CN115159569B - 一种碘铋银铜光电材料的制备方法 - Google Patents

一种碘铋银铜光电材料的制备方法 Download PDF

Info

Publication number
CN115159569B
CN115159569B CN202210587253.8A CN202210587253A CN115159569B CN 115159569 B CN115159569 B CN 115159569B CN 202210587253 A CN202210587253 A CN 202210587253A CN 115159569 B CN115159569 B CN 115159569B
Authority
CN
China
Prior art keywords
iodine
bismuth
powder
copper
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210587253.8A
Other languages
English (en)
Other versions
CN115159569A (zh
Inventor
刘满营
杨康妮
范二闯
郑直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang University
Original Assignee
Xuchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuchang University filed Critical Xuchang University
Priority to CN202210587253.8A priority Critical patent/CN115159569B/zh
Publication of CN115159569A publication Critical patent/CN115159569A/zh
Application granted granted Critical
Publication of CN115159569B publication Critical patent/CN115159569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种碘铋银铜光电材料的制备方法。首先制备前驱体溶液:将铜粉、银粉、铋粉和碘粒按原子比为1.8~2.5:1:1~1.2:6.5~9称量,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭容器中,然后倒入一定比例的DMSO和DMF的混合溶液,加热反应一定的时间,形成碘铋银铜前驱体溶液;然后将前驱体溶液过滤,旋涂,退火处理得到碘铋银铜薄膜。本发明通过单质反应成功制备碘铋银铜薄膜,解决了四元化合物碘铋银铜薄膜制备困难的问题,为碘铋银铜薄膜的制备提供了新的思路。

Description

一种碘铋银铜光电材料的制备方法
技术领域
本发明涉及材料制备领域,特别是涉及一种碘铋银铜光电材料的制备方法。
背景技术
随着国家工业化进程的加快和“碳中和”概念的提出,人们对绿色能源的需求也急剧增加,太阳能电池作为最典型的光电转化技术,具有绿色无污染、环境友好等优点受到人们的广泛关注。近年来,有机-无机杂化铅基钙钛矿(APbX3,A=CH3NH3、CH4N2、Cs;X为卤素)作为新型太阳能电池材料最高效率已经达到了25.7%,然而,这种材料在太阳光的照射下容易造成铅的泄露,对环境和人体组织具有严重的危害,因此制约了其广泛的实际应用。
为了解决钙钛矿材料中含铅的问题,人们已经在不断开发新的材料去代替铅基钙钛矿,除了锡基、铋基、锑基、锗基等三元卤素钙钛矿材料之外,双钙钛矿材料作为吸收层也被广泛研究。双钙钛矿的结构为A2M(I)+M(III)3+X6,A一般为Cs+、Cu、MA+,M(I)+为Ag+、In+、Na+等,M(III)3+为Bi3+、Sb3+和In3+等,X为卤素。但是由于In不稳定,容易发生氧化还原反应转换成0价和+3价的铟,其双钙钛矿至今未被合成出来。Bi作为与铅相邻的元素,具有相同的电子排布和原子半径,常被应用在双钙钛矿的M(III)3+位置,而且,Bi基双钙钛矿材料(Cs2AgBiBr6)也已经被应用在光伏领域并且取得了不错的效果。虽然多种Bi基双钙钛矿被合成出来,具有稳定性好,容易合成,带隙小的优点,但是双钙钛矿中A和M原子的兼容性仍不合理,严重影响其光学性能和电子传输路径,导致光电转换效率较低。作为过渡金属的铜或银,具有独特的原子半径和电子排布,丰富度较高,成为双钙钛矿A和M组成元素的不二选择,最近,Matthew J.Rosseinsky等人报道了一种新型的Cu2AgBiI6双钙钛矿,它具有结构稳定,吸收范围较宽,激子结合能小,载流子寿命较长等优点,有望成为一种新型高效的双钙钛矿太阳能电池材料。它的制备方法为将CuI、BiI3和AgI溶解于二甲基亚砜(DMSO)和N,N-二甲基甲酰胺(DMF)的混合溶液,然后在150℃温度下加热30min,趁热旋涂,得到Cu2AgBiI6薄膜(J.Am.Chem.Soc.2021,143,3983-3992)。但是这种制备方法制备过程复杂、原料都为卤化物、需要在150℃加热,这样将产生大量的有机溶剂分解,环境污染严重,成本较高。
发明内容
本发明所要解决的技术问题是提供一种碘铋银铜(Cu2AgBiI6)光电材料的制备方法。本发明利用铜源、铋源、银源和碘源以一定的化学计量比,加入DMSO和DMF,在密闭体系中反应,形成稳定的碘铋银铜前驱体溶液,然后经旋涂,退火,可进一步得到碘铋银铜薄膜。
为了解决上述技术问题,本发明提供以下技术方案:
提供一种碘铋银铜(Cu2AgBiI6)光电材料的制备方法,包括以下步骤:
a)根据碘铋银铜(Cu2AgBiI6)的化学计量比将铜粉、银粉、铋粉和碘粒按铜、银、铋和碘的原子比为1.8~2.5:1:1~1.2:6.5~9称量,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭容器中;
b)然后倒入DMSO和DMF的混合溶液,20~100℃反应一定时间,合成碘铋银铜。
优选地,所述的原料:碘源为碘粒;铋源为铋粉;银源为银粉;铜源为铜粉。
优选地,所述的反应温度优选为50~100℃,反应时间为4~8小时。
优选地,所述的DMSO和DMF的混合溶液中按体积比计DMSO:DMF为1:3~3:1。,优选DMSO:DMF为3:1的混合溶液。
提供一种碘铋银铜太阳能电池薄膜的制备方法,将上述反应得到的碘铋银铜前驱体溶液过滤,旋涂,退火处理得到碘铋银铜薄膜。
优选地,所述的旋涂基底为FTO玻璃。
优选地,所述的旋涂液温度范围为20~100℃。
优选地,所述的退火处理为50℃退火45分钟,150℃退火3~30分钟。
按上述方案,所述的碘铋银铜薄膜的厚度为200~400nm。
本发明的有益效果是:
本发明通过单质反应成功合成了碘铋银铜光电材料,解决了碘铋银铜光电材料的制备难题,为碘铋银铜光电材料的制备提供了新的思路。该制备过程中反应温度低,溶剂不会挥发,原材料简单等,解决了合成过程中使用有机溶剂带来的污染等问题,减少了有机废液污染;低温环境,减少能耗,操作简单,成本低廉,环保高效,有利于实现碘铋银铜的大规模生产。
附图说明
图1是不同比例的反应溶剂合成的Cu2AgBiI6薄膜X射线衍射(XRD)图;
图2是20℃条件下反应合成的Cu2AgBiI6薄膜X射线衍射(XRD)图;
图3是50℃条件下反应合成的Cu2AgBiI6薄膜X射线衍射(XRD)图;
图4是100℃条件下反应合成的Cu2AgBiI6薄膜X射线衍射(XRD)图;
图5是实施例6中的Cu2AgBiI6薄膜的数码照片图;
图6是实施例6中的Cu2AgBiI6粉末X射线衍射(XRD)图。
具体实施方式
下面结合实施例对本发明作进一步描述。
实施例1
一种碘铋银铜光电材料的制备方法,包括以下如下步骤:
1、前驱体溶液的制备,该制备过程包括以下步骤:
a)按摩尔比Cu:Ag:Bi:I=2:1:1:9来称量纯度大于99%的0.128g铜粉、0.108g银粉、0.209g铋粉与1.143g碘粒,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭玻璃瓶中。
b)然后倒入DMSO:DMF不同体积比(DMSO:DMF分别为3:1,1:1,1:3)的2ml混合溶液,在油浴加热70℃情况下反应4个小时,形成碘铋银铜前驱体溶液。
2、碘铋银铜(Cu2AgBiI6)光电材料
a)将前驱体溶液过滤,旋涂液温度为70℃,用液枪迅速取70μl的热前驱液旋涂到FTO玻璃上;
b)随后在加热台上50℃退火45分钟,150℃退火30分钟,生成碘铋银铜薄膜。
实施例2
一种碘铋银铜光电材料的制备方法,包括以下如下步骤:
1、前驱体溶液的制备,该制备过程包括以下步骤:
a)按摩尔比Cu:Ag:Bi:I=2.5:1:1:9来称量纯度大于99%的0.160g铜粉、0.108g银粉、0.209g铋粉与1.143g碘粒,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭玻璃瓶中。
b)然后倒入DMSO:DMF为3:1的2ml混合溶液,在油浴加热20℃情况下反应4个小时,形成碘铋银铜前驱体溶液。
2、碘铋银铜(Cu2AgBiI6)光电材料
a)将前驱体溶液过滤,旋涂液温度为20℃,用液枪迅速取70μl的热前驱体液旋涂到FTO玻璃上;
b)随后在加热台上20℃退火45分钟,150℃退火30分钟,生成碘铋银铜薄膜。
实施例3
一种碘铋银铜光电材料的制备方法,包括以下如下步骤:
1、前驱体溶液的制备,该制备过程包括以下步骤:
a)按摩尔比Cu:Ag:Bi:I=2:1:1:9来称量纯度大于99%的0.128g铜粉、0.108g银粉、0.209g铋粉与1.143g碘粒,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭玻璃瓶中。
b)然后倒入DMSO和DMF为1:1的2ml混合溶液,在油浴加热50℃情况下反应8小时,形成碘铋银铜(Cu2AgBiI6)前驱体溶液。
2、碘铋银铜(Cu2AgBiI6)光电材料
a)将前驱体溶液过滤,旋涂液温度为50℃,用液枪迅速取70μl的热前驱体液旋涂到FTO玻璃上;
b)随后在加热台上50℃退火45分钟,150℃退火30分钟,生成碘铋银铜薄膜。
实施例4
一种碘铋银铜光电材料的制备方法,包括以下如下步骤:
1、前驱体溶液的制备,该制备过程包括以下步骤:
a)按摩尔比Cu:Ag:Bi:I=2.2:1:1:9来称量纯度大于99%的0.141g铜粉、0.108g银粉、
0.209g铋粉与1.143g碘粒,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭玻璃瓶中。b)然后倒入DMSO和DMF为3:1的2ml混合溶液,在油浴加热100℃情况下反应4小时,
形成碘铋银铜(Cu2AgBiI6)前驱体溶液。
2、碘铋银铜(Cu2AgBiI6)光电材料
a)将前驱体溶液过滤,旋涂液温度为100℃,用液枪迅速取70μl的热前驱体液旋涂到FTO玻璃上;
b)随后在加热台上50℃退火45分钟,150℃退火30分钟,生成碘铋银铜薄膜。
实施例5
一种碘铋银铜光电材料的制备方法,包括以下如下步骤:
1、前驱体溶液的制备,该制备过程包括以下步骤:
a)按摩尔比Cu:Ag:Bi:I=2:1:1:9来称量纯度大于99%的0.128g铜粉、0.108g银粉、0.209g铋粉与1.143g碘粒,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭玻璃瓶中。
b)然后倒入DMSO和DMF为1:3的2ml混合溶液,在油浴加热70℃情况下反应4小时,形成碘铋银铜(Cu2AgBiI6)前驱体溶液。
2、碘铋银铜(Cu2AgBiI6)光电材料
a)将前驱体溶液过滤,旋涂液温度为70℃,用液枪迅速取70μl的热前驱体液旋涂到FTO玻璃上;
b)随后在加热台上50℃退火45分钟,150℃退火30分钟,生成碘铋银铜薄膜。
实施例6
一种碘铋银铜光电材料的制备方法,包括以下如下步骤:
1、前驱体溶液的制备,该制备过程包括以下步骤:
a)按摩尔比Cu:Ag:Bi:I=2:1:1.2:9称量纯度大于99%的0.128g铜粉、0.108g银粉、0.251g铋粉与1.143g碘粒,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭玻璃瓶中。
b)然后倒入DMSO和DMF为3:1的混合溶液,在油浴加热70℃情况下反应4小时,形成碘铋银铜(Cu2AgBiI6)前驱体溶液。
2、碘铋银铜(Cu2AgBiI6)光电材料
a)将前驱体溶液过滤,旋涂液温度为70℃,用液枪迅速取70μl的热前驱体液旋涂到FTO玻璃上;
b)随后在加热台上50℃退火45分钟,150℃退火3分钟,生成碘铋银铜薄膜。
上述实施例1-6的样品经XRD表征,Cu2AgBiI6粉末的XRD图谱与文献报道相同,表明:上述实施例均制备得到了碘铋银铜(Cu2AgBiI6)光电材料;不同的反应条件会影响合成的碘铋银铜的纯度和晶面取向,反应条件中:反应温度优选为50~100℃,反应溶剂DMSO和DMF的混合溶液中按体积比计DMSO:DMF为1:3~3:1,优选为DMSO:DMF为3:1的混合溶液。
实施例1中不同比例的反应溶剂(DMSO:DMF分别为3:1,1:1,1:3)合成的碘铋银铜(Cu2AgBiI6)薄膜X射线衍射(XRD)图见图1;
实施例2中的20℃条件下反应合成的碘铋银铜(Cu2AgBiI6)薄膜X射线衍射(XRD)图见图2;
实施例3中的50℃条件下反应合成的碘铋银铜(Cu2AgBiI6)薄膜X射线衍射(XRD)图见图3;
实施例4中的100℃条件下反应合成的碘铋银铜(Cu2AgBiI6)薄膜X射线衍射(XRD)图见图4;
实施例6中的Cu2AgBiI6薄膜的数码照片图见图5;从图中可看出:经过前驱体溶液旋涂,退火处理,在FTO上形成致密的黑色的Cu2AgBiI6薄膜;
实施例6中的碘铋银铜(Cu2AgBiI6)粉末X射线衍射(XRD)图见图6。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,本领域技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种碘铋银铜太阳能电池薄膜的制备方法,其特征在于,步骤如下:
a)根据碘铋银铜的化学计量比将铜粉、银粉、铋粉和碘粒按铜、银、铋和碘的原子比为1.8~2.5:1:1~1.2:6.5~9称量,将称量好的铜粉、银粉、铋粉和碘粒加入到密闭容器中;
b)然后倒入按体积比计DMSO:DMF为1:3~3:1的DMSO和DMF的混合溶液,20~100℃反应一定时间,得到的碘铋银铜前驱体溶液;
c)将得到的碘铋银铜前驱体溶液过滤,旋涂,退火处理得到碘铋银铜薄膜。
2.根据权利要求1所述的碘铋银铜太阳能电池薄膜的制备方法,其特征在于:所述的反应温度为50~100℃,反应时间为4~8小时。
3.根据权利要求2所述的碘铋银铜太阳能电池薄膜的制备方法,其特征在于:所述的旋涂基底为FTO玻璃。
4.根据权利要求2所述的碘铋银铜太阳能电池薄膜的制备方法,其特征在于:所述的旋涂液温度范围为20~100℃。
5.根据权利要求2所述的碘铋银铜太阳能电池薄膜的制备方法,其特征在于:所述的退火处理为50℃退火45分钟,150℃退火3~30分钟。
6.根据权利要求2所述的碘铋银铜太阳能电池薄膜的制备方法,其特征在于:所述的碘铋银铜薄膜的厚度为200~400nm。
CN202210587253.8A 2022-05-26 2022-05-26 一种碘铋银铜光电材料的制备方法 Active CN115159569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210587253.8A CN115159569B (zh) 2022-05-26 2022-05-26 一种碘铋银铜光电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210587253.8A CN115159569B (zh) 2022-05-26 2022-05-26 一种碘铋银铜光电材料的制备方法

Publications (2)

Publication Number Publication Date
CN115159569A CN115159569A (zh) 2022-10-11
CN115159569B true CN115159569B (zh) 2024-03-19

Family

ID=83483548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210587253.8A Active CN115159569B (zh) 2022-05-26 2022-05-26 一种碘铋银铜光电材料的制备方法

Country Status (1)

Country Link
CN (1) CN115159569B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993078A (zh) * 2019-12-02 2021-06-18 许昌学院 一种湿法单质粉末室温反应制备CuBiI4光电薄膜材料的化学方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993078A (zh) * 2019-12-02 2021-06-18 许昌学院 一种湿法单质粉末室温反应制备CuBiI4光电薄膜材料的化学方法

Also Published As

Publication number Publication date
CN115159569A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Ma et al. Doping in inorganic perovskite for photovoltaic application
CN106449979B (zh) 通过双氨基有机物制备热稳定钙钛矿CsPbI3的方法
US20230070055A1 (en) Precursor solution for copper-zinc-tin-sulfur thin film solar cell, preparation method therefor, and use thereof
Ma et al. Recent research developments of perovskite solar cells
TWI421214B (zh) Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法
CN108484569A (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN105810831B (zh) 一种铅锡混合钙钛矿薄膜、其制备方法及应用
CN103943368A (zh) 一种新型含锗钙钛矿材料及其太阳能电池
CN112670415B (zh) 基于光子晶体异质结的反式低维钙钛矿太阳能电池
CN105870337A (zh) 一种高度平整致密钙钛矿薄膜材料的制备及其应用
Cui et al. Recent progress of lead-free bismuth-based perovskite materials for solar cell applications
CN113372012A (zh) 一种掺杂金属元素提高无机无铅CsSnI3钙钛矿稳定性的方法
CN109273601A (zh) 一种钙钛矿太阳能电池及其制备方法
Liu et al. Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells
CN105742384B (zh) 一种卤素掺杂的铅氧族化合物纳米晶及其制备方法和用途
CN111525038A (zh) 一种掺杂有多功能添加剂的钙钛矿太阳电池及其制备方法
Ghani et al. Recent advancement in perovskite solar cell with imidazole additive
CN111029425A (zh) 彩色胶膜和彩色太阳能电池及其制备方法
CN115159569B (zh) 一种碘铋银铜光电材料的制备方法
Ye et al. Bipyridine type Co-complexes as hole-transporting material dopants in perovskite solar cells
Jiang et al. Doping strategies for inorganic lead-free halide perovskite solar cells: progress and challenges
CN115275026A (zh) 一种2d/3d钙钛矿太阳能电池及其制备方法
CN115246654A (zh) 一种Cu基钙钛矿溴铜铯晶体的制备方法
CN109651197B (zh) 一种邻苯二氰衍生物及其制备方法、一种金属酞菁衍生物及其制备方法和应用
CN109473552B (zh) 一种基于溶液法的太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant