CN115181582A - 一种两级水热液化余热利用系统及方法 - Google Patents

一种两级水热液化余热利用系统及方法 Download PDF

Info

Publication number
CN115181582A
CN115181582A CN202210802296.3A CN202210802296A CN115181582A CN 115181582 A CN115181582 A CN 115181582A CN 202210802296 A CN202210802296 A CN 202210802296A CN 115181582 A CN115181582 A CN 115181582A
Authority
CN
China
Prior art keywords
tank
heat exchanger
hydrothermal liquefaction
slurry
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210802296.3A
Other languages
English (en)
Other versions
CN115181582B (zh
Inventor
王睿坤
任道蒙
贾建东
谭世腾
赵争辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202210802296.3A priority Critical patent/CN115181582B/zh
Publication of CN115181582A publication Critical patent/CN115181582A/zh
Application granted granted Critical
Publication of CN115181582B publication Critical patent/CN115181582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates

Abstract

本发明公开一种两级水热液化余热利用系统及方法,系统包括热水解反应单元、水热液化反应单元和余热回收单元,其中:热水解反应单元包括依次连接的预热罐、热水解罐、闪蒸罐、固液分离器和废水储罐,闪蒸罐的蒸汽出口连接至预热罐;水热液化反应单元包括依次连接的混合罐、水热液化罐和产物分离器;余热回收单元包括浆料换热器、水冷换热器、热电换热器,浆料换热器设于预热罐与热水解罐之间;水冷换热器设于闪蒸罐与固液分离器之间;热电换热器设于水热液化罐与浆料换热器之间,热电换热器与有机朗肯循环发电装置耦合。本发明用于对两级水解液化工艺进行优化,可以更高效回收两级水解液化工艺中的余热,提高能源利用率。

Description

一种两级水热液化余热利用系统及方法
技术领域
本发明涉及水热工艺浆料产物的余热利用技术领域,具体涉及一种两级水热液化余热利用系统及方法。
背景技术
随着经济的快速发展和人民物质生活水平的提高,能源需求量也在显著增加,大部分的能源需求都是由化石燃料满足的。在我国推进生态文明建设和能源低碳转型的战略背景下,寻求可再生替代能源是减少化石能源使用的必然途径。生物质是极具开发前景的可用于替代化石能源的零碳资源。
水热液化法可以在水介质体系将生物质等有机固废转化为生物油和多种平台化合物,是生物质高值转化的热门方法。与其他热化学制化学品方法(热解、气化等)相比,水热液化法在亚临界压力热水环境中进行,因此无需对原料进行预干燥,表现出对原料水分和组分的强适应性。
两步水热液化是指按照水热液化的反应过程将其分为热水解阶段和水热液化阶段两部分单独进行,其特征在于对热水解产物进行初步分离,获得水相中的糖类、蛋白质、氮源等营养物质,进而再将固体部分重新配水进行第二阶段的液化,制得生物油或平台化合物。相比于一步水热液化,两步水热液化可以实现原料有机组分的分级分质转化,提高转化效率。
水热液化通常是在250~375℃和5~20MPa的温度和压力下进行,其浆料产物蕴含着较多的热能。尤其对于两步水热液化工艺,为获取第一步热水解浆料产物中的糖类、蛋白质、氮源等物质,需要对其进行冷却,增加了能量损耗。因此相对于传统的一步水热液化更需要开发余热利用和节能技术,以降低工艺能耗。然而,目前针对两步水热液化工艺的浆料热能加以回收利用的设计较少而且简单,难以达到高效回收浆料余热的目的。
发明内容
针对以上不足,本发明所要解决的技术问题是提供一种一种两级水热液化余热利用系统及方法,用于对两步水解液化工艺进行优化,可以更高效回收两步水解液化工艺中的余热,提高能源利用率。
为解决以上技术问题,本发明采用如下技术方案:
一种两级水热液化余热利用系统,包括热水解反应单元、水热液化反应单元和余热回收单元,其中:热水解反应单元包括依次连接的预热罐、热水解罐、闪蒸罐、固液分离器和废水储罐,闪蒸罐的蒸汽出口连接至预热罐;水热液化反应单元包括依次连接的混合罐、水热液化罐和产物分离器;余热回收单元包括浆料换热器、水冷换热器、热电换热器,浆料换热器设于预热罐与热水解罐之间;水冷换热器设于闪蒸罐与固液分离器之间;热电换热器设于水热液化罐与浆料换热器之间,热电换热器与有机朗肯循环发电装置耦合;闪蒸罐的闪蒸浆料经水冷换热器放热后进入固液分离器,固液分离器的固态产物通过混合罐连接至水热液化罐;水热液化罐排出的浆料依次经热电换热器放热发电、浆料换热器加热原料之后,进入产物分离器。
作为本发明的优选方案之一,所述水冷换热器连接有热水箱,热水箱的出水口通过阀门连接至混合罐。
作为本发明的优选方案之一,所述浆料换热器和产物分离器之间还设有产物水冷换热器,所述产物水冷换热器与所述热水箱连通。
作为本发明的优选方案之一,所述有机朗肯循环发电装置为水热液化罐供电。
作为本发明的优选方案之一,所述原料配制后的含水率为80~90%。
作为本发明的优选方案之一,热水解罐、水热液化罐均连接有热源,所述热源与热水箱连通。
作为本发明的优选方案之一,还包括污泥原料仓,污泥原料仓通过输送泵与预热罐连通。
本发明还提供一种一种两级水热液化余热利用方法,采用所述的两级水热液化余热利用系统,包括以下步骤,
S1:原料经预热罐初步预热至65~110℃,之后通过浆料换热器进行二次预热至110~160℃,之后送入热水解罐加热至140~180℃并进行热水解反应,反应压力0.5~1.5MPa;
S2:热水解浆料产物通入闪蒸罐进行降压闪蒸,产生的闪蒸蒸汽送回预热罐作为预热热源,闪蒸浆料经水冷换热器换热冷却后送入固液分离器;
S3:经固液分离器分离产生的热水解废液用于回收利用,固体水热炭被送至混合器,在混合器内加水配制后送入水热液化罐加热至250~350℃并进行水热液化反应,反应压力5~20MPa;
S4:水热液化罐排出的浆料依次经热电换热器、浆料换热器、产物水冷换热器换热冷却后,送至产物分离器内,分离得到生物油。
相比于现有技术,本发明具有以下有益效果:
(1)针对第一步热水解过程的余热回收用于原料的一级预热,节约了热水解反应所需的热能,还产出了热水,可以用于第二步水热液化物料的掺水配制。
(2)针对第二步水热液化过程的余热回收一方面用于原料的二级预热,进一步节约了热水解反应所需的热能,另一方面通过有机朗肯循环发电装置产生了电能,这部分电能可用于水热液化物料加热,节约了水热液化工艺能耗。
(3)针对两步水热液化工艺的余热回收过程产生的热水可用作生产生活热水,也可用作热水解和水热液化的热源。
附图说明
图1是本发明所述水热液化系统原理示意图。
附图标记:1-污泥原料仓;2-输送泵;3-预热罐;4-浆料换热器;5-物料泵;6-热水解罐;7-闪蒸罐;8-水冷换热器;9-固液分离器;10-热水箱;11-混合罐;12-浆料泵;13-废水储罐;14-水热液化罐;15-热电水冷换热器;15-1-有机朗肯循环发电装置;16-产物水冷换热器;17-产物分离器;18-热源。
具体实施方式
下面结合附图对本发明进行进一步描述。
为了保证水热液化工艺的效率,原料配制后的含水率为80~90%,本液化系统的原料包括农林废弃物、餐厨垃圾、城市生活垃圾等一种或多种混合。
实施例1
本实施例提供一种两级水热液化余热利用系统,包括热水解反应单元、水热液化反应单元和余热回收单元,热水解反应单元包括依次连接的预热罐3、热水解罐6、闪蒸罐7、固液分离器9和废水储罐13,闪蒸罐7的蒸汽出口连接至预热罐3;水热液化反应单元包括依次连接的混合罐11、水热液化罐14和产物分离器17。
余热回收单元包括浆料换热器4、水冷换热器8、热电换热器15。浆料换热器4设于预热罐3与热水解罐6之间;水冷换热器8设于闪蒸罐7与固液分离器9之间;热电换热器15设于水热液化罐14与浆料换热器4之间,热电换热器15与有机朗肯循环发电装置15-1耦合;
闪蒸罐7的闪蒸浆料经水冷换热器8放热后进入固液分离器9,固液分离器9的固态产物通过混合罐11连接至水热液化罐14;水热液化罐14排出的浆料依次经热电换热器15放热发电、浆料换热器4加热原料之后,进入产物分离器17。
水冷换热器8连接有热水箱10,热水箱10用于储存热水,其出水口可以连接至混合罐11,为水热液化所需的原料进行配制,还可用于为水热液化罐或热水解罐提供热源。
优选地,在所述浆料换热器4和产物分离器17之间增设产物水冷换热器16,产物水冷换热器16可连接至热水箱10,收集更多的热水,用于为系统提供热源或者用作生活用水。
本实施例所述水热液化系统首先通过有机朗肯循环发电装置吸收高温水热液化浆料的部分热能,与后续换热器形成浆料余热的梯级回收,有机朗肯循环产生的电能用于加热水热液化物料物料。经有机朗肯循环发电装置换热后的水热液化浆料再通过产物水冷换热器16冷却产生热水,用于生产生活用水。大大提高了两步法水冷液化系统的余热利用率,节能效果显著。
实施例2
本实施例提供一种两级水热液化余热利用方法,包括以下步骤:
S1:原料经预热罐初步预热至65~110℃,之后通过浆料换热器进行二次预热至110~160℃,之后送入热水解罐加热至140~180℃并进行热水解反应,反应压力0.5~1.5MPa;
S2:热水解浆料产物通入闪蒸罐进行降压闪蒸,产生的闪蒸蒸汽送回预热罐作为预热热源,闪蒸浆料经水冷换热器换热冷却后送入固液分离器;
S3:经固液分离器分离产生的热水解废液用于回收利用,固体水热炭被送至混合器,在混合器内加水配制后送入水热液化罐加热至250~350℃并进行水热液化反应,反应压力5~20MPa;
S4:水热液化罐排出的浆料依次经热电换热器、浆料换热器、产物水冷换热器换热冷却后,送至产物分离器内,分离得到生物油。
本实施例以玉米秸秆、城市污泥和餐厨垃圾为例,对水热液化工艺的余热利用率进行计算:
以1t/h、含水率80%的玉米秸秆为例,水热液化工艺包括以下步骤:
S1:原料经预热罐3初步预热至65.4℃,再通过浆料换热器4二次预热至113.2℃,之后送入热水解罐6加热并进行热水解反应,反应温度为140℃,反应压力0.5MPa;
S2:热水解浆料通入闪蒸罐7进行降压闪蒸,闪蒸压力0.12MPa,温度105℃,产生0.06t/h的闪蒸蒸汽送回预热罐3作为预热热源,闪蒸浆料经水冷换热器8进一步冷却后送入固液分离器9,同时水冷换热器8产生1.5t/h、60℃的热水;
S3:经固液分离器9分离产生的热水解废液用于提取糖类、氮源等营养物质,固体水热炭被送至混合器11,重新加水配比至含水80%后送入水热液化罐14加热并进行水热液化反应,反应温度为250℃,反应压力5MPa;
S4:水热液化罐14排出的水热液化浆料经有机朗肯循环装置发电量为27.2kW,热效率为15.6%,之后送至浆料换热器4进一步降温至100℃,之后再经水冷换热器15进一步降温至50℃后送至产物分离器分离得到生物油,同时水冷换热器15产生0.94t/h、60℃的热水。
通过余热利用总共回收了54.3%的工艺加热热耗,其中39.1%用于补偿加热热耗,15.2%用于生产生活热水。
以1t/h、含水率85%的城市污泥为例,水热液化工艺包括以下步骤:
S1:原料经预热罐3初步预热至95℃,之后通过浆料换热器4二次预热至137.2℃,之后送入热水解罐6加热并进行热水解反应,反应温度为160℃,反应压力1MPa;
S2:热水解浆料通入闪蒸罐7进行降压闪蒸,闪蒸压力0.12MPa,温度105℃,产生0.12t/h的闪蒸蒸汽送回预热罐3作为预热热源,闪蒸浆料经水冷换热器8进一步冷却后送入固液分离器9,同时水冷换热器8产生1.55t/h、60℃的热水;
S3:经固液分离器9分离产生的热水解废液用于提取糖类、氮源等营养物质,固体水热炭被送至混合器11,重新加水配比至含水85%后送入水热液化罐14加热并进行水热液化反应,反应温度为300℃,反应压力10MPa;
S4:水热液化罐14排出的水热液化浆料经有机朗肯循环装置发电量为46.5kW,热效率为18.1%,之后送至浆料换热器4进一步降温至130℃,之后再经水冷换热器15进一步降温至50℃后送至产物分离器分离得到生物油,同时水冷换热器15产生1.46t/h、60℃的热水。
通过余热利用总共回收了58.4%的工艺加热热耗,其中43.7%用于补偿加热热耗,14.7%用于生产生活热水。
以1t/h、含水率90%的餐厨垃圾为例,水热液化工艺包括以下步骤:
S1:原料经预热罐3初步预热至114.5℃,之后通过浆料换热器4二次预热至158.1℃,之后送入热水解罐6加热并进行热水解反应,反应温度为180℃,反应压力1.5MPa;
S2:热水解浆料通入闪蒸罐7进行降压闪蒸,闪蒸压力0.12MPa,温度105℃,产生0.16t/h的闪蒸蒸汽送回预热罐3作为预热热源,闪蒸浆料经水冷换热器8进一步冷却后送入固液分离器9,同时水冷换热器8产生1.61t/h、60℃的热水;
S3:经固液分离器9分离产生的热水解废液用于提取糖类、氮源等营养物质,固体水热炭被送至混合器11,重新加水配比至含水90%后送入水热液化罐14加热并进行水热液化反应,反应温度为350℃,反应压力20MPa;
S4:水热液化罐14排出的水热液化浆料经有机朗肯循环装置发电量为61.5kW,热效率为20.7%,之后送至浆料换热器4进一步降温至150℃,之后再经水冷换热器15进一步降温至50℃后送至产物分离器分离得到生物油,同时水冷换热器15产生1.99t/h、60℃的热水。
通过余热利用总共回收了62.2%的工艺加热热耗,其中47.4%用于补偿加热热耗,14.8%用于生产生活热水。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现;因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
尽管本文较多地使用了图中附图标记对应的术语,但并不排除使用其它术语的可能性;使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (8)

1.一种两级水热液化余热利用系统,其特征在于,包括热水解反应单元、水热液化反应单元和余热回收单元,其中:
热水解反应单元包括依次连接的预热罐、热水解罐、闪蒸罐、固液分离器和废水储罐,闪蒸罐的蒸汽出口连接至预热罐;
水热液化反应单元包括依次连接的混合罐、水热液化罐和产物分离器;
余热回收单元包括浆料换热器、水冷换热器、热电换热器,浆料换热器设于预热罐与热水解罐之间;水冷换热器设于闪蒸罐与固液分离器之间;热电换热器设于水热液化罐与浆料换热器之间,热电换热器与有机朗肯循环发电装置耦合;
闪蒸罐的闪蒸浆料经水冷换热器放热后进入固液分离器,固液分离器的固态产物通过混合罐连接至水热液化罐;水热液化罐排出的浆料依次经热电换热器放热发电、浆料换热器加热原料之后,进入产物分离器。
2.根据权利要求1所述的两级水热液化余热利用系统,其特征在于,所述水冷换热器连接有热水箱,热水箱的出水口通过阀门连接至混合罐。
3.根据权利要求2所述的两级水热液化余热利用系统,其特征在于,所述浆料换热器和产物分离器之间还设有产物水冷换热器,所述产物水冷换热器与所述热水箱连通。
4.根据权利要求1所述的两级水热液化余热利用系统,其特征在于,所述有机朗肯循环发电装置为水热液化罐供电。
5.根据权利要求2所述的两级水热液化余热利用系统,其特征在于,所述原料配制后的含水率为80~90%。
6.根据权利要求3所述的两级水热液化余热利用系统,其特征在于,热水解罐、水热液化罐均连接有热源,所述热源与热水箱连通。
7.根据权利要求3所述的两级水热液化余热利用系统,其特征在于,还包括污泥原料仓,污泥原料仓通过输送泵与预热罐连通。
8.一种两级水热液化余热利用方法工艺,采用权利要求3-7中任一项所述的两级水热液化余热利用系统,其特征在于,包括以下步骤,
S1:原料经预热罐初步预热至65~110℃,之后通过浆料换热器进行二次预热至110~160℃,之后送入热水解罐加热至140~180℃并进行热水解反应,反应压力0.5~1.5MPa;
S2:热水解浆料产物通入闪蒸罐进行降压闪蒸,产生的闪蒸蒸汽送回预热罐作为预热热源,闪蒸浆料经水冷换热器换热冷却后送入固液分离器;
S3:经固液分离器分离产生的热水解废液用于回收利用,固体水热炭被送至混合器,在混合器内加水配制后送入水热液化罐加热至250~350℃并进行水热液化反应,反应压力5~20MPa;
S4:水热液化罐排出的浆料依次经热电换热器、浆料换热器、产物水冷换热器换热冷却后,送至产物分离器内,分离得到生物油。
CN202210802296.3A 2022-07-07 2022-07-07 一种两级水热液化余热利用系统及方法 Active CN115181582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210802296.3A CN115181582B (zh) 2022-07-07 2022-07-07 一种两级水热液化余热利用系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210802296.3A CN115181582B (zh) 2022-07-07 2022-07-07 一种两级水热液化余热利用系统及方法

Publications (2)

Publication Number Publication Date
CN115181582A true CN115181582A (zh) 2022-10-14
CN115181582B CN115181582B (zh) 2023-06-16

Family

ID=83518017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210802296.3A Active CN115181582B (zh) 2022-07-07 2022-07-07 一种两级水热液化余热利用系统及方法

Country Status (1)

Country Link
CN (1) CN115181582B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449699A (zh) * 2012-08-07 2013-12-18 焦作市开泰电力设备制造有限责任公司 一种有机质连续热水解处理装置和方法
CN103880266A (zh) * 2014-04-08 2014-06-25 四川大学 一种水热法污泥脱水方法及装置
US20140296495A1 (en) * 2011-10-24 2014-10-02 Washington State University Sequential Hydrothermal Liquifaction (SEQHTL) for Extraction of Superior Bio-Oil and Other Organic Compounds from Oleaginous Biomass
CN205501321U (zh) * 2016-03-30 2016-08-24 郑州凯山生化工程有限公司 一种淀粉质原料液化糖化余热回收设备
CN106118705A (zh) * 2016-06-22 2016-11-16 西安交通大学 一种微藻水热液化制取生物油的连续式反应系统及方法
CN108753337A (zh) * 2018-06-19 2018-11-06 西安交通大学 一种湿生物质水热液化制取生物油的反应系统及方法
CN110513156A (zh) * 2019-08-14 2019-11-29 华北电力大学(保定) 水热碳化耦合双闪蒸-有机朗肯循环发电系统及发电方法
CN110527558A (zh) * 2019-07-26 2019-12-03 西安交通大学 一种湿生物质制取可燃性生物气的连续式反应系统
CN211060451U (zh) * 2019-12-18 2020-07-21 安阳市豫鑫木糖醇科技有限公司 一种木糖生产中余热回收装置
CN112094015A (zh) * 2020-09-01 2020-12-18 西安联创分布式可再生能源研究院有限公司 一种能够高效充分热水解的连续污泥热水解系统及工艺
CN212315886U (zh) * 2020-04-02 2021-01-08 天津裕川锦鸿环保科技有限公司 污泥多级热水解处理装置
CA3162213A1 (en) * 2019-12-20 2021-06-24 Ib Johannsen Cost efficient integration of hydrothermal liquefaction and wet oxidation wastewater treatment.
CN113214857A (zh) * 2021-05-10 2021-08-06 中南大学 一种生物质两级水热产能循环系统及方法
CN114075456A (zh) * 2021-11-15 2022-02-22 西安交通大学 一种两级余热回收的污泥热水解辅助超临界水气化处理系统及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140296495A1 (en) * 2011-10-24 2014-10-02 Washington State University Sequential Hydrothermal Liquifaction (SEQHTL) for Extraction of Superior Bio-Oil and Other Organic Compounds from Oleaginous Biomass
CN103449699A (zh) * 2012-08-07 2013-12-18 焦作市开泰电力设备制造有限责任公司 一种有机质连续热水解处理装置和方法
CN103880266A (zh) * 2014-04-08 2014-06-25 四川大学 一种水热法污泥脱水方法及装置
CN205501321U (zh) * 2016-03-30 2016-08-24 郑州凯山生化工程有限公司 一种淀粉质原料液化糖化余热回收设备
CN106118705A (zh) * 2016-06-22 2016-11-16 西安交通大学 一种微藻水热液化制取生物油的连续式反应系统及方法
CN108753337A (zh) * 2018-06-19 2018-11-06 西安交通大学 一种湿生物质水热液化制取生物油的反应系统及方法
CN110527558A (zh) * 2019-07-26 2019-12-03 西安交通大学 一种湿生物质制取可燃性生物气的连续式反应系统
CN110513156A (zh) * 2019-08-14 2019-11-29 华北电力大学(保定) 水热碳化耦合双闪蒸-有机朗肯循环发电系统及发电方法
CN211060451U (zh) * 2019-12-18 2020-07-21 安阳市豫鑫木糖醇科技有限公司 一种木糖生产中余热回收装置
CA3162213A1 (en) * 2019-12-20 2021-06-24 Ib Johannsen Cost efficient integration of hydrothermal liquefaction and wet oxidation wastewater treatment.
CN212315886U (zh) * 2020-04-02 2021-01-08 天津裕川锦鸿环保科技有限公司 污泥多级热水解处理装置
CN112094015A (zh) * 2020-09-01 2020-12-18 西安联创分布式可再生能源研究院有限公司 一种能够高效充分热水解的连续污泥热水解系统及工艺
CN113214857A (zh) * 2021-05-10 2021-08-06 中南大学 一种生物质两级水热产能循环系统及方法
CN114075456A (zh) * 2021-11-15 2022-02-22 西安交通大学 一种两级余热回收的污泥热水解辅助超临界水气化处理系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘明强;刘建忠;王睿坤;周俊虎;岑可法;: "热解温度对褐煤半焦成浆特性影响的实验研究", 中国电机工程学报, no. 08, pages 54 - 61 *

Also Published As

Publication number Publication date
CN115181582B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN104651218B (zh) 果蔬垃圾厌氧发酵与沼气发电机余热耦合利用系统及方法
CN109226188B (zh) 一种水热碳化耦合厌氧消化处理餐厨垃圾的方法
CN106010662B (zh) 基于超/亚临界水工艺的有机废弃物两步处理系统与方法
CN106118705B (zh) 一种微藻水热液化制取生物油的连续式反应系统及方法
WO2013159661A1 (zh) 利用过剩电能将烟气中的二氧化碳转化成天然气的工艺及设备
WO2011035555A1 (zh) 利用含碳有机质的综合方法及装置
CN102553886A (zh) 一种餐厨垃圾全生物量资源化利用的方法
US20100093048A1 (en) Process and Apparatus for Assisting the Extraction and Processing of Biodiesel Oil Using Oil-Bearing and Other Organic Feedstock
CN111171875A (zh) 用于超临界水气化制氢工艺的能量梯级利用系统与方法
CN110513156B (zh) 水热碳化耦合双闪蒸-有机朗肯循环发电系统及发电方法
CN101445736A (zh) 生物质制备合成醇醚用气的方法及装置
CN111234888B (zh) 一种超临界水反应产物协同湿生物质资源化的系统与方法
CN211896819U (zh) 煤炭超临界水气化制氢及固液残余无害化处理系统
CN115181582B (zh) 一种两级水热液化余热利用系统及方法
CN201198470Y (zh) 生物质快速热解液化系统
CN111234877A (zh) 煤炭超临界水气化制氢及固液残余无害化处理系统与方法
CN108753337B (zh) 一种湿生物质水热液化制取生物油的反应系统及方法
CN111234873A (zh) 一种能量回收及废水零排放的超临界水气化系统和方法
CN110452739A (zh) 一种超临界水气化法联合水热法的餐厨垃圾处理系统
CN211896835U (zh) 一种超临界水反应产物协同湿生物质资源化的系统
JP4385375B2 (ja) 高含水バイオマスのエネルギー回収方法及び装置
CN103846055A (zh) 一种回收富水生物质中能量的热回收方法和系统
CN111808624B (zh) 一种具备跨季节储能功能的生物质热解-水热甲烷化多联产工艺及其装置
CN102408918A (zh) 一种高品质高效率水煤气变换方法及装置
CN109022248A (zh) 一种电力用液体燃料液糖化生产装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant