CN115161298A - 一种双加氧酶氨基酸序列、基因及其生物生香应用 - Google Patents

一种双加氧酶氨基酸序列、基因及其生物生香应用 Download PDF

Info

Publication number
CN115161298A
CN115161298A CN202210731627.9A CN202210731627A CN115161298A CN 115161298 A CN115161298 A CN 115161298A CN 202210731627 A CN202210731627 A CN 202210731627A CN 115161298 A CN115161298 A CN 115161298A
Authority
CN
China
Prior art keywords
ala
gly
leu
pro
thr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210731627.9A
Other languages
English (en)
Inventor
樊冰
李庆廷
强耀锋
张鹏
赵焜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Longyin Biotechnology Co ltd
Original Assignee
Shanghai Longyin Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Longyin Biotechnology Co ltd filed Critical Shanghai Longyin Biotechnology Co ltd
Priority to CN202210731627.9A priority Critical patent/CN115161298A/zh
Publication of CN115161298A publication Critical patent/CN115161298A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种双加氧酶氨基酸序列、基因及其生物生香应用,其特征在于:该基因的氨基酸序列如序列1所示。本发明技术方案具有以下有益效果:(1)双加氧酶CADO处理后的烟草浸膏在吃味方面有明显改善。(2)经过双加氧酶CADO酶处理后的烟草浸膏,其中的特征类胡萝卜裂解香气产物含量有大幅提高。

Description

一种双加氧酶氨基酸序列、基因及其生物生香应用
发明领域
本发明涉及一种双加氧酶氨基酸序列、基因及其生物生香应用,属于生物转化生香领域,特别是类胡萝卜氧化生香领域。
发明背景
双加氧酶与单加氧化酶是微生物及植物体内广泛存在,且非常重要的氧化酶,其广泛参与植物的多种代谢过程。它不仅对植物的生长发育具有重要意义,而且在许多药用植物功效及香气成分的生物合成中扮演重要的角色。双加氧酶是香豆素、黄酮类香气化合物核心的成环及羟基化衍生的重要酶,同时也是类胡萝卜素类香气前体的氧化裂解的生香的关键性酶。类胡萝卜素裂解双加氧酶可以作用于类胡萝卜素的双键位置,对类胡萝卜素进行氧化裂解,形成一系列的类胡萝卜素衍生物。高等植物中类胡萝卜素裂解双加氧酶根据系统发育和功能被分为5个家族,CCD1,CCD4,CCD7,CCD8以及NCED。目前已知植物CCD1酶的底物较多,在离体条件下,能够以八氢番茄红素、番茄红素、β-胡萝卜素、α-胡萝卜素、玉米黄质、紫黄质和新黄质等多种类胡萝卜素为反应底物,生成β-紫罗酮、3-羟基-β-紫罗酮、3-羟基-α-紫罗酮、香叶基丙酮、假紫罗酮、C27的环氧-脱辅基类胡萝卜醛和C27丙二烯脱辅基类胡萝卜醛等物质。而这些脱辅基类胡萝卜素参与了色素、风味、香气的形成。中国专利申请《一种与α- 紫罗兰酮合成相关的类胡萝卜素裂解双加氧酶基因及其编码蛋白和应用》(CN202110653530.6)公开了一种来自于辣椒的类胡萝卜素裂解双加氧酶CaCCD1B,其表达后可提高辣椒中α-紫罗兰酮的含量进而改善辣椒的风味物质,提高辣椒的经济价值。中国专利申请《产生β-紫罗酮香气物质的枸杞类胡萝卜素裂解双加氧酶基因及应用》公开了一种来源于枸杞类胡萝卜素裂解双加氧酶基因,该基因可以通过大肠杆菌异源表达,提高紫罗兰酮的含量(CN201510826720.8)。专利申请《类胡萝卜素双加氧酶和在微生物和植物中以生物技术制备衍生自藏红花的化合物的方法》则公开了通过异源表达来自于玉米胚乳细胞类胡萝卜素双加氧酶裂解类胡萝卜素的双加氧酶活性以促进藏红花酸二醛和藏红花酸的分别产生(CN201580045027.5)。除了,采用依赖酮戊二酸的双加氧酶氧化裂解细胞色素C偶联的氧化酶同样可以氧化类胡萝卜。
烟叶中类胡萝卜含量的增加对于评吸结果是较为有利的。但烟叶的香味与类胡萝卜素的存在成反比,在调制陈化中类胡萝卜素不分解会使烟叶的香味不足。在高等级烟叶中通常类胡萝卜素及其降解产物含量较高。烟叶醇化过程中类胡萝卜素类物质因双键断裂的部位不同可产生很多致香物质,如大马酮、紫罗兰酮、二氢弥猴桃内酯等。提高烟叶质量,类胡萝卜素类降解产物的含量就明显增加,烟叶刺激性较小,香气质较好。专利《一种改善与提高烟草品质的烟草加工活性复合酶制剂及制备方法》公开了以氧化-还原酶类,包括葡萄糖氧化酶、叶绿素酶、脂氧合酶,作用于对烟草品质贡献较大的色质体(包括类胡萝卜素)以增加香气品质的方法(CN201010039187.8)。
本发明提供一种来分离于大花草莓(Fragaria grandiflora) 的双加氧酶,其具有能够显著提升类胡萝卜降解香气产物的丰度及香气质感的功能。
发明内容
本发明的目的是提供一种双加氧酶氨基酸序列、基因及其生物生香应用,以解决现有技术的上述技术问题。
本发明的目的是通过以下技术方案来实现的。
一种双加氧酶CADO基因,该基因的氨基酸序列如序列1所示。
所述的双加氧酶氨基酸序列来自于山椒双加氧酶基因翻译。
一种处理植物提取物以提高其类胡萝卜素降解香气成分的方法,其使用了双加氧酶CADO的重组酶,进行酶促催化处理。
一种提高烟草浸膏的品质的方法,使用了双加氧酶CADO对烟草浸膏进行酶促生香处理。
本发明技术方案具有以下有益效果:
(1)双加氧酶CADO处理后的烟草浸膏在吃味方面有明显改善。
(2)经过双加氧酶CADO酶处理后的烟草浸膏,其中的特征类胡萝卜裂解香气产物含量有大幅提高。
具体实施方式
下面结合具体实施例进一步阐述本发明的特点。
实施例1:氨基酸序列亲缘性比对
本发明申请提供的双加氧酶CADO的氨基酸序列输入BLAST (https://blast.ncbi.nlm.nih.gov/)进行序列比对,结果如表1 所示,其与辣椒的类胡萝卜素氧化裂解酶具有95.81%的相似性,与番茄的类胡萝卜素9,10(9',10')-裂解双加氧酶相似度有91.07%。
表1.双加氧酶CADO的亲缘相似性
Figure BDA0003714115810000041
实施例2:双加氧酶CADO的表达
将双加氧酶CADO按照大肠杆菌密码偏好性对其进行密码子优化,优化后的基因序列如序列2所示。将密码子优化后的CADO基因序列合成并亚克隆至大肠杆菌表达载体pET30a(+)(基因合成与亚克隆过程委托苏州金唯智公司完成,pET30a(+)为已公开的商品化大肠杆菌表达载体)。由本公司将带有CADO基因的重组质粒 pET30a-CADO转化大肠杆菌BL21(DE3)宿主,在含有氯霉素(34μg mL-1)的LB抗性固体培养基上过夜筛选。选择其中的阳性克隆单菌落挑选至摇瓶进行重组酶的表达,摇瓶培养采用LB培养基(蛋白胨10 g/L、酵母粉5g/L、氯化钠10g/L),将原始酶重组菌株或变体酶重组菌株接种摇瓶后,在37℃培养至浊度OD600为0.6-1.0后,添加IPTG(异丙基硫代半乳糖苷)的诱导CADO表达(摇瓶内终浓度为 0.4mM),同时降温至25℃培养8-14h。最后,离心收集菌体作为 CADO重组酶粗酶。所述的CADO粗酶可在4℃或-20℃保存备用,也可细胞破碎后用于纯酶的进一步制备,另外也能直接用于催化反应。
将所获得的不同阳性单克隆菌落所制备的重组酶粗酶,加入1 g/L的β-胡萝卜素进行催化反应,反应颜色从橙色逐渐蜕变为浅黄色,选择褪色速度最快的单克隆菌落菌株,作为Top1的重组酶菌株。
实施例3.利用双加氧酶CADO进行酶促生香反应
按照实施实例2所述的方法,步骤进行双加氧酶CADO的表达,获得Top1的重组酶菌株所表达的CADO重组酶粗酶(湿菌体),将噬菌体按照2%(质量分数)加入烟草浸膏(波顿(上海)生物技术有限公司提供)中,在30℃下均匀搅拌反应24h。
分别选择辣椒类胡萝卜素氧化裂解酶(获取编号: NP_001311495.1),烟草类胡萝卜素双加氧裂解酶1-1(获取编号: AIL30506.1),番茄类胡萝卜素9,10(9',10')-裂解双加氧酶(获取编号:XP_015062345.1)按照实施实例2相同的方法克隆至pET30a (+),然后在大肠杆菌BL21(DE3)中进行诱导表达。本实施实例中所有引述的酶的基因及氨基酸编码序列均可以从美国国家生物信息中心(https://www.ncbi.nlm.nih.gov/)通过相应的获取编号查询与获取。
将所表达的辣椒类胡萝卜素氧化裂解酶,烟草类胡萝卜素双加氧裂解酶1-1,番茄类胡萝卜素9,10(9',10')-裂解双加氧酶的粗酶,同样按照2%w/w比率加入烟草浸膏中在30℃下均匀搅拌反应24h,作为阴性对照。以加入2%w/w比率纯水,在30℃下均匀搅拌反应24h的烟草浸膏作为空白对照。
实施例4类胡萝卜素香气成分含量及感官评价 (a)香气成分相对含量变化
将实施实例3酶促生产反应所获取的烟草浸膏,以Agilent SPME 固相微萃取,吸附酶促反应后烟草浸膏的挥发性产物8h。将SPME 吸附的化合物进行GC-MS分析(Agilent7890AGC,Agilent,Santa Clara,CA),同时配有5977A MS检测器(Agilent)。
HP-5MS(Agilent,30m×0.25mm;film thickness,0.25μm)柱子分离混合物。氦气作为GC流动相载气,并保持流速为1mL/min。炉温程序为:40℃保持2min,随后以每分钟上升5℃的速率上升至150℃。最后在260℃中保持10min。酶促生香效果选取,烟草中特征性的类胡萝卜素降解香气产物的相对锋面积变化作为表征(相对峰面积=试验样产物峰面积/空白对照产品峰面积×100%),结果如表2所示,仅有双加氧酶CADO粗酶处理后的烟草浸膏其中的特征类胡萝卜裂解香气产物含量有大幅提高。
表2类胡萝卜素特征裂解产物相对含量变化
Figure BDA0003714115810000061
Figure BDA0003714115810000071
(b)感官评价:将实施实例3酶促生产反应所获取的烟草浸膏用饮用水稀释100倍后,按0.1%w/w添加量喷到烟丝上,然后再恒温恒湿箱中控制烟丝含水率为11.5%,之后卷成烟支进行按烟草添加剂感官评吸方法(参照国标GB 5606.4)进行感官评价,结果如表3所示,双加氧酶CADO处理后的烟草浸膏在吃味方面有明显改善。
表3.不同双加氧酶处理后的烟丝感官评价
Figure BDA0003714115810000072
Figure BDA0003714115810000081
Figure BDA0003714115810000091
Figure BDA0003714115810000101
Figure BDA0003714115810000111
Figure BDA0003714115810000121
序列表
<110> 上海龙殷生物科技有限公司
<120> 一种双加氧酶氨基酸序列、基因及其生物生香应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1086
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Gly Gly Leu Gly Gly Gly Ala Ala Gly Val Gly Ala Ser Gly Gly
1 5 10 15
Ala Val Val Leu Val Ala Gly Leu Pro Ala Leu Gly Pro Ser Ala Leu
20 25 30
Ala Val Ala Leu Leu Gly Leu Gly Ile Val Leu Leu Val His Ala Ser
35 40 45
Ser Leu Pro Leu His Thr Leu Gly Gly Ala Pro Ala Pro Thr Ala Gly
50 55 60
Thr Pro Pro Leu Ala Ala Leu Leu Val His Gly His Leu Pro Gly Cys
65 70 75 80
Leu Ala Gly Gly Pro Val Ala Val Gly Pro Ala Pro Leu Pro Ala Pro
85 90 95
Val Ala Gly Thr His Thr Pro Ala Gly Ala Gly Met Ile His Gly Leu
100 105 110
Leu Ala Gly Leu Ala Thr Thr Val Ser Ala Thr Val Ala Thr Ser Ala
115 120 125
Leu Leu Gly Gly Gly Pro Pro Gly Gly Ala Leu Pro Met Leu Val Gly
130 135 140
Ala Leu Leu Gly Leu Pro Gly Leu Pro Thr Val Thr Met Gly Met Leu
145 150 155 160
Ala Ala Leu Leu Gly Val Leu Ala Ile Ser Thr Gly Ala Gly Thr Ala
165 170 175
Ala Thr Ala Leu Ala Thr His His Gly Leu Leu Leu Ala Leu Ser Gly
180 185 190
Ala Ala Leu Pro Thr Ala Leu Leu Val Leu Leu Ala Gly Ala Leu Gly
195 200 205
Thr Leu Gly Val Leu Ala Thr Ala Leu Ala Leu Thr His Ser Pro Thr
210 215 220
Ala His Pro Leu Val Ala Pro Val Thr Gly Gly Met Pro Thr Pro Gly
225 230 235 240
Thr Ser His Ala Pro Pro Thr Ile Thr Thr Ala Val Ile Ser Ser Ala
245 250 255
Gly Ile Met Gly Ala Pro Val Pro Ile Thr Ile Pro Gly Pro Ile Met
260 265 270
Met His Ala Pro Ala Ile Thr Gly Ala Thr Ala Ile Met Met Ala Leu
275 280 285
Pro Leu Cys Pro Ala Pro Leu Gly Met Val Ala Ala Ala Leu Leu Ala
290 295 300
Pro Thr Pro Ala Gly Thr Leu Leu Ala Ala Pro Gly Val Leu Ala Ala
305 310 315 320
Thr Ala Ala Ala Gly Ala Leu Ile Leu Thr Pro Gly Leu Pro Ala Cys
325 330 335
Pro Ile Pro His Ala Ala Ala Ala Thr Ala Gly Gly Ala Gly Val Val
340 345 350
Leu Ile Thr Cys Ala Leu Met Ala Pro Ala Leu Ala Leu Val Ala Gly
355 360 365
Ala Val Leu Gly Leu Leu Ala Pro Cys Ala Gly Leu Thr Gly Met Ala
370 375 380
Pro Ala Met Leu Ser Gly Ala Ala Ser Gly Leu Leu Leu Ser Gly Ser
385 390 395 400
Ala Val Ala Pro Pro Pro Ala Ile Thr Thr Gly Ala Leu Gly Ala Thr
405 410 415
Val Thr Gly Thr Thr Leu Ala Ser Ile Ala Leu Val Thr Gly Ile Ile
420 425 430
Leu Pro Ala Leu His Ala Gly Pro Leu Thr Gly Leu Ser Gly Leu Gly
435 440 445
Val Gly Gly Ala Val Gly Gly Ile Pro Ala Leu Gly Pro Ala Gly Ala
450 455 460
Pro Gly Ser Gly Ala Val Pro Val Pro Ser Gly Pro Ala Thr Gly Cys
465 470 475 480
Cys Gly Ala Ala Gly Pro Leu Ile Ala Pro Val His Ala Gly Ala Thr
485 490 495
Gly Leu Ser Ala Val Ala Ala Ile Ala Ala Leu Thr Met Ser Ala Gly
500 505 510
Pro Val Ala Val Val Gly Leu Pro Leu Ala Val Pro Thr Gly Pro His
515 520 525
Ala Pro Pro Val Thr Gly Gly Gly Ile Leu Gly Gly Ala Leu Leu Met
530 535 540
Gly Gly Leu Gly Gly Gly Ala Ala Gly Val Gly Ala Ser Gly Gly Ala
545 550 555 560
Val Val Leu Val Ala Gly Leu Pro Ala Leu Gly Pro Ser Ala Leu Ala
565 570 575
Val Ala Leu Leu Gly Leu Gly Ile Val Leu Leu Val His Ala Ser Ser
580 585 590
Leu Pro Leu His Thr Leu Gly Gly Ala Pro Ala Pro Thr Ala Gly Thr
595 600 605
Pro Pro Leu Ala Ala Leu Leu Val His Gly His Leu Pro Gly Cys Leu
610 615 620
Ala Gly Gly Pro Val Ala Val Gly Pro Ala Pro Leu Pro Ala Pro Val
625 630 635 640
Ala Gly Thr His Thr Pro Ala Gly Ala Gly Met Ile His Gly Leu Leu
645 650 655
Ala Gly Leu Ala Thr Thr Val Ser Ala Thr Val Ala Thr Ser Ala Leu
660 665 670
Leu Gly Gly Gly Pro Pro Gly Gly Ala Leu Pro Met Leu Val Gly Ala
675 680 685
Leu Leu Gly Leu Pro Gly Leu Pro Thr Val Thr Met Gly Met Leu Ala
690 695 700
Ala Leu Leu Gly Val Leu Ala Ile Ser Thr Gly Ala Gly Thr Ala Ala
705 710 715 720
Thr Ala Leu Ala Thr His His Gly Leu Leu Leu Ala Leu Ser Gly Ala
725 730 735
Ala Leu Pro Thr Ala Leu Leu Val Leu Leu Ala Gly Ala Leu Gly Thr
740 745 750
Leu Gly Val Leu Ala Thr Ala Leu Ala Leu Thr His Ser Pro Thr Ala
755 760 765
His Pro Leu Val Ala Pro Val Thr Gly Gly Met Pro Thr Pro Gly Thr
770 775 780
Ser His Ala Pro Pro Thr Ile Thr Thr Ala Val Ile Ser Ser Ala Gly
785 790 795 800
Ile Met Gly Ala Pro Val Pro Ile Thr Ile Pro Gly Pro Ile Met Met
805 810 815
His Ala Pro Ala Ile Thr Gly Ala Thr Ala Ile Met Met Ala Leu Pro
820 825 830
Leu Cys Pro Ala Pro Leu Gly Met Val Ala Ala Ala Leu Leu Ala Pro
835 840 845
Thr Pro Ala Gly Thr Leu Leu Ala Ala Pro Gly Val Leu Ala Ala Thr
850 855 860
Ala Ala Ala Gly Ala Leu Ile Leu Thr Pro Gly Leu Pro Ala Cys Pro
865 870 875 880
Ile Pro His Ala Ala Ala Ala Thr Ala Gly Gly Ala Gly Val Val Leu
885 890 895
Ile Thr Cys Ala Leu Met Ala Pro Ala Leu Ala Leu Val Ala Gly Ala
900 905 910
Val Leu Gly Leu Leu Ala Pro Cys Ala Gly Leu Thr Gly Met Ala Pro
915 920 925
Ala Met Leu Ser Gly Ala Ala Ser Gly Leu Leu Leu Ser Gly Ser Ala
930 935 940
Val Ala Pro Pro Pro Ala Ile Thr Thr Gly Ala Leu Gly Ala Thr Val
945 950 955 960
Thr Gly Thr Thr Leu Ala Ser Ile Ala Leu Val Thr Gly Ile Ile Leu
965 970 975
Pro Ala Leu His Ala Gly Pro Leu Thr Gly Leu Ser Gly Leu Gly Val
980 985 990
Gly Gly Ala Val Gly Gly Ile Pro Ala Leu Gly Pro Ala Gly Ala Pro
995 1000 1005
Gly Ser Gly Ala Val Pro Val Pro Ser Gly Pro Ala Thr Gly Cys Cys
1010 1015 1020
Gly Ala Ala Gly Pro Leu Ile Ala Pro Val His Ala Gly Ala Thr Gly
1025 1030 1035 1040
Leu Ser Ala Val Ala Ala Ile Ala Ala Leu Thr Met Ser Ala Gly Pro
1045 1050 1055
Val Ala Val Val Gly Leu Pro Leu Ala Val Pro Thr Gly Pro His Ala
1060 1065 1070
Pro Pro Val Thr Gly Gly Gly Ile Leu Gly Gly Ala Leu Leu
1075 1080 1085
<210> 2
<211> 960
<212> DNA
<213> 草莓(Fragaria grandiflora)
<400> 2
atgggtgaaa aagaggaagg tgatgatggt gtggaacgtt ccgaaggtgc agttgttctg 60
gtcaacgaaa aaccgcgcaa gggcttctcc gctaaggccg tggatctgct ggaaaaaggc 120
atcgtgaaac tggtgcatga ctctagcaaa ccgctgcatt acctgcaggg taatttcgct 180
ccgaccgatg aaacccctcc gctgaacgat ctgctggtac acggtcacct gccggagtgc 240
ctgaacggcg aattcgtgcg cgttggtccg aacccgaaac cggcgccagt ggctggttac 300
cactggttcg acggtgacgg catgatccat ggcctgaaag acggcaaagc tacgtacgtt 360
agccgttatg ttcgcacttc tcgtctgaaa caagaagaat tcttcggtgg tgccaagttc 420
atgaaggtcg gtgatctgaa aggtctgttc ggtctgttta ccgtatatat gcagatgctg 480
cgcgctaagc tggaagtgct ggatatttcc tacggtaacg gtaccgcgaa cacggcactg 540
gcatatcatc atggtaaact gctggcgctg tccgaagcgg acaaaccgta cgccctgaaa 600
gttctgaaag atggtgatct gcagaccctg ggtgttctgg actacgataa gcgcctgacc 660
cactccttca ccgcccaccc gaaagttgac ccggttaccg gcgaaatgtt tactttcggc 720
tattctcacg acccaccata catcacctac cgtgttatca gctctgacgg tatcatgcag 780
gacccggttc cgatcaccat cccggaacct attatgatgc acgatttcgc aatcactgag 840
aactacgcta tcatgatgga cctgccgctg tgtttccgcc cgaaagaaat ggtggcgaac 900
aacaaactgg cgttcacctt cgatggcact aaaaaggctc gctttggcgt tctggcacgt 960

Claims (4)

1.一种双加氧酶CADO基因,其特征在于:该基因的氨基酸序列如序列1所示。
2.根据权利要求1所述的一种双加氧酶CADO基因,其特征在于:所述的双加氧酶基因的氨基酸序列来自于山椒双加氧酶基因翻译。
3.一种处理植物提取物以提高其类胡萝卜素降解香气成分的方法,其特征在于:其使用了双加氧酶CADO的重组酶,进行酶促催化处理。
4.一种提高烟草浸膏的品质的方法,其特征在于:使用双加氧酶CADO对烟草浸膏进行酶促生香处理。
CN202210731627.9A 2022-06-26 2022-06-26 一种双加氧酶氨基酸序列、基因及其生物生香应用 Pending CN115161298A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210731627.9A CN115161298A (zh) 2022-06-26 2022-06-26 一种双加氧酶氨基酸序列、基因及其生物生香应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210731627.9A CN115161298A (zh) 2022-06-26 2022-06-26 一种双加氧酶氨基酸序列、基因及其生物生香应用

Publications (1)

Publication Number Publication Date
CN115161298A true CN115161298A (zh) 2022-10-11

Family

ID=83487787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210731627.9A Pending CN115161298A (zh) 2022-06-26 2022-06-26 一种双加氧酶氨基酸序列、基因及其生物生香应用

Country Status (1)

Country Link
CN (1) CN115161298A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787360A (zh) * 2010-01-20 2010-07-28 云南万芳生物技术有限公司 一种改善与提高烟草品质的烟草加工活性复合酶制剂及制备方法
CN102703470A (zh) * 2005-08-30 2012-10-03 新西兰植物和食品研究院有限公司 调控植物中色素生产的组合物和方法
WO2014176732A1 (en) * 2013-04-28 2014-11-06 Institute Of Botany, The Chinese Academy Of Sciences Novel protein and gene related to flavonoid o-methyltransferase (fomt) and their uses therefore
CN110786534A (zh) * 2019-11-26 2020-02-14 上海龙殷生物科技有限公司 一种利用产类胡萝卜素微生物改善烟草提取物香气的方法
CN111100849A (zh) * 2020-01-16 2020-05-05 安徽农业大学 茶树类胡萝卜素裂解双加氧酶CsCCD4及其在催化合成β-紫罗酮上的应用
CN113512556A (zh) * 2021-06-11 2021-10-19 南京大学 一种与β-紫罗兰酮合成相关的类胡萝卜素裂解双加氧酶基因及其编码蛋白和应用
CN114874926A (zh) * 2022-03-22 2022-08-09 上海龙殷生物科技有限公司 类胡萝卜素氧化菌株及其应用和用于烟草加香的浸膏

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703470A (zh) * 2005-08-30 2012-10-03 新西兰植物和食品研究院有限公司 调控植物中色素生产的组合物和方法
CN101787360A (zh) * 2010-01-20 2010-07-28 云南万芳生物技术有限公司 一种改善与提高烟草品质的烟草加工活性复合酶制剂及制备方法
WO2014176732A1 (en) * 2013-04-28 2014-11-06 Institute Of Botany, The Chinese Academy Of Sciences Novel protein and gene related to flavonoid o-methyltransferase (fomt) and their uses therefore
CN110786534A (zh) * 2019-11-26 2020-02-14 上海龙殷生物科技有限公司 一种利用产类胡萝卜素微生物改善烟草提取物香气的方法
CN111100849A (zh) * 2020-01-16 2020-05-05 安徽农业大学 茶树类胡萝卜素裂解双加氧酶CsCCD4及其在催化合成β-紫罗酮上的应用
CN113512556A (zh) * 2021-06-11 2021-10-19 南京大学 一种与β-紫罗兰酮合成相关的类胡萝卜素裂解双加氧酶基因及其编码蛋白和应用
CN114874926A (zh) * 2022-03-22 2022-08-09 上海龙殷生物科技有限公司 类胡萝卜素氧化菌株及其应用和用于烟草加香的浸膏

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKEMI OHMIYA等: "Carotenoid cleavage dioxygenases and their apocarotenoid products in plants", PLANT BIOTECHNOLOGY, vol. 26, pages 351 - 358 *
GENBANK: "NCBI Reference Sequence: NP_001311495.1", GENBANK, pages 1 - 2 *
YONG WANG等: "Bioinformatic and expression analyses on carotenoid dioxygenase genes in fruit development and abiotic stress responses in Fragaria vesca", MOL GENET GENOMICS, vol. 292, no. 4, pages 895 - 907 *
张梦云;高爱平;赵志常;周开兵;黄建峰;党志国;罗睿雄;: "芒果类胡萝卜素裂解双加氧酶1(CCD1)基因的克隆与序列分析", 分子植物育种, no. 07, pages 69 - 75 *
朱海生等: "草莓9–顺式–环氧类胡萝卜素双加氧酶基因FaNCED的克隆及表达分析", 园艺学报, vol. 39, no. 1, pages 40 - 48 *

Similar Documents

Publication Publication Date Title
Huang et al. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena
Bouvier et al. Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.)
US5656472A (en) Beta-carotene biosynthesis in genetically engineered hosts
Ojima et al. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase
Gao et al. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China
US5530188A (en) Beta-carotene biosynthesis in genetically engineered hosts
CN111100849B (zh) 茶树类胡萝卜素裂解双加氧酶CsCCD4及其在催化合成β-紫罗酮上的应用
US11326173B2 (en) Method of fermentative alpha-ionone production
EP0393690A1 (en) DNA sequences useful for the synthesis of carotenoids
JP6522551B2 (ja) (−)−ロタンドンの製造方法
Han et al. cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans
CN111511923A (zh) 愈创木烯和莎草薁酮的生产
Gorina et al. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3
CN113512556A (zh) 一种与β-紫罗兰酮合成相关的类胡萝卜素裂解双加氧酶基因及其编码蛋白和应用
CN113430215A (zh) 乙酰CoA合成酶基因RKACS1及其应用
Toporkova et al. Detection of the first higher plant epoxyalcohol synthase: Molecular cloning and characterisation of the CYP74M2 enzyme of spikemoss Selaginella moellendorffii
EP4450631A1 (en) Use of oxidoreductase and mutant thereof in biosynthesis of nootkatone
Toporkova et al. Epoxyalcohol synthase activity of the CYP74B enzymes of higher plants
CN115161298A (zh) 一种双加氧酶氨基酸序列、基因及其生物生香应用
Atwal et al. Cloning and secretion of tomato hydroperoxide lyase in Pichia pastoris
CN108753852B (zh) 一种生物法制备覆盆子酮的方法
JP2006500055A (ja) ファフィア属によるゼアキサンチンの製造方法
KR20200068487A (ko) 크로신 생산용 재조합 미생물 및 이를 이용한 크로신의 제조방법
WO2019016384A1 (en) NEW ENZYME
CN113025594B (zh) 多肽、核酸及其在合成香叶醇上的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221011