CN115177737A - 一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用 - Google Patents

一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用 Download PDF

Info

Publication number
CN115177737A
CN115177737A CN202210855168.5A CN202210855168A CN115177737A CN 115177737 A CN115177737 A CN 115177737A CN 202210855168 A CN202210855168 A CN 202210855168A CN 115177737 A CN115177737 A CN 115177737A
Authority
CN
China
Prior art keywords
nanoparticles
peg
nano
lipid peroxidation
iron death
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210855168.5A
Other languages
English (en)
Other versions
CN115177737B (zh
Inventor
罗聪
孙新新
张申武
杨小红
王静
何仲贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Pharmaceutical University
Original Assignee
Shenyang Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Pharmaceutical University filed Critical Shenyang Pharmaceutical University
Priority to CN202210855168.5A priority Critical patent/CN115177737B/zh
Publication of CN115177737A publication Critical patent/CN115177737A/zh
Application granted granted Critical
Publication of CN115177737B publication Critical patent/CN115177737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用,属于药物制剂联合治疗新辅料和新剂型技术领域。所述纳米放大器由多不饱和脂肪酸和GPX4抑制剂通过分子间作用力共组装,并修饰以PEG修饰剂,所述GPX4抑制剂与多不饱和脂肪酸的摩尔比为10:1~1:10,药物和PEG修饰剂的质量比为10:90~90:10;所述分子间作用力包括π‑π堆积、疏水作用、氢键。本发明的共组装纳米制剂为开发药物的递送提供新的策略和更多的选择,满足临床中对高效多样铁死亡治疗策略在制剂上的迫切需求。

Description

一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制 备方法与应用
技术领域
本发明属于药物制剂联合治疗新辅料和新剂型技术领域,具体涉及一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用。
背景技术
目前,癌症仍然严重威胁着人类的健康。虽然多种癌症治疗策略已被应用于临床,但其治疗效果依旧不尽人意。因此,亟需开发更有效的治疗模式。铁死亡作为一种铁依赖的调控细胞死亡方式,已成为癌症治疗的新靶点。已有研究表明,铁死亡是通过磷脂过氧化实现的,该过程依赖于过渡金属铁,ROS和含多不饱和脂肪酸链的磷脂。然而,细胞内脂质过氧化的积累不可避免地受到细胞内抗氧化系统的抑制,细胞抗氧化系统在维持细胞内氧化还原平衡和保护细胞免受氧化应激方面起着至关重要的作用。其中,谷胱甘肽过氧化物酶4(GPX4)是一种典型的抗氧化酶,是铁死亡的主要抑制因子之一,并被发现为唯一催化细胞内脂质过氧化物降解的酶。
近年来,许多GPX4抑制剂,例如RSL3、ML162、FIN56及FINO2等,已被开发用于癌症的治疗。尽管GPX4抑制剂具有良好的抑制作用,但多数铁死亡诱导剂均存在较差的理化性质及药代动力学行为,从而导致治疗效果较差,并且存在严重的脱靶毒性。此外,单独的GPX4抑制剂治疗效率较低。因此,亟需开发新的治疗策略来提高现有的铁死亡诱导剂的治疗效果。花生四烯酸作为细胞膜磷脂中最重要的不饱和脂肪酸之一,在肿瘤铁死亡调控中受到了广泛的关注。内源性花生四烯酸通过脂酰辅酶A合成酶长链家族4(ACSL4)和溶血磷脂酰胆碱酰基转移酶3(LPCAT3)两步酶促反应转化为磷脂花生四烯酸,随后在脂氧合酶(LOXs)催化下进一步氧化为具有细胞毒性的脂质过氧化物。然而,体内相当数量的内源性花生四烯酸并不足以触发肿瘤脂质过氧化的风暴。尽管联合诱导铁死亡策略具有明显的优势,在体内实现多种药物的同步高效联合递送仍然具有挑战性。
随着生物医学纳米技术的快速发展,已经探索出多种纳米材料以促进抗癌药物的递送。然而,其临床转化一直受限于复杂的制备工艺、较差的载药能力及潜在的载体相关毒性。近年来,无载体纳米组装体已经成为一种很有前途的递送策略,其具备制备不依赖载体、载药量高和载体相关毒性低等显著性优势。其中,两药及两种以上药物共组装的无载体杂化纳米组装体作为多模式联合治疗的通用共递送平台受到广泛的关注。然而,并非所有的药物都具有自组装能力。其中,纯药无载体纳米组装体在药物共载效率、剂量调节比和体内共递送等方面表现出明显的优势。值得注意的是,构建无载体纯药杂化纳米组装体时,寻求可行的触发肿瘤刺激反应性药物释放是至关重要的。然而,除涉及光敏剂的纳米组装体,在纯药纳米组装体中实现肿瘤特异性药物释放仍具有挑战性。
近年来,通过纯药物自组装的无载体纳米粒在药物递送中有着广阔前景,特别是对于某些无需载体材料即可自组装成稳定NPs的抗癌药物,构建具有多种药物分子的杂化纳米组装体在联合疗法中更具潜力。研究开发一种具有可控释药的协同诱导铁死亡的纯药无载体脂质过氧化纳米放大器是当前亟待研究的重要课题。
发明内容
为了解决现有技术存在的技术问题,本发明解决了GPX4抑制剂FIN56水溶性差、组装能力差、包载于聚合物中导致载药量低、药物泄露和辅料相关毒性等问题,提供了一种多不饱和脂肪酸花生四烯酸与GPX4抑制剂FIN56共组装纳米粒,从而实现载药量高、稳定性好、毒副作用低的技术效果,进而解决了单药的治疗效果不理想的问题,提高了产生脂质过氧化能力,协同诱导铁死亡。本发明的目的是以多不饱和脂肪酸花生四烯酸与GPX4抑制剂FIN56形成共组装纳米粒,或多不饱和脂肪酸花生四烯酸与GPX4抑制剂FIN56和PEG修饰剂组装而成的纳米粒。本发明通过外源性补充的多不饱和脂肪酸--花生四烯酸与GPX4抑制剂FIN56协同触发肿瘤细胞内的脂质过氧化风暴,显著提高铁死亡的诱导作用。
本发明通过以下技术方案实现上述目的:
本发明提供了一种协同诱导铁死亡的无载体脂质过氧化纳米放大器,所述纳米放大器由多不饱和脂肪酸和GPX4抑制剂通过分子间作用力共组装,并修饰以PEG修饰剂,所述GPX4抑制剂与多不饱和脂肪酸的摩尔比为10:1~1:10,GPX4抑制剂与多不饱和脂肪酸之和与PEG修饰剂的质量比为10:90~90:10;所述分子间作用力包括π-π堆积、疏水作用、氢键。
进一步地,所述多不饱和脂肪酸包括亚油酸、亚麻酸、花生四烯酸等。
进一步地,所述多不饱和脂肪酸优选为花生四烯酸。
进一步地,所述GPX4抑制剂包括RSL3、ML162、FIN56及FINO2等具有抑制GPX4表达功能的代表性化合物。
进一步地,所述GPX4抑制剂优选为FIN56。
进一步地,所述PEG修饰剂包括PCL-PEG、DSPE-PEG、DSPE-SS-PEG、PLGA-PEG、PE-PEG中的一种或二种以上,PEG的分子量为200-20000。
进一步的,所述PEG修饰剂优选为DSPE-PEG2K或DSPE-SS-PEG2K
进一步,FIN56和花生四烯酸的摩尔比为1:6~6:1。
进一步,FIN56和花生四烯酸摩尔比优化为1:2。
本发明还提供了一种协同诱导铁死亡的无载体脂质过氧化纳米放大器的制备方法,包括如下步骤:
将多不饱和脂肪酸和GPX4抑制剂分别溶解到有机溶剂中,搅拌下混匀,将混匀后的溶液缓慢滴加到水中,自发形成均匀的共组装纳米粒;将PEG修饰剂的有机溶剂在搅拌下滴加至共组装纳米粒中,除去有机溶剂,即得。
进一步,所述搅拌的速度为200-2000rpm
进一步,所述的有机溶剂为乙醇、四氢呋喃、二甲基亚砜中的一种或任意两种的组合。
进一步地,所述溶剂优选为四氢呋喃与无水乙醇(1:1)。
进一步地,所述除去有机溶剂的方法包括旋蒸或透析。
进一步,所述的制备方法中,除去有机溶剂的方法可以为溶剂蒸发法、超滤法和膜渗透法。
本发明提供了上述方法制备的协同诱导铁死亡的无载体脂质过氧化纳米放大器。
本发明提供了协同诱导铁死亡的无载体脂质过氧化纳米放大器在制备药物递送系统中的应用。
本发明提供了协同诱导铁死亡的无载体脂质过氧化纳米放大器在制备抗肿瘤药物中的应用。
本发明提供了协同诱导铁死亡的无载体脂质过氧化纳米放大器在制备注射给药、口服给药或局部给药系统中的应用系统中的应用。
本发明相对于现有技术具有的有益效果如下:
1.本发明制备了一种多不饱和脂肪酸(优选为花生四烯酸)与GPX4抑制剂(优选为FIN56)形成的共组装纳米粒,用PEG修饰剂修饰,得到协同诱导铁死亡的无载体脂质过氧化纳米放大器。可用于肿瘤治疗,FIN56可以有效地抑制肿瘤GPX4的表达,导致脂质过氧化物的过度累积,从而增强铁死亡疗效。
2.本发明的多不饱和脂肪酸与GPX4抑制剂共组装纳米粒实现载药量高、稳定性好、毒副作用低等技术效果,满足临床中对高效低毒制剂的迫切需求,为同型协同药物纳米粒的组装提供了一个新策略,为开发无载体的杂化纳米组装体以及铁死亡联合治疗提供了一个有效的纳米平台。
附图说明
图1为本发明实施例1的FAP纳米粒和FAS纳米粒的马尔文粒径分布图。
图2为本发明实施例1的FAP纳米粒和FAS纳米粒的透射电镜图。
图3为本发明实施例2的FA纳米粒,FAP纳米粒和FAS纳米粒的PBS稳定性图。
图4为本发明实施例2的FA纳米粒,FAP纳米粒和FAS纳米粒在含10%FBS的PBS中稳定性图。
图5为本发明实施例3的FIN56和AA分子对接图。
图6为本发明实施例3的非PEG化纳米粒在含10mM的氯化钠、十二烷基硫酸钠和尿素的PBS中作用力破坏情况。
图7为本发明实施例4的FAP纳米粒和FAS纳米粒在含0mM和10mM DTT的PBS中FIN56的累积释放情况。
图8为本发明实施例5的C6溶液剂,C6-FAP纳米粒和C6-FAS纳米粒的2小时和4小时的细胞摄取共聚焦显微镜下照片。
图9为本发明实施例5的C6溶液剂,C6-FAP纳米粒和C6-FAS纳米粒的细胞摄取Image J定量图。
图10为本发明实施例5的C6溶液剂,C6-FAP纳米粒和C6-FAS纳米粒的细胞破碎法摄取定量图。
图11为本发明实施例5的C6/RhoB/FAP纳米粒和C6/RhoB/FAS纳米粒的胞内释放结果。
图12为本发明实施例5的C6/RhoB/FAP纳米粒和C6/RhoB/FAS纳米粒的FRET比率。
图13为本发明实施例6的AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的细胞毒结果。
图14为本发明实施例6的加入不同浓度铁死亡抑制剂后AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的细胞毒结果。
图15为本发明实施例7的AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的谷胱甘肽水平变化。
图16为本发明实施例8的AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的细胞蛋白印迹结果图。
图17为本发明实施例9的AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒及加入铁死亡抑制剂后的脂质过氧化水平的共聚焦显微镜下的照片。
图18为本发明实施例10的AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒及加入铁死亡抑制剂后的活性氧水平的倒置荧光显微镜下的照片。
图19为本发明实施例11的FIN56溶液剂,FAP纳米粒和FAS纳米粒的血药浓度-时间曲线图。
图20为本发明实施例12中给予DiR溶液剂,DiR/FAP纳米粒和DiR/FAS纳米粒小鼠活体成像。
图21为本发明实施例12中给予DiR溶液剂,DiR/FAP纳米粒和DiR/FAS纳米粒小鼠离体器官荧光成像图。
图22为本发明实施例12中给予DiR溶液剂,DiR/FAP纳米粒和DiR/FAS纳米粒小鼠离体器官荧光定量图。
图23为本发明实施例13在体抗肿瘤实验的小鼠肿瘤生长曲线图。
图24为本发明实施例13在体抗肿瘤实验的小鼠荷瘤率统计图。
图25为本发明实施例13在体抗肿瘤实验的小鼠离体肿瘤H&E和TUNEL染色图。
图26为本发明实施例13在体抗肿瘤实验的小鼠肿瘤蛋白印迹分析图。
图27为本发明实施例13在体抗肿瘤实验的小鼠体重变化图。
图28为本发明实施例13离体肿瘤照片。
图29为本发明实施例13组织病理切片图。
图30为本发明实施例13的肝肾功能分析结果。
图31为本发明实施例13的溶血实验结果。
具体实施方式
下面结合实施例对本发明进行详细的说明,但本发明的实施方式不限于此,显而易见地,下面描述中的实施例仅是本发明的部分实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,获得其他的类似的实施例均落入本发明的保护范围。
实施例1:FA纳米粒的制备
将不同摩尔比的FIN56和花生四烯酸(AA)溶解到四氢呋喃与乙醇(v/v,1:1)中,得5mg/mL含药溶液。搅拌下,将该溶液200μL缓缓滴加到2mL去离子水中,FIN56和AA自发形成均匀的纳米粒,然后在30℃条件下旋蒸除去纳米制剂中的有机溶剂,得到不含任何有机溶剂的纳米制剂胶体溶液。
检测所制备的纳米制剂的粒径、粒径分布及FIN56和AA的协同指数,结果见表1。
表1.FA纳米粒的粒径、粒径分布以及FIN56和AA的协同指数
Figure BDA0003754121290000061
Figure BDA0003754121290000071
如表1所示,纳米粒的粒径都在100-250nm之间,协同指数0.32-0.76。CI值<1认为具有协同效应,CI值=1认为具有相加效应,CI值>1认为具有拮抗效应。可见,FIN56与AA具有协同作用。其中FIN56:AA=1:2时,FA纳米粒的分布较均匀,FIN56和AA协同效果较好。初步优选FIN56和AA的比例为1:2。
(1)非PEG化的FA纳米粒的制备方法:精密称取0.46mg FIN56和0.54mg(2倍摩尔量)的花生四烯酸(AA),用200μL四氢呋喃与无水乙醇溶液(v/v,1:1)将其溶解,搅拌下,将该溶液缓缓滴加到2mL去离子水中,自发形成均匀的FA纳米粒,然后在30℃条件下旋蒸除去纳米制剂中的有机溶剂,得到不含任何有机溶剂的纳米胶体溶液。
(2)DSPE-PEG2K和DSPE-SS-PEG2K修饰的FAP纳米粒和FAS纳米粒的制备方法:精密称取0.46mg FIN56和0.54mg(2倍摩尔量)的花生四烯酸(AA),用200μL四氢呋喃与无水乙醇溶液(v/v,1:1)将其溶解;精密称取0.25mg的DSPE-PEG2K和DSPE-SS-PEG2K,用四氢呋喃溶解成10mg/mL的母液。将200μL FA溶液与25μL DSPE-PEG2K或DSPE-SS-PEG2K混合均匀,在搅拌下,将该溶液缓缓滴加到2mL去离子水中,得到均匀FAP纳米粒和FAS纳米粒。然后在30℃条件下旋蒸除去纳米制剂中的有机溶剂,得到不含任何有机溶剂的纳米胶体溶液。通过动态光散射法检测所制备的FAP纳米粒和FAS纳米粒的粒径、粒径分布(图1)和载药量(表2)。
表2.FAP纳米粒和FAS纳米粒的载药量
Figure BDA0003754121290000072
通过透射电子显微镜测定实施例1中制备的FAP纳米粒和FAS纳米粒的粒径和形态,结果如图2,透射电镜图表明纳米粒为均一的球形,粒径在150nm左右。
实施例2:纳米粒的胶体稳定性试验
将实施例1中制备的FAP纳米粒和FAS纳米粒(0.5mg/mL)取出1mL,加入到10mL PBS(pH 7.4)和含有10%FBS的PBS(pH 7.4)中,在37℃的摇床中孵育12小时,并且在预定的时间点(0,1,2,4,8和12小时)通过动态光散射法测定其粒径变化。结果如图3所示,与非PEG修饰的FA纳米粒相比,FAP纳米粒和FAS纳米粒在PBS中胶体稳定性较好,在12小时内粒径没有发生明显的变化。如图4所示,FAP纳米粒和FAS纳米粒在含有10%FBS的PBS中胶体稳定性较好,优选PEG修饰的FAP纳米粒和FAS纳米粒。
实施例3:FIN56和AA组装机理分析
通过计算机模拟,探索FIN56和AA组装的机理,采用殷赋云计算平台的Vina方案完成分子对接计算。化合物FIN56和AA在MMFF94力场下进行能量最小化获得3D结构,形成稳定纳米组装体。采用AutoDock Vina程序进行半柔性对接,并利用氯化钠、十二烷基硫酸钠和尿素进行作用力破坏,结果如图5-6所示,FIN56和AA分子之间存在多种作用力,如π-π堆积、疏水作用力和氢键作用,这些作用力对FIN56和AA的共组装做出了巨大贡献。
实施例4:体外药物释放
通过体外透析方法评价了FAP纳米粒和FAS纳米粒的体外释药行为。含有15%四氢呋喃的PBS(pH 7.4)作为释放介质。向其中加入0mM和20mM的DTT,将1mL FAP纳米粒和FAS纳米粒(相当于0.23mg FIN56)添加到透析膜中,并在锥形瓶中放置30mL释放介质。将烧瓶置于37℃的摇床中。在预设的时间点(0小时,0.5小时,1小时,2小时,4小时,8小时,12小时)取出200μL释放介质,并将相同体积的介质加入锥形瓶中。使用酶标仪在EX 375nm和EM 450nm处测量FIN56的累积释放。
释放结果如图7所示,FAS纳米粒和FAP纳米粒在空白释放介质(0mM DTT)中均表现出缓慢的FIN56释放,而FAS NPs表现出DTT触发的药物释放特征,在10mM DTT存在的情况下,12小时内约有75%的FIN56释放。不敏感的FAP NPs在含有10mM DTT的释放介质中也表现为缓慢释放。FAS NPs的快速释药可能是由于失去PEG壳层后纳米组装的胶体稳定性较差所致。FAS NPs具有还原敏感的药物释放模式,通过快速触发肿瘤细胞内的药物释放,对肿瘤细胞具有强大的细胞毒性。
实施例5:纳米粒的细胞摄取和胞内释药
采用共聚焦显微镜测定实施例1中制备的FAP纳米粒和FAS纳米粒在4T1细胞(小鼠乳腺癌细胞)中的摄取情况。将4T1细胞以5×104cells/well的密度接种到24孔板上,置培养箱中孵育24h使其贴壁,待细胞贴壁后加入C6溶液剂,C6-FAP纳米粒和C6-FAS纳米粒,C6的浓度均为250ng/mL,在37℃孵化2小时和4小时后,清洗细胞,进行细胞固定,最后用共聚焦显微镜分析细胞对各种制剂的摄取情况并用Image J对荧光进行定量。实验结果如图8-9所示。
收集细胞并分散在PBS中,通过细胞破碎仪破碎细胞,考察细胞对C6溶液剂,C6-FAP纳米粒和C6-FAS纳米粒的摄取情况。实验结果如图10所示。
此外,通过C6与罗丹明B(RhoB)之间的荧光共振能量转移(FRET)评估细胞内药物释放情况,实验结果如图11-12所示。
上述实验结果表明,细胞摄取呈现出时间依赖性摄取,且C6-FAP纳米粒和C6-FAS纳米粒处理的细胞比C6溶液剂处理的细胞具有更高的细胞内荧光强度。因此,制备的C6-FAP纳米粒和C6-FAS纳米粒具有比C6溶液剂更高的细胞摄取效率,FAS纳米粒比FAP纳米粒具有更高的胞内释放速率。
实施例6:纳米粒的细胞毒性
采用MTT法考察AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒对小鼠乳腺癌(4T1)细胞的细胞毒性。将状态良好的细胞消化,用培养液稀释至1×104个细胞/毫升的细胞密度,吹匀后于96孔板中每孔加入细胞悬液200μL,置培养箱中孵育12h使其贴壁。待细胞贴壁后用含有AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的培养基培养细胞,每孔200μL。对照组用不含药液的培养基培养。48小时后,将96孔板取出,每孔加入5mg mL-1MTT溶液25μL,置培养箱中孵育4小时后甩板,将96孔板倒扣于滤纸上充分吸干残留液体后,每孔加入200μL DMSO于振荡器上振荡10min以溶解蓝紫色结晶物。使用酶标仪在490nm处测定各孔调零后的吸光度值。并考察加入Fer-1(2,5and 10μM)后的细胞毒变化。
细胞毒性结果如图13-14所示,AA溶液剂在0-200nM浓度下表现出非常弱的细胞毒性,但联合处理组均表现出比AA溶液剂或FIN56溶液剂处理组更强的细胞毒性,表明良好的协同细胞毒性。此外FAS纳米粒比FAP纳米粒表现出更强的体外抗肿瘤活性,这归因于高效的细胞摄取效率和快速的胞内药物释放效率。AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒处理的4T1细胞与Fer-1共处理后,细胞存活率显著提高,验证了FIN56和AA通过协同诱导铁死亡有效杀伤肿瘤细胞。
实施例7:谷胱甘肽检测
将状态良好的4T1细胞消化,用培养液稀释并以2×106个细胞/皿的细胞密度接种至培养皿,置培养箱中孵育12h使其贴壁。待细胞贴壁后用含有AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的培养基培养细胞,每孔200μL,FIN56的浓度为200nM或AA的浓度为400nM。培养4小时后,用冰PBS洗3次细胞,并收集细胞,将4T1细胞悬浮于300μLPBS中,超声进一步破坏。取100μL破碎细胞与100μL GSH探针沉淀剂混合,3500rpm/min离心10min,取上清按GSH检测试剂盒说明检测。用多功能酶标仪测量405nm处的紫外吸光度。
如图15所示,除FIN56溶液剂外,AA溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒处理的4T1细胞中GSH水平均有所下降。这些结果证实了AA具有调节细胞内氧化还原平衡的能力,AA在肿瘤细胞中很容易被ROS氧化为LPOs,细胞内的GSH被GPX4催化来解毒LPOs。值得注意的是,与溶液剂相比,FAP纳米粒和FAS纳米粒表现出明显的优势,这归因于其高效的细胞摄取。其中,FAS纳米粒的快速细胞内FIN56释放更具优势。显然,FIN56和AA结合确实可以打破肿瘤细胞的氧化还原平衡。
实施例8:蛋白质印记法
利用蛋白质印记法考察细胞内热休克蛋白的表达。取长满4T1细胞的培养皿,用空白培养基、AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒处理细胞。然后通过RIPA裂解缓冲液裂解细胞。利用(BCA)测定法(Invitrogen,CA)确定细胞中的蛋白质浓度。用SDS-PAGE电泳分离蛋白质,并转移至PVDF。加入一抗并在4℃与细胞孵育过夜。二抗孵育后,添加ECL Western Blotting底物使蛋白质条带可视化。
如图16所示,含有FIN56的组别均可显著下调GPX4的表达水平。此外,FAS纳米粒在下调GPX4的表达上表现出明显的优势。
实施例9:脂质过氧化物检测
采用C11 BODIPY581/591荧光探针检测细胞内脂质过氧化物水平,将状态良好的4T1细胞消化,用培养液稀释并以5×104个细胞/孔的细胞密度接种至24孔板,置培养箱中孵育12h使其贴壁。待细胞贴壁后用含有空白培养基、AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的培养基培养细胞,每孔200μL,FIN56的浓度为200nM或AA的浓度为400nM。此外,相同处理组与Fer-1共孵育。孵育4小时后,与C11 BODIPY581/591荧光探针共孵育1小时,清洗细胞,进行细胞固定,最后用共聚焦显微镜分析细胞内脂质过氧化物水平。
如图17所示,FIN56溶液剂和AA溶液剂都能在一定程度上促进细胞内脂质过氧化物的积累,这应该归因于FIN56介导的GPX4耗尽和AA衍生的脂质过氧化。此外,基于FIN56和AA的协同作用,联合处理组FA溶液剂、FAP纳米粒和FAS纳米粒引起的脂质过氧化物水平更高,与Fer-1共孵育后能明显降低脂质过氧化物的产生。其中,FAS纳米粒导致脂质过氧化物在细胞内积累最多。
实施例10:活性氧检测
采用DCFH-DA荧光探针检测细胞内活性氧水平,将状态良好的4T1细胞消化,用培养液稀释并以5×104个细胞/孔的细胞密度接种至24孔板,置培养箱中孵育12h使其贴壁。待细胞贴壁后用含有空白培养基、AA溶液剂、FIN56溶液剂、FA溶液剂、FAP纳米粒和FAS纳米粒的培养基培养细胞,每孔200μL,FIN56的浓度为200nM或AA的浓度为400nM。此外,相同处理组与Fer-1共孵育。孵育4小时后,与DCFH-DA荧光探针共孵育30分钟,清洗细胞,用倒置荧光显微镜分析细胞内活性氧水平。
如图18所示,FIN56溶液剂和AA溶液剂都能在一定程度上促进细胞内ROS的产生,联合处理组FA溶液剂、FAP纳米粒和FAS纳米粒引起的ROS水平更高,与Fer-1共孵育后能明显降低ROS水平。其中,FAS纳米粒导致ROS产生量最为显著。
实施例11:纳米粒的药代动力学研究
取体重在200-250g之间的SD大鼠,随机分组,给药前禁食12h,自由饮水。分别静脉注射FIN56溶液剂以及实施例1制备的FAP纳米粒和FAS纳米粒(均以FIN56计2mg/kg),于规定的时间点眼眶取血,分离获得血浆。之后通过超声破碎、离心和沉淀蛋白法提取FIN56,最后用酶标仪(激发305nm,发射450nm)检测各制剂的药动学行为。实验结果如图19所示,由于半衰期短,FIN56溶液剂很快就被代谢清除。相比于溶液剂,FAP纳米粒和FAS纳米粒的循环时间明显延长,明显提高了FIN56的AUC,为药物在体内肿瘤的蓄积提高了很好基础。
实施例12:纳米粒的组织分布实验
将4T1细胞悬液接种于BALB/c小鼠腹侧皮下,当肿瘤体积达到300mm3时,尾静脉注射给药:DiR溶液剂,DiR/FAP纳米粒和DiR/FAS纳米粒(给药剂量均为1mg/kg DiR)。于给药后4小时、8小时、12小时和24小时,将小鼠麻醉,进行活体成像分析。结果如图20所示。
选出各组中体内蓄积量最高的时间点,进行离体组织器官的荧光强度分析。结果如图21-22所示。
上述结果表明,与DiR溶液剂相比,DiR/FAP纳米粒和DiR/FAS纳米粒组在肿瘤组织的荧光强度显著增加。其中DiR/FAS纳米粒的荧光强度强于DiR/FAP纳米粒,且在12小时达到最大蓄积。这一结果归因于DiR/FAS纳米粒在肿瘤微环境中发生还原敏感释药,从而缓解聚集诱导淬灭(ACQ)效应,因此表现出最好的肿瘤蓄积能力。
实施例13:纳米粒的体内抗肿瘤实验
将4T1细胞悬液(107cells/100μL)接种于雌性小鼠腹侧皮下。待肿瘤体积生长至150mm3时,将小鼠随机分组,每组5只,分别给与PBS、AA溶液剂、FIN56溶液剂、FA溶液剂、实施例1制备的FAP纳米粒和FAS纳米粒。每隔1天给药1次,连续给药5次,按FIN56计给药剂量为10mg/kg或AA计给药剂量为20mg/kg。每天观察小鼠的存活状态,称体重,测量肿瘤体积。最后一次给药后,间隔1天后将小鼠处死,获取器官和肿瘤,进一步分析评价。收集主要器官(心脏,肝脏,脾脏,肺,肾脏)并用4%组织固定液固定用于H&E染色。肿瘤生长曲线及荷瘤率如图22-23所示,AA溶液剂组与PBS组无显著性差异,说明单独使用AA对肿瘤的抑制作用可以忽略。如图23-24所示,FA溶液剂组显示出比FIN56溶液剂更强的抑制肿瘤生长能力,表明FIN56与AA之间存在协同抗肿瘤效果。此外,具有肿瘤特异性释药特征的FAS纳米粒显示出更强的抗肿瘤活性,在整个治疗过程中肿瘤生长可忽略不计。如图25所示,H&E和TUNEL染色图也显示出FAS纳米粒具有强大的肿瘤杀伤作用。如图26所示,FAS NPs显著降低肿瘤组织GPX4水平,与体外实验结果一致。如图27-28所示,AA溶液剂、FIN56溶液剂和FA溶液剂组别使荷瘤小鼠的体重有一定的减轻,而FAP纳米粒和FAS纳米粒对荷瘤小鼠的体重影响不大。如图29-30所示,治疗后主要脏器(心、肝、脾、肺、肾)的H&E染色切片及肝、肾血液指标未见明显异常。此外,FAP纳米粒和FAS纳米粒不会导致溶血(图31)。综上所述,这些结果表明,FAS纳米粒可作为一种高效、安全的脂质过氧化纳米放大剂用于铁死亡驱动的肿瘤治疗。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种协同诱导铁死亡的无载体脂质过氧化纳米放大器,其特征在于,所述纳米放大器由多不饱和脂肪酸和GPX4抑制剂通过分子间作用力共组装,并修饰以PEG修饰剂;所述GPX4抑制剂与多不饱和脂肪酸的摩尔比为10:1~1:10,多不饱和脂肪酸和GPX4抑制剂之和与PEG修饰剂的质量比为10:90~90:10。
2.如权利要求1所述的协同诱导铁死亡的无载体脂质过氧化纳米放大器,其特征在于,所述分子间作用力包括π-π堆积、疏水作用、氢键。
3.如权利要求1所述的协同诱导铁死亡的无载体脂质过氧化纳米放大器,其特征在于,所述的多不饱和脂肪酸包括亚油酸、亚麻酸、花生四烯酸;所述的GPX4抑制剂包括RSL3、ML162、FIN56及FINO2。
4.如权利要求1所述的协同诱导铁死亡的无载体脂质过氧化纳米放大器,其特征在于,所述的PEG修饰剂包括PCL-PEG、DSPE-PEG、DSPE-SS-PEG、PLGA-PEG、PE-PEG中的一种或二种以上,PEG的分子量为200-20000。
5.如权利要求4所述的协同诱导铁死亡的无载体脂质过氧化纳米放大器,其特征在于,所述的PEG修饰剂为DSPE-PEG2K或DSPE-SS-PEG2K
6.如权利要求1-5中任一项所述的诱导铁死亡的无载体脂质过氧化纳米放大器的制备方法,其特征在于,包括如下步骤:
将多不饱和脂肪酸和GPX4抑制剂分别溶解到有机溶剂中,搅拌下混匀,将混匀后的溶液缓慢滴加到水中,自发形成均匀的共组装纳米粒;将PEG修饰剂的有机溶剂在搅拌下滴加至共组装纳米粒中;除去有机溶剂,即得。
7.如权利要求6所述的制备方法,其特征在于,所述的有机溶剂为乙醇、四氢呋喃、二甲基亚砜中的一种或任意两种的组合。
8.权利要求1-5任何一项所述的协同诱导铁死亡的无载体脂质过氧化纳米放大器或者权利要求6或7所述的制备方法制备得到的纳米放大器在制备药物传递系统中的应用。
9.权利要求1-5任何一项所述的协同诱导铁死亡的无载体脂质过氧化纳米放大器或者权利要求6或7所述的制备方法制备得到的纳米放大器在制备抗肿瘤药物中的应用。
10.权利要求1-5任何一项所述的协同诱导铁死亡的无载体脂质过氧化纳米放大器或者权利要求6或7所述的制备方法制备得到的纳米放大器在制备注射给药、口服给药或局部给药系统中的应用。
CN202210855168.5A 2022-07-19 2022-07-19 一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用 Active CN115177737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210855168.5A CN115177737B (zh) 2022-07-19 2022-07-19 一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210855168.5A CN115177737B (zh) 2022-07-19 2022-07-19 一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115177737A true CN115177737A (zh) 2022-10-14
CN115177737B CN115177737B (zh) 2024-03-29

Family

ID=83520104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210855168.5A Active CN115177737B (zh) 2022-07-19 2022-07-19 一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115177737B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117771390A (zh) * 2023-07-10 2024-03-29 重庆医科大学 一种诊疗一体化多功能纳米粒及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617246A (zh) * 2020-06-01 2020-09-04 沈阳药科大学 一种纯光敏剂自组装纳米粒及其制备和应用
CN112451680A (zh) * 2020-11-24 2021-03-09 吉林化工学院 一种具有协同诱导光动力治疗和铁死亡的ros敏感性纳米试剂及其制备方法
CN113018267A (zh) * 2021-03-22 2021-06-25 沈阳药科大学 不饱和脂肪酸-光敏剂共组装纳米粒及其构建方法和应用
CN113135875A (zh) * 2021-03-11 2021-07-20 沈阳药科大学 光敏剂驱动的二聚体前药共组装纳米粒及其制备方法和应用
CN113350503A (zh) * 2021-05-20 2021-09-07 沈阳药科大学 一种无载体杂合纳米组装体及其制备方法与应用
CN114177305A (zh) * 2021-12-20 2022-03-15 中国药科大学 一种诱导肿瘤细胞多机制死亡的前药纳米粒及其制备方法、应用
CN114601925A (zh) * 2022-01-27 2022-06-10 西安交通大学医学院第一附属医院 透明质酸与rsl3共同修饰的光敏纳米材料、制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617246A (zh) * 2020-06-01 2020-09-04 沈阳药科大学 一种纯光敏剂自组装纳米粒及其制备和应用
CN112451680A (zh) * 2020-11-24 2021-03-09 吉林化工学院 一种具有协同诱导光动力治疗和铁死亡的ros敏感性纳米试剂及其制备方法
CN113135875A (zh) * 2021-03-11 2021-07-20 沈阳药科大学 光敏剂驱动的二聚体前药共组装纳米粒及其制备方法和应用
CN113018267A (zh) * 2021-03-22 2021-06-25 沈阳药科大学 不饱和脂肪酸-光敏剂共组装纳米粒及其构建方法和应用
CN113350503A (zh) * 2021-05-20 2021-09-07 沈阳药科大学 一种无载体杂合纳米组装体及其制备方法与应用
CN114177305A (zh) * 2021-12-20 2022-03-15 中国药科大学 一种诱导肿瘤细胞多机制死亡的前药纳米粒及其制备方法、应用
CN114601925A (zh) * 2022-01-27 2022-06-10 西安交通大学医学院第一附属医院 透明质酸与rsl3共同修饰的光敏纳米材料、制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张申武等: "基于纳米递送技术诱导肿瘤铁死亡的研究进展", 《药学学报》, vol. 57, no. 1, pages 36 - 45 *
李超群等: "铁死亡诱导型纳米药物的构建及抗肿瘤研究进展", 《药学学报》, vol. 55, no. 9, pages 2099 - 2109 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117771390A (zh) * 2023-07-10 2024-03-29 重庆医科大学 一种诊疗一体化多功能纳米粒及其制备方法

Also Published As

Publication number Publication date
CN115177737B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
Xing et al. Hypoxia alleviation-triggered enhanced photodynamic therapy in combination with IDO inhibitor for preferable cancer therapy
Yang et al. Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy
Li et al. Reactive oxygen species (ROS)-responsive nanomedicine for RNAi-based cancer therapy
Du et al. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy
Abtahi et al. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: In vitro and in vivo studies
CN111617246B (zh) 一种纯光敏剂自组装纳米粒及其制备和应用
Wang et al. Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo
Zhang et al. Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy
CN113350503B (zh) 一种无载体杂合纳米组装体及其制备方法与应用
Shi et al. A multi-functional nanoplatform for efficacy tumor theranostic applications
Dong et al. Investigation of the intracellular oxidative stress amplification, safety and anti-tumor effect of a kind of novel redox-responsive micelle
Liu et al. Amplification of oxidative stress via intracellular ROS production and antioxidant consumption by two natural drug-encapsulated nanoagents for efficient anticancer therapy
Khan et al. Chondroitin sulfate-based redox-responsive nanoparticles for melanoma-targeted drug delivery
Zhang et al. Tumor Microenvironment‐Responsive Nanocarrier Based on VOx Nanozyme Amplify Oxidative Stress for Tumor Therapy
Zhao et al. Biomimetic redox-responsive prodrug micelles with diselenide linkage for platinum nanozymes augmented sonodynamic/chemo combined therapy of colon cancer
CN115177737A (zh) 一种协同诱导铁死亡的无载体脂质过氧化纳米放大器及其制备方法与应用
Liu et al. Ferrocene-liposome-PEG: A robust OH/lipid peroxide nano-converter for inducing tumor ferroptosis
CN113648401B (zh) 一种蛋白酶体抑制增敏光动力治疗的杂化纳米组装体及其制备与应用
Yan et al. All-in-one hollow nanoformulations enabled imaging-guided Mn-amplified chemophototherapy against hepatocellular carcinoma
Yu et al. GPX4 inhibition synergistically boosts mitochondria targeting nanoartemisinin-induced apoptosis/ferroptosis combination cancer therapy
Wu et al. Precise engineering of cholesterol-loaded chitosan micelles as a promising nanocarrier system for co-delivery drug-siRNA for the treatment of gastric cancer therapy
Zhou et al. Carrier free nanomedicine to reverse anti-apoptosis and elevate endoplasmic reticulum stress for enhanced photodynamic therapy
CN109078184A (zh) 负载双药纳米颗粒及其制备方法与应用
Huang et al. Chitosan-derived nanoparticles impede signal transduction in T790M lung cancer therapy
CN113368257A (zh) 一种纳米颗粒组合物递送系统的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant