力。如图8所示,将5μmol·L-1H2O2连续注入0.1mol·L-1PBS缓冲液组成的电解液中,发现裸玻碳电极(a)对H2O2的电流响应非常微弱,NCNT@MoS2-GCE(b)对H2O2有明显的响应阶梯,这可能与图2a中显示的结构有关,MoS2的分层结构有利于暴露更多的催化活性边缘。而NCNT@MoS2/IL/CPO-GCE(c)对H2O2的电流响应明显增强,其值远高于NCNT@MoS2-GCE,结果表明,NCNT@MoS2/IL与CPO的协同作用有助于增强体系对H2O2传感的电流信号。
上述已证明NCNT@MoS2/IL/CPO-GCE对H2O2的电催化还原无论在静态条件还是动态环境中均有良好的响应。这就需要进一步评价研究制造的生物传感器在动态条件下的检测限、线性范围以及灵敏度。因此,在N2饱和的PBS缓冲液(0.1mol·L-1,pH 5.0)中进行电流测定,并通过磁力搅拌器(260rpm)连续搅拌使电解质溶液处于流动状态。图9显示了NCNT@MoS2/IL/CPO-GCE在-0.3V工作电位下,通过连续加入不同浓度的H2O2获得的电流i-t曲线响应。每次向NCNT@MoS2/IL/CPO-GCE添加H2O2时,系统催化电流立即增加,观察到响应电流4秒左右稳定下来,在低浓度处也获得了快速的稳态电流而在大浓度范围内也能快速传感H2O2。这种生物传感器的优异电催化性能是因为H2O2容易在负载后仍然具有介孔结构的NCNT@MoS2/IL/CPO中快速扩散。从图10拟合出获得的安培电流与H2O2浓度呈正比关系,电流响应随H2O2浓度范围从200nmol·L-1到520μmol·L-1线性增加。线性回归方程为I(μA)=-0.04398C(H2O2)-1.59476(R=0.9982,n=31)。灵敏度计算为0.6216μA·μmol·L-1·cm-2。此外,基于S/N=3,检测限估计为132.28nmol·L-1
通过时间电流法在不断搅拌的0.1mol·L-1PBS缓冲液中测试了NCNT@MoS2/IL/CPO-GCE存在干扰物时对H2O2催化的选择性。如图11所示,每添加5μmol·L-1H2O2后催化电流立即增加,但超过10倍H2O2浓度的干扰物如尿酸(UA)、抗坏血酸(AA)、多巴胺(DA)、葡萄糖(Glu)在加入体系后没有突出的电流响应,这表明NCNT@MoS2/IL/CPO-GCE仅对H2O2表现出敏感和快速的反应,说明NCNT@MoS2/IL/CPO-GCE具有优异的选择性。
为了进一步研究NCNT@MoS2/IL/CPO-GCE在实际应用的潜在能力,将NCNT@MoS2/IL/CPO-GCE用于检测牛奶和果汁中的H2O2,将从超市购买的牛奶和果汁样品用PBS缓冲液进行稀释。通过使用标准添加法加入已知浓度的H2O2进行回收检测,通过实际检测电流计算出H2O2真实浓度和加入的标准浓度进行对比,计算出该体系对H2O2的回收率。电流响应如图12所示,NCNT@MoS2/IL/CPO-GCE在纯电解质(a)中测定H2O2的信噪比小,而在实际样品(b、c)中信噪比会有所增加,这可能归因于实际样品中其他复杂组分的影响,但是对加入的标准H2O2仍然表现出良好的响应平台。

Claims (7)

1.一种二硫化钼包覆含氮碳纳米管固定CPO生物传感器,其特征在于,所述生物传感器是将表面包覆二硫化钼纳米片的含氮碳纳米管通过离子液体改性后固定氯过氧化物酶,再以其修饰玻碳电极获得;
所述生物传感器由下述方法制备得到:将表面包覆二硫化钼纳米片的含氮碳纳米管加入pH为3.0~4.0的PBS缓冲液中,并加入离子液体,常温下超声1~2小时,再加入氯过氧化物酶溶液,混合均匀后,放入恒温水浴振荡器中常温振荡6~8小时,所得浆料浇筑在预处理的玻碳电极上,常温干燥;
所述表面包覆二硫化钼纳米片的含氮碳纳米管的制备方法为:将聚吡咯中空纳米管分散在蒸馏水中,加入Na2MoO4·2H2O和L-半胱氨酸,搅拌均匀后,在180~200℃下水热处理23~25小时,然后用超纯水和无水乙醇抽滤洗涤,在60~80℃下真空干燥,最后在氩气和氢气体积比为90~95:5~10的混合氛围中700~750℃退火1~2小时;其中,所述聚吡咯中空纳米管与Na2MoO4·2H2O、L-半胱氨酸的质量比为1:2.5~3.5:25~35。
2.根据权利要求1所述的二硫化钼包覆含氮碳纳米管固定CPO生物传感器,其特征在于,所述表面包覆二硫化钼纳米片的含氮碳纳米管与离子液体、氯过氧化物酶的用量比为1mg:50~150 μL:50~150 U,所述浆料中离子液体的体积浓度为10%~20%。
3.根据权利要求1或2所述的二硫化钼包覆含氮碳纳米管固定CPO生物传感器,其特征在于,所述氯过氧化物酶溶液中氯过氧化物酶的浓度为10000~30000 U·mL-1,其采用pH=3.5~4.5的PBS缓冲溶液配制。
4.根据权利要求1~2任意一项所述的二硫化钼包覆含氮碳纳米管固定CPO生物传感器,其特征在于,所述离子液体为溴化1-乙基-3-甲基咪唑离子液体、溴化1-辛基-3-甲基咪唑离子液体、溴化1-癸基-3-甲基咪唑离子液体、氯化1-辛基-3-甲基咪唑离子液体中任意一种。
5.根据权利要求1所述的二硫化钼包覆含氮碳纳米管固定CPO生物传感器,其特征在于,所述聚吡咯中空纳米管的制备方法为:将FeCl3·6H2O添加到含有甲基橙的去离子水中,随后将吡咯单体缓慢加入其中,搅拌23~25小时,获得的黑色沉淀通过真空抽滤收集,用超纯水和无水乙醇洗涤至滤液无色和中性,最后在60~80℃真空气氛下干燥;其中,所述FeCl3·6H2O与甲基橙、吡咯单体的配比为1 g:0.05~0.06 g:0.2~0.4 mL。
6.根据权利要求1所述的二硫化钼包覆含氮碳纳米管固定CPO生物传感器,其特征在于,所述预处理的玻碳电极的制备方法为:将玻碳电极依次用直径为0.3μm和0.05μm的氧化铝粉末抛光,再依次用超纯水和无水乙醇进行清洗至电极呈现光滑的镜面,用氮气吹干,再将玻碳电极置于含有0.1 mol·L-1 KCl的5 mmol·L-1 K3[Fe(CN)6]/K4[Fe(CN)6]溶液中,在-0.8~0.2 V下采用循环伏安法扫描至氧化峰与还原峰电位差值小于70 mV时,取出用蒸馏水冲洗,常温晾干。
7.权利要求1所述的二硫化钼包覆含氮碳纳米管固定CPO生物传感器在电化学检测过氧化氢中的应用。
CN202210810974.0A 2022-07-11 2022-07-11 二硫化钼包覆含氮碳纳米管固定cpo生物传感器及检测h2o2的应用 Active CN115184425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210810974.0A CN115184425B (zh) 2022-07-11 2022-07-11 二硫化钼包覆含氮碳纳米管固定cpo生物传感器及检测h2o2的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210810974.0A CN115184425B (zh) 2022-07-11 2022-07-11 二硫化钼包覆含氮碳纳米管固定cpo生物传感器及检测h2o2的应用

Publications (2)

Publication Number Publication Date
CN115184425A CN115184425A (zh) 2022-10-14
CN115184425B true CN115184425B (zh) 2024-01-16

Family

ID=83518031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210810974.0A Active CN115184425B (zh) 2022-07-11 2022-07-11 二硫化钼包覆含氮碳纳米管固定cpo生物传感器及检测h2o2的应用

Country Status (1)

Country Link
CN (1) CN115184425B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004404A (zh) * 2007-01-25 2007-07-25 上海师范大学 高效催化有机反应的氯过氧化物酶修饰电极及制备
CN103323516A (zh) * 2013-05-28 2013-09-25 西北师范大学 一种基于离子液体功能化的碳纳米管和银纳米复合物的无酶h2o2传感器的制备方法
CN103954667A (zh) * 2014-05-20 2014-07-30 上海第二工业大学 一种氮掺杂碳纳米管修饰的电化学传感器及其应用
CN104072768A (zh) * 2014-07-10 2014-10-01 齐鲁工业大学 一种空心管状聚吡咯膜的制备方法
CN105717175A (zh) * 2016-03-16 2016-06-29 济南大学 一种基于两种电化学方法联用的过氧化氢传感器的制备方法及应用
CN109473659A (zh) * 2018-12-07 2019-03-15 杭州电子科技大学 一种聚吡咯纳米管/Co3O4颗粒复合材料及制备方法
CN110346426A (zh) * 2019-05-24 2019-10-18 陕西师范大学 基于MoS2-AuNPs和离子液体的CPO生物传感器及其检测NO2-的应用
CN110681406A (zh) * 2019-10-17 2020-01-14 陕西师范大学 一种氮磷掺杂碳纳米管@Mo/MoS2/MoP复合材料及其制备方法
CN113394412A (zh) * 2021-06-15 2021-09-14 中国矿业大学(北京) 一种双功能电催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200158678A1 (en) * 2018-11-20 2020-05-21 King Fahd University Of Petroleum And Minerals Nanostructured graphene-modified graphite pencil electrode system for simultaneous detection of analytes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004404A (zh) * 2007-01-25 2007-07-25 上海师范大学 高效催化有机反应的氯过氧化物酶修饰电极及制备
CN103323516A (zh) * 2013-05-28 2013-09-25 西北师范大学 一种基于离子液体功能化的碳纳米管和银纳米复合物的无酶h2o2传感器的制备方法
CN103954667A (zh) * 2014-05-20 2014-07-30 上海第二工业大学 一种氮掺杂碳纳米管修饰的电化学传感器及其应用
CN104072768A (zh) * 2014-07-10 2014-10-01 齐鲁工业大学 一种空心管状聚吡咯膜的制备方法
CN105717175A (zh) * 2016-03-16 2016-06-29 济南大学 一种基于两种电化学方法联用的过氧化氢传感器的制备方法及应用
CN109473659A (zh) * 2018-12-07 2019-03-15 杭州电子科技大学 一种聚吡咯纳米管/Co3O4颗粒复合材料及制备方法
CN110346426A (zh) * 2019-05-24 2019-10-18 陕西师范大学 基于MoS2-AuNPs和离子液体的CPO生物传感器及其检测NO2-的应用
CN110681406A (zh) * 2019-10-17 2020-01-14 陕西师范大学 一种氮磷掺杂碳纳米管@Mo/MoS2/MoP复合材料及其制备方法
CN113394412A (zh) * 2021-06-15 2021-09-14 中国矿业大学(北京) 一种双功能电催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Enzymatic Biosensor for Hydrogen Peroxide Based on the Direct Electron Transfer on MWCNTs/IL/CPO-GC;Ling Xiao 等;《Journal of The Electrochemical Society》;第166卷(第8期);Experimental and Results and Discussion *
基于新型纳米复合材料的电化学葡萄糖及过氧化氢生物传感器研究;林玉萍;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》(第7期);第4.1-4.2节 *
氮掺杂碳纳米管修饰电极的电化学行为;董俊萍等;化学学报;65(21);2405~2410 *

Also Published As

Publication number Publication date
CN115184425A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Kang et al. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid
Liu et al. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite
Liu et al. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode
Zhu et al. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes
Jeykumari et al. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes
ElKaoutit et al. A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion–Sonogel–Carbon composite
Ozoemena et al. Novel amperometric glucose biosensor based on an ether-linked cobalt (II) phthalocyanine–cobalt (II) tetraphenylporphyrin pentamer as a redox mediator
Vidal et al. A chronoamperometric sensor for hydrogen peroxide based on electron transfer between immobilized horseradish peroxidase on a glassy carbon electrode and a diffusing ferrocene mediator
Li et al. Fabrication of multilayer films containing horseradish peroxidase and polycation-bearing Os complex by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor
Tian et al. Bienzymatic amperometric biosensor for glucose based on polypyrrole/ceramic carbon as electrode material
Pan et al. Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at copper-modified gold electrode
Lee et al. Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties
Das et al. Direct electrochemistry of alcohol oxidase using multiwalled carbon nanotube as electroactive matrix for biosensor application
Jeykumari et al. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications
Saleh et al. Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell
Razumiene et al. 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions
Wang et al. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly (toluidine blue O) film
Wang et al. Graphene nanodots encaged 3-D gold substrate as enzyme loading platform for the fabrication of high performance biosensors
Liu et al. Amperometric study of Au‐colloid function on xanthine biosensor based on xanthine oxidase immobilized in polypyrrole layer
Kafi et al. Improved peroxide biosensor based on Horseradish Peroxidase/Carbon Nanotube on a thiol-modified gold electrode
Ozoemena et al. Immobilized cobalt (II) phthalocyanine–cobalt (II) porphyrin pentamer at a glassy carbon electrode: Applications to efficient amperometric sensing of hydrogen peroxide in neutral and basic media
Mazurenko et al. Electrophoretically deposited carbon nanotubes as a novel support for electrogenerated silica–dehydrogenase bioelectrodes
Wang et al. Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor
Pandey et al. An ormosil-based peroxide biosensor—a comparative study on direct electron transport from horseradish peroxidase
CN111326743A (zh) 源于竹子的多孔碳作为电极材料用于葡萄糖生物传感和葡萄糖生物燃料电池的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant