CN115161337A - 一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用 - Google Patents

一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用 Download PDF

Info

Publication number
CN115161337A
CN115161337A CN202210927408.8A CN202210927408A CN115161337A CN 115161337 A CN115161337 A CN 115161337A CN 202210927408 A CN202210927408 A CN 202210927408A CN 115161337 A CN115161337 A CN 115161337A
Authority
CN
China
Prior art keywords
uvghf1
rice
gene
transgenic
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210927408.8A
Other languages
English (en)
Inventor
赵丹
孙文献
邹佳营
李大勇
邱姗姗
南楠
杨翠
江春泉
于思文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Agricultural University
Original Assignee
Jilin Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Agricultural University filed Critical Jilin Agricultural University
Priority to CN202210927408.8A priority Critical patent/CN115161337A/zh
Publication of CN115161337A publication Critical patent/CN115161337A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,该基因编码区为1020bp,由340个氨基酸组成,用InterPro和Pfam网站对UvGHF1的结构域进行预测发现,UvGHF1包含N端信号肽(SignalPeptide)和糖苷水解酶GH42结构域。本发明通过Phyre2在线同源建模预测分析,以嗜热栖热菌(Thermusthermophilus)β‑半乳糖苷酶晶体结构1KWG为模板,构建了UvGHF1蛋白同源三维结构模型。本发明通过构建异源表达稻曲病菌UvGHF1基因的转基因水稻植株,发现转基因水稻能够显著提高对稻曲病、稻瘟病和白叶枯病的抗性,首次阐明了该基因具有正向调控水稻抗病性的功能。本发明提供的UvGHF1基因是一种适用于创制高抗稻曲病、稻瘟病和白叶枯病的水稻新材料的新基因资源,可以用于改良水稻抗病性,对于水稻抗病新种质的创制和新品种的选育具有重要意义。

Description

一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用
技术领域
本发明涉及植物基因工程领域,特别涉及一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用。
背景技术
水稻在生产上遭受多种病害威胁,其中真菌病害稻瘟病和稻曲病,细菌病害白叶枯病,是影响水稻生产的最为重要的病害,对我国乃至世界稻米安全生产构成了严重的威胁。据研究报道,稻瘟病可以造成水稻减产10-35%,稻曲病可以造成水稻减产25%左右,白叶枯病可以造成水稻减产20-30%。其中稻曲病不仅造成水稻减产,更产生对人畜有害的毒素,人畜食用被稻曲球污染的稻米后,稻曲菌毒素可强烈抑制人畜微管蛋白组装和细胞骨架形成,严重抑制人畜细胞正常发育,对人畜健康造成极大威胁。
近几十年来,随着气候变化、优质高产杂交稻大面积推广以及大量施加氮肥,这些真菌和细菌病害在我国各个水稻生产区大面积发生,且有逐年增加的趋势。因此,发掘并有效利用关键基因,改良水稻品种,提高水稻对不同病害抗病性等相关工作迫在眉睫。植物的抗病反应是多基因参与调控的复杂过程。目前的研究多集中在参与植物抗病反应的主效抗病基因和抗病相关基因,已克隆得到一些抗病相关基因,这些基因编码不同类型的蛋白质,通过调控水稻体内不同反应途径参与水稻对不同病原菌的抗病过程。但是在有效利用这些抗病相关基因过程中发现部分抗病相关基因对水稻重要农艺性状有影响,在一定程度上限制了这些基因在育种上应用。然而,在病原菌中存在一些质外体效应蛋白可以被植物细胞膜上受体蛋白识别,进而诱导寄主免疫。目前尚无异源表达稻曲病菌编码效应蛋白基因的转基因水稻能够提高水稻抗病性的报道。
发明内容
针对现有技术中的上述不足,本发明提供了一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,通过构建异源表达UvGHF1的转基因水稻植株发现,转基因水稻能够显著提高对稻曲病、稻瘟病和白叶枯病的抗性。异源表达稻曲病菌UvGHF1基因具有正向调控水稻的抗病性的功能,UvGHF1基因是一种适用于创制高抗稻曲病、稻瘟病和白叶枯病的水稻新材料的新基因资源,可以用于提高水稻抗病性,对于水稻抗病新种质的创制和新品种的选育具有重要意义。
为了达到上述发明目的,本发明采用的技术方案为:
一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,用InterPro和Pfam网站对UvGHF1的结构域进行预测,稻曲病菌UvGHF1包含N端信号肽(SignalPeptide)和GH42结构域;通过Phyre2在线同源建模预测分析,以嗜热栖热菌(Thermusthermophilus)β-半乳糖苷酶晶体结构1KWG为模板,构建了UvGHF1蛋白同源三维结构模型,异源表达稻曲病菌基因UvGHF1的转基因水稻提高了对稻曲病、稻瘟病和白叶枯病的抗性。
优选地,利用Phyre2构建的UvGHF1蛋白三维同源结构模型,该模型以β-半乳糖苷酶晶体结构1KWG为模板进行构建。
优选地,构建异源表达UvGHF1基因的转基因水稻株系,将全长UvGHF1融合到pTA7001植物表达载体载体中,通过农杆菌介导转化法,获得了地塞米松(Dexamethasone,DEX)诱导表达的UvGHF1日本晴转基因株系;潮霉素抗性作为转基因的抗性标记使用;在1/2MS培养基中加入潮霉素,可以筛选出转化子;由于FLAG与UvGHF1为融合蛋白,所以用FLAG抗体检测UvGHF1的蛋白表达情况;转基因17SD6和17SD27株系在10μMDEX处理16小时后,Western-blot结果显示,UvGHF1蛋白在17SD6和17SD27转基因植株中都有表达,且在无诱导情况下没有基础表达背景;获得2个表达UvGHF1含蛋白融合标签FLAG转基因T3代纯合株系(17SD6和17SD27)。
优选地,使用10μMDEX处理转基因水稻和日本晴野生型,处理16小时后,通过人工注射接种稻曲病菌悬浮液,接种后28天拍照观察发现,转基因水稻中的稻曲球数量显著低于日本晴野生型,结果表明,异源表达UvGHF1的转基因水稻提高了对稻曲病的抗性。
优选地,使用10μMDEX处理转基因水稻和日本晴野生型,处理16小时后,通过喷雾接种法接种稻瘟病菌孢子悬浮液,接种7天后,拍照并提取接菌后水稻叶片DNA,通过对真菌生物量进行分析发现,转基因水稻中的稻瘟病菌生物量显著低于日本晴野生型,结果表明,异源表达UvGHF1的转基因水稻提高了对稻瘟病的抗性。
优选地,使用10μMDEX处理转基因水稻和日本晴野生型,处理16小时后,通过剪叶法接种白叶枯菌悬浮液,接种14天后,拍照并测量病斑长度,结果显示,转基因水稻中的病斑长度著低于日本晴野生型,表明异源表达UvGHF1的转基因水稻提高了对白叶枯病的抗性。
本发明的有益效果为:
UvGHF1可作为激发子发挥诱导植物免疫的功能。通过构建异源表达的转基因水稻植株发现,转基因水稻能够显著提高对稻曲病、稻瘟病和白叶枯病的抗性。这些实验结果表明,异源表达稻曲病菌UvGHF1基因具有正向调控水稻的抗病性的功能,可以用于水稻抗病性改良,对于水稻抗病新品种的选育具有重要意义。
附图说明
图1为本发明的结构示意图;
图2为本发明UvGHF1结构示意图;
图3为本发明UvGHF1蛋白同源三维结构模型;
图4为本发明异源表达UvGHF1转基因水稻蛋白表达检测的结果示意图;
图5为本发明转基因水稻对稻曲病的抗性检测的结果示意图;
图6为本发明转基因水稻对稻瘟病抗性的检测结果示意图;
图7为本发明转基因水稻对白叶枯病的抗性检测的结果示意图。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1至图7所示,一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,用InterPro和Pfam对UvGHF1的结构域进行预测,稻曲病菌基因UvGHF1包含N端信号肽(SignalPeptide),还具有糖苷水解酶结构域;通过Phyre2在线同源建模,构建了UvGHF1蛋白同源三维结构模型,构建异源表达稻曲病菌基因UvGHF1的转基因水稻,通过接种发现,转基因水稻提高了对稻曲病、稻瘟病和白叶枯病的抗性。
图1所示,详细阐明了本发明的具体实施过程。
图2所示,UvGHF1基因全长1020bp,其编码的蛋白含有340个氨基酸(aa),用InterPro和Pfam对UvGHF1的结构域进行预测发现UvGHF1包含N端信号肽和GH42结构域,前16个氨基酸是预测的N端信号肽,第33位至第282位为GH42结构域。
图3所示,利用Phyre2构建的UvGHF1蛋白三维同源结构模型,该模型以β-半乳糖苷酶晶体结构1KWG为模板建立。
图4所示,构建异源表达UvGHF1基因的转基因水稻株系。使用10μMDEX处理16小时,Mock为未加DEX的缓冲液作为对照;Nip为日本晴野生型;PonceauStain为被丽春红染色的总蛋白。
利用pTA7001植物表达载体,将全长UvGHF1融合到载体中,通过农杆菌介导转化法,获得了DEX诱导表达的UvGHF1日本晴转基因株系;潮霉素抗性作为转基因的抗性标记使用;在1/2MS培养基中加入潮霉素,可以筛选出转化子;由于FLAG与UvGHF1为融合蛋白,所以用FLAG抗体检测UvGHF1的蛋白表达情况;UvGHF1转基因17SD6和17SD27株系在10μMDEX处理16小时后,Western-blot结果显示,UvGHF1蛋白在这2个转基因株系中都被诱导表达,且在无诱导情况下没有基础表达背景;因此,获得2个异源表达UvGHF1基因的转基因T3代纯合株系(17SD6和17SD27)。
图5所示:(A)接种稻曲病菌后转基因水稻和日本晴的发病情况;(B)注射接种后28天对稻曲球数量的统计情况。不同的字母(a和b)表示转基因水稻和日本晴野生型间每个接菌稻穗上稻曲球的平均个数存在显著性差异(Duncan’smultiplerangetest,P<0.05)。
使用10μMDEX处理16小时后转基因水稻和日本晴野生型,通过人工注射接种稻曲病菌悬浮液,接种后28天拍照观察发现,转基因水稻稻穗上的稻曲球数量显著低于日本晴野生型;异源表达UvGHF1的转基因水稻提高了对稻曲病抗性。
图6所示:(A)喷雾接种稻瘟病菌后转基因水稻和日本晴的发病情况;(B)喷雾接种后7天对稻瘟病发病情况的统计。a和b表示转基因水稻和日本晴野生型接菌叶片上稻瘟病菌的生物量之间存在显著性差异(P<0.05)。
为进一步验证异源表达UvGHF1的转基因水稻对其他真菌病害是否具有抗病性,我们选择稻瘟病进行抗病性鉴定。本实验在10μM DEX处理16小时后,通过喷雾接种法接种稻瘟病菌孢子悬浮液,接种7天后,拍照并提取发病水稻叶片DNA,通过对真菌生物量进行分析发现,转基因水稻叶片上的稻瘟病菌生物量显著低于日本晴野生型。结果表明,异源表达UvGHF1的转基因水稻提高了对稻瘟病的抗性。
图7所示:(A)剪叶法接种转基因水稻和日本晴后白叶枯病的发病情况;(B)接种后14天对白叶枯病的发病情况的统计。a和b表示转基因水稻和日本晴野生型接菌叶片上病斑长度之间存在显著性差异(P<0.05)。
白叶枯病是水稻细菌性病害之一。为验证异源表达UvGHF1的转基因水稻对水稻细菌病害是否具有抗病性,我们选择白叶枯病进行抗病性鉴定。本实验在10μM DEX处理16小时后,通过剪叶法接种白叶枯菌液,接种14天后,拍照并测量病斑长度,结果显示,转基因水稻叶片上的病斑长度显著低于日本晴野生型。结果表明,异源表达UvGHF1的转基因水稻提高了对白叶枯病的抗性。
以上所述仅为本发明专利的较佳实施例而已,并不用以限制本发明专利,凡在本发明专利的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明专利的保护范围之内。

Claims (6)

1.一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,其特征在于,用InterPro和Pfam网站对UvGHF1的结构域进行预测,稻曲病菌UvGHF1蛋白包含N端信号肽(SignalPeptide)和糖苷水解酶GH42结构域,异源表达稻曲病菌基因UvGHF1的转基因水稻提高了对稻曲病、稻瘟病和白叶枯病的抗性。
2.根据权利要求1所述的一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,其特征在于:Phyre2在线同源建模预测分析表明,UvGHF1含有糖苷水解酶GH42结构域,以嗜热栖热菌(Thermus thermophilus)β-半乳糖苷酶晶体结构1KWG为模板,构建了UvGHF1蛋白同源三维结构模型。
3.根据权利要求1或2所述的一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,其特征在于:构建异源表达UvGHF1基因的转基因水稻株系,利用pTA7001植物表达载体,将全长UvGHF1克隆到载体中,通过农杆菌介导转化法,获得了地塞米松(Dexamethasone,DEX)诱导表达的UvGHF1日本晴转基因株系;潮霉素抗性作为转基因的抗性标记使用;在1/2MS培养基中加入潮霉素,可以筛选出转化子;由于FLAG与UvGHF1为融合蛋白,所以用FLAG抗体检测UvGHF1蛋白的表达情况;10μM DEX处理转基因水稻和野生型水稻16小时后,Western-blot结果显示,UvGHF1蛋白在17SD6和17SD27转基因植株中都能表达,且在无诱导情况下或野生型中没有基础表达背景,因此获得2个异源表达UvGHF1基因的转基因T3代纯合株系(17SD6和17SD27)。
4.根据权利要求3所述的一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,其特征在于:稻曲病菌在水稻抽穗前从水稻花器侵入,发病后期有大量的厚垣孢子形成,将被侵染的花丝包裹后形成稻曲球。使用10μM DEX处理转基因水稻和日本晴野生型,处理16小时后,通过人工注射接种稻曲病菌悬浮液,接种后28天拍照观察发现,DEX处理后的转基因水稻中的稻曲球数量显著低于日本晴野生型,结果表明,异源表达UvGHF1的转基因水稻提高了对稻曲病抗性。
5.根据权利要求4所述的一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,其特征在于:使用10μM DEX处理转基因水稻和日本晴野生型,处理16小时后,通过喷雾接种法接种稻瘟病菌孢子悬浮液,接种7天后,拍照并提取发病叶片中水稻与稻瘟菌DNA,通过分子检测与分析真菌生物量发现,DEX处理后的转基因水稻中的稻瘟菌生物量显著低于日本晴野生型,结果表明,异源表达UvGHF1的转基因水稻的提高了对稻瘟病的抗性。
6.根据权利要求4或5所述的一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用,其特征在于:使用10μM DEX处理转基因水稻和日本晴野生型,处理16小时后,通过剪叶法接种白叶枯菌悬浮液,接种14天后,拍照并测量病斑长度,结果显示,DEX处理后的转基因水稻中的病斑长度显著低于日本晴野生型,表明异源表达UvGHF1的转基因水稻提高了对白叶枯病的抗性。
CN202210927408.8A 2022-08-03 2022-08-03 一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用 Pending CN115161337A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210927408.8A CN115161337A (zh) 2022-08-03 2022-08-03 一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210927408.8A CN115161337A (zh) 2022-08-03 2022-08-03 一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用

Publications (1)

Publication Number Publication Date
CN115161337A true CN115161337A (zh) 2022-10-11

Family

ID=83476833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210927408.8A Pending CN115161337A (zh) 2022-08-03 2022-08-03 一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用

Country Status (1)

Country Link
CN (1) CN115161337A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515896A (zh) * 2023-02-20 2023-08-01 南京农业大学 OsFID基因在提高植物对真菌性病害抗性中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609516A (zh) * 2019-01-28 2019-04-12 华中农业大学 一个抗病基因在水稻抗稻曲病改良中的应用
CN110669116A (zh) * 2019-09-18 2020-01-10 中国水稻研究所 一种负调控稻曲病菌产孢的致病因子、基因及应用
CN111378775A (zh) * 2018-12-28 2020-07-07 江苏省农业科学院 一种特异性检测水稻稻曲病菌的方法及其应用
CN111676228A (zh) * 2020-06-29 2020-09-18 华中农业大学 抗稻曲病基因OsRFS2在水稻遗传改良中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378775A (zh) * 2018-12-28 2020-07-07 江苏省农业科学院 一种特异性检测水稻稻曲病菌的方法及其应用
CN109609516A (zh) * 2019-01-28 2019-04-12 华中农业大学 一个抗病基因在水稻抗稻曲病改良中的应用
CN110669116A (zh) * 2019-09-18 2020-01-10 中国水稻研究所 一种负调控稻曲病菌产孢的致病因子、基因及应用
CN111676228A (zh) * 2020-06-29 2020-09-18 华中农业大学 抗稻曲病基因OsRFS2在水稻遗传改良中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
佚名: "A0A063C5N8", 《UNIPROT》, 19 January 2022 (2022-01-19), pages 1 *
佚名: "X53660.1", 《GENBANK》, 26 July 2016 (2016-07-26), pages 1 *
佚名: "X77223.1", 《GENBANK》, 26 July 2016 (2016-07-26), pages 1 *
刘志强等: "稻曲球脂溶性成分及其抗细菌和抗氧化活性", 《天然产物研究与开发》, no. 12, 15 December 2012 (2012-12-15), pages 1777 - 1781 *
李艳军: "棉花启动子prom6下游序列克隆及纤维特异基因GhF1的功能研究", 《中国优秀博硕士学位论文全文数据库 (硕士)农业科技辑》, vol. 6, 15 October 2005 (2005-10-15), pages 047 - 125 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515896A (zh) * 2023-02-20 2023-08-01 南京农业大学 OsFID基因在提高植物对真菌性病害抗性中的应用
CN116515896B (zh) * 2023-02-20 2024-05-31 南京农业大学 OsFID基因在提高植物对真菌性病害抗性中的应用

Similar Documents

Publication Publication Date Title
Clausen et al. Antifungal activity of a virally encoded gene in transgenic wheat
Lv et al. Use of random T-DNA mutagenesis in identification of gene UvPRO1, a regulator of conidiation, stress response, and virulence in Ustilaginoidea virens
Zhou et al. CRISPR/Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-mediated silencing of MdCNGC2 in fruits improve resistance to Botryosphaeria dothidea
CN117106045B (zh) 一种条锈菌效应蛋白及其在抗条锈菌中的应用
CN107058348A (zh) 一种提高植物赤霉病抗性的小麦基因及其应用
CN110468142A (zh) 负调控因子AtRTP5基因及其在抗植物疫霉菌上的应用
CN103154249A (zh) 用于在丝状真菌中改进的蛋白质生产的方法
CN109627303A (zh) 三七病程相关蛋白PnPR3的基因及其应用
CN115161337A (zh) 一种稻曲病菌基因UvGHF1及其在水稻抗病中的应用
CN106496313B (zh) 抗病相关蛋白IbSWEET10及其编码基因与应用
CN114350672B (zh) 一种小麦转录因子TaCBF1d及其应用
CN108192920A (zh) 一种利用ndr1基因提高植物抗病性的方法
Zhang et al. ShORR-1, a novel tomato gene, confers enhanced host resistance to Oidium neolycopersici
CN107988289A (zh) 一种提高毕赤酵母分泌表达菌丝霉素表达量的方法
CN106916831B (zh) 一种黄单胞菌致病相关的基因的应用
Wang et al. Identification and functional analysis of protein secreted by Alternaria solani
CN106749580B (zh) 植物耐盐相关蛋白TaPUB15-D及其编码基因与应用
Li et al. Establishment of an Agrobacterium tumefaciens-mediated transformation system for Tilletia foetida
CN108558992A (zh) 调控金针菇子实体发育的转录因子pdd1及其编码基因与应用
CN105524934B (zh) 一种β-1,6-葡聚糖酶及其编码基因和应用
CN106589086A (zh) 三七抗病相关蛋白PnPR10‑2及其编码基因与应用
CN102732530A (zh) 一种水稻稻瘟病抗性基因RMg1或RMg2或RMg3及其应用
Feng et al. Two cerato-platanin proteins FocCP1 interact with MaPR1 and contribute to virulence of Fusarium oxysporum f. sp. cubense to banana
Jiang et al. Pectate lyase genes abundantly expressed during the infection regulate morphological development of Colletotrichum camelliae and CcPEL16 is required for full virulence to tea plants
CN114807187A (zh) 一种乌拉尔图小麦类受体蛋白激酶基因TuRLK1及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination