CN115125509A - 一种宽温域润滑碳基涂层材料及其制备方法 - Google Patents

一种宽温域润滑碳基涂层材料及其制备方法 Download PDF

Info

Publication number
CN115125509A
CN115125509A CN202210739696.4A CN202210739696A CN115125509A CN 115125509 A CN115125509 A CN 115125509A CN 202210739696 A CN202210739696 A CN 202210739696A CN 115125509 A CN115125509 A CN 115125509A
Authority
CN
China
Prior art keywords
carbon
power
substrate
sih
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210739696.4A
Other languages
English (en)
Inventor
郝俊英
王新宇
鲁艳
隋旭东
张晓�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202210739696.4A priority Critical patent/CN115125509A/zh
Publication of CN115125509A publication Critical patent/CN115125509A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using DC or AC discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种宽温域润滑碳基涂层材料,该涂层材料由氢化非晶硅中间层、硅掺杂类金刚石过渡层和硅、氮共掺杂类金刚石顶层组成,并利用空心阴极放电与等离子体浸没注入技术相结合制得。本发明还公开了其制备方法。本发明所得涂层材料同时具有热稳定性、抗氧化性和优异的润滑性能,可用于发动机活塞、材料成型、高温轴承、齿轮、减摩耐磨物件等领域。

Description

一种宽温域润滑碳基涂层材料及其制备方法
技术领域
本发明涉及涂层材料制备技术领域,尤其涉及一种宽温域润滑碳基涂层材料及其制备方法。
背景技术
类金刚石涂层(DLC)有望成为新一代的高温润滑材料,减少运动部件在航空航天、汽车和材料成型等高温工况中的摩擦和磨损。然而由于DLC涂层在高温环境中的石墨化和氧化作用,纯DLC涂层在高于350 ℃的温度下就会出现严重的磨损和分层。因此,保持DLC涂层在高温条件下优异摩擦学性能的关键就是提高其热稳定性。
以往研究结果表明,掺杂异质元素可以明显降低DLC涂层在高温环境下的氧化和石墨化,包括掺杂Si、W和Ti等元素。由于在接触表面上形成了由SiC纳米晶体组成的薄纳米复合层,Si-DLC涂层比纯DLC涂层表现出更好的高温摩擦学性能。然而当温度高于450 ℃时,Si元素氧化形成的SiO2会导致摩擦系数的急剧上升,在500 ℃时甚至可以达到0.5以上。为此已经开发了诸如多元素掺杂a-C:Cr,Si涂层,具有W中间层的Si-DLC涂层以及(Six-DLC/Siy-DLC)n多层涂层等。从摩擦学测试可以看出这些材料都具有高温润滑行为,但耐磨性均较差且在高温环境下易氧化,出现分层和开裂。
因此,亟需一种同时具有热稳定性、抗氧化性和优异的宽温域润滑性能的碳基涂层。
发明内容
本发明所要解决的技术问题是提供一种同时具有热稳定性、抗氧化性和优异的润滑性能的宽温域润滑碳基涂层材料。
本发明所要解决的另一个技术问题是提供该涂层材料的制备方法。
为解决上述问题,本发明所述的一种宽温域润滑碳基涂层材料,其特征在于:该涂层材料由氢化非晶硅中间层、硅掺杂类金刚石过渡层和硅、氮共掺杂类金刚石顶层组成,并利用空心阴极放电与等离子体浸没注入技术相结合制得。
该涂层的厚度为5~20 μm。
如上所述的一种宽温域润滑碳基涂层材料的制备方法,包括以下步骤:
⑴当真空度低于0.5~0.7 Pa时,采用空心阴极等离子体浸没沉积设备,利用氢气等离子体刻蚀对金属基底表面进行10~30 min的清洁活化;其中前体气体为Ar和H2,总压强为8~10 Pa,H2的分压为80~90 %,腔体内的初始温度为20~35 ℃,在阳极上施加功率为150~200 W的直流电源,在金属基底上施加500~600 V的偏压电源;刻蚀过程中腔体温度保持在80~100 ℃;
⑵对清洗后的基底于25~35 ℃沉积制备氢化非晶硅中间层;其中前体气体为Ar和SiH4,总压强6~7 Pa,SiH4的分压为2~4 %,在阳极上施加功率为100~150 W的直流电源,在待镀基底上施加功率为125~500 W,占空比为60~70 %的负偏压,腔体温度为120~150 ℃,沉积速率为1.1~1.5 μm/h,沉积时间为8~20 min;
⑶当腔体温度为100~150 ℃时,在氢化非晶硅中间层上沉积制备硅含量从下往上逐渐下降的硅掺杂类金刚石过渡层;其中前体气体为Ar、SiH4和C2H2,总压强为9~10 Pa,SiH4与C2H2的压强之比由1:10逐渐降低为1:30,沉积速率为6~9 μm/h,沉积时间20 min,在阳极上施加功率为120~150 W的直流电源,在基底上施加功率为300~500 W,占空比为60~70%的负偏压;
⑷在Si-DLC过渡层上沉积制备硅、氮共掺杂类金刚石顶层;其中前体气体为Ar、SiH4、N2和C2H2,总压强为9~10 Pa,SiH4的分压为2 %,N2的分压为20 %,C2H2的分压为30 %,沉积速率为10~15 μm/h,沉积时间40 min,在阳极上施加功率为120~150 W的直流电源,在基底上施加功率为300~500 W,占空比为60~70 %的负偏压。
本发明与现有技术相比具有以下优点:
1、本发明采用空心阴极放电与等离子体浸没注入技术相结合的方式,以比普通化学气相的低沉积温度(100~150 ℃)、极高的沉积速率(10~15 μm/h)制备具有低内应力和高结合强度的具有弹性、硬质、润滑特性的碳基涂层材料,此类涂层以氢化非晶硅为中间层,以硅掺杂类金刚石层过渡层,最后覆盖硅、氮共掺杂类金刚石顶层,从而构成具有低内应力与高膜基结合力的厚碳基涂层。
2、本发明在空心阴极放电的作用下,通过调控偏压功率,在氢化非晶硅中间层内形成交联网络结构,促进中间层与基底生成稳固的Si-Fe键,增强涂层与金属基底之间的结合强度,从而避免涂层在高温环境下发生分层;同时在硅、氮共掺杂类金刚石顶层的制备过程中,适当的压强、负偏压和沉积时间将有利于降低涂层的内应力,并在碳基质内形成具有热力学稳定性的硅氮键和碳氮键,从而增强涂层的抗氧化性和热稳定性,为涂层优异的宽温域润滑性能提供了化学键合基础。
3、发明不需要对金属基底采取额外的加热措施,并且由于腔体体积可变且腔体内超高的等离子体密度,因此可以对具有不同形状的样品进行等离子体处理,操作简单,易于使用。
4、本发明所得涂层材料的厚度为5~20 μm,表面较为光滑(粗糙度<25 nm),与基底的结合力为30~40 N。
5、本发明所得涂层材料同时具有高硬度和高韧性的特点,为弹性硬质涂层,其硬度(H)和杨氏模量(E)分别为15~20 GPa和70~130 GPa,且弹性恢复值(W e)大于70 %。
6、本发明所得涂层材料具有优异的抗氧化性,其在25~300 ℃大气环境退火后涂层的氧含量低于6 %,在400~500 ℃大气环境退火后涂层的氧含量低于13 %。
7、本发明所得涂层材料在不同温度大气环境下具有优异的摩擦学性能,在25~300℃的温度区间内,平均摩擦系数低于0.06,磨损率处于10-7 mm3∙N-1∙m-1量级;在400 ℃,平均摩擦系数低于0.08,磨损率处于10-6 mm3∙N-1∙m-1量级;在500 ℃,平均摩擦系数低于0.04,磨损率处于10-6 mm3∙N-1∙m-1量级。
8、本发明所得涂层材料可用于发动机活塞、材料成型、高温轴承、齿轮、减摩耐磨物件等领域。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明实施例1中宽温域润滑碳基涂层界面的场发射扫描电镜图(a)和表面形貌图(b)。
图2为本发明实施例1中宽温域润滑碳基涂层的拉曼图谱。
图3为本发明实施例1中宽温域润滑碳基涂层在500 ℃摩擦后磨痕的位移-载荷曲线图。
图4为本发明实施例1中宽温域润滑碳基涂层在500 ℃的摩擦系数曲线图。
具体实施方式
一种宽温域润滑碳基涂层材料,该涂层材料由氢化非晶硅中间层、硅掺杂类金刚石过渡层和硅、氮共掺杂类金刚石顶层组成,并利用空心阴极放电与等离子体浸没注入技术相结合制得。该涂层的厚度为5~20 μm。
其制备方法,包括以下步骤:
⑴当真空度低于0.5~0.7 Pa时,采用空心阴极等离子体浸没沉积设备,利用氢气等离子体刻蚀对金属基底表面进行10~30 min的清洁活化;其中前体气体为Ar和H2,总压强为8~10 Pa,H2的分压为80~90 %,腔体内的初始温度为20~35 ℃,在阳极上施加功率为150~200 W的直流电源,在金属基底上施加500~600 V的偏压电源;刻蚀过程中腔体温度保持在80~100 ℃,在消除基底表面氧化物的同时避免基底发生高温氢脆。
⑵对清洗后的基底于25~35 ℃(金属基底不需要使用加热带或者加热丝等额外的加热)沉积制备氢化非晶硅中间层;其中前体气体为Ar和SiH4,总压强6~7 Pa,SiH4的分压为2~4 %,在阳极上施加功率为100~150 W的直流电源,在待镀基底上施加功率为125~500 W,占空比为60~70 %的负偏压,腔体温度为120~150 ℃,沉积速率为1.1~1.5 μm/h,沉积时间为8~20 min。通过调控偏压功率,在中间层内形成交联网络结构,促进中间层与基底生成稳固的Si-Fe键,增强涂层与金属基底之间的结合强度。
⑶当腔体温度为100~150 ℃时,在氢化非晶硅中间层上沉积制备硅含量从下往上逐渐下降的硅掺杂类金刚石(Si-DLC)过渡层;其中前体气体为Ar、SiH4和C2H2,总压强为9~10 Pa,SiH4与C2H2的压强之比由1:10逐渐降低为1:30,沉积速率为6~9 μm/h,沉积时间20min,在阳极上施加功率为120~150 W的直流电源,在基底上施加功率为300~500 W,占空比为60~70 %的负偏压。通过低温沉积制备的过渡层降低整体涂层的内应力。
⑷在Si-DLC过渡层上沉积制备硅、氮共掺杂类金刚石(Si, N-DLC)顶层;其中前体气体为Ar、SiH4、N2和C2H2,总压强为9~10 Pa,SiH4的分压为2 %,N2的分压为20 %,C2H2的分压为30 %,沉积速率为10~15 μm/h,沉积时间40 min,在阳极上施加功率为120~150 W的直流电源,在基底上施加功率为300~500 W,占空比为60~70 %的负偏压。通过剧烈的空心阴极放电使N2和SiH4发生解离,在涂层内形成具有热力学稳定性的硅氮键和碳氮键。
【工作原理】利用空心阴极等离子体浸没沉积技术在金属基底上沉积制备具有交联网络结构的氢化非晶硅中间层,通过偏压功率调控中间层的纳米结构和化学键合,然后继续沉积可减小涂层内应力的硅掺杂类金刚石过渡层,最后沉积硅、氮共掺杂类金刚石顶层,从而构成具有高结合强度和低内应力的厚碳基涂层。同时,由于在空心阴极放电中含碳和含硅等离子体与解离的氮离子反应生成具有热力学稳定性的硅氮键和碳氮键,因此本发明方法不仅提高涂层的抗氧化性,也会有利于增强涂层的热稳定性。
实施例1 一种宽温域润滑碳基涂层材料的制备方法,包括以下步骤:
⑴当真空度低于0.5~0.7 Pa时,将Ar和H2通入空心阴极等离子体浸没沉积设备的腔室中,利用氢气等离子体刻蚀对金属基底表面进行30 min的清洁活化。控制总压强为8Pa,H2的分压为80 %,腔体内的初始温度为25 ℃,在阳极上施加功率为150 W的直流电源,在金属基底上施加500 V的偏压电源。
⑵将前体气体Ar和SiH4通入腔室中,控制总压强6 Pa,SiH4的分压为2 %,在阳极上施加功率为100 W的直流电源,在待镀基底上施加功率为500 W,占空比为70 %的负偏压,腔体温度为130~150 ℃,沉积速率为1.1 μm/h,沉积时间为20 min,得到氢化非晶硅中间层。
⑶当腔体温度为100~150 ℃时,继续通入C2H2气体,控制总压强为9~10 Pa,SiH4与C2H2的压强之比由1:10逐渐降低为1:30,沉积速率为6 μm/h,沉积时间20 min,在阳极上施加功率为150 W的直流电源,在基底上施加功率为500 W,占空比为70 %的负偏压,得到硅掺杂类金刚石(Si-DLC)过渡层。
⑷继续通入N2气体,控制总压强为9~10 Pa,SiH4的分压为2 %,N2的分压为20 %,C2H2的分压为30 %,沉积速率为10 μm/h,沉积时间40 min,在阳极上施加功率为150 W的直流电源,在基底上施加功率为500 W,占空比为70 %的负偏压,得到硅、氮共掺杂类金刚石(Si, N-DLC)顶层。
利用场发射扫描电子显微镜和原子力显微镜分别观察涂层截面和表面,可以发现涂层截面为均匀致密的玻璃状结构,其厚度在8~9 μm,整个涂层与基底结合良好,无缝隙存在(如附图1a所示),表面粗糙度约为20~25 nm,呈现岛状结构(如附图1b所示)。
应用透射电镜与电子衍射可知,宽温域润滑碳基涂层具有典型的非晶结构。通过光电子能谱分析,室温下宽温域润滑碳基涂层表面的氧含量为2~3 at.%。在拉曼光谱中,此类涂层中存在明显的石墨峰,正如附图2所示。通过划痕试验,此类宽温域润滑碳基涂层与基底的结合力为25~30 N。根据纳米压痕试验结果,此类宽温域润滑碳基涂层表面(400 nm深度)的HE分别为15~20 GPa和70~130 GPa。在25 ℃的大气摩擦测试中,此类宽温域润滑碳基涂层的摩擦系数低于0.06,磨损率位于10-7 mm3∙N-1∙m-1量级。
当摩擦温度为300 ℃时,利用场发射扫描电子显微镜和原子力显微镜分别观察涂层截面和表面,可以发现300 ℃退火后涂层截面仍为均匀致密的玻璃状结构,其厚度在8~9μm,整个涂层与基底结合良好,无缝隙存在,表面粗糙度约为25~30 nm,呈现岛状结构。应用透射电镜与电子衍射可知,300 ℃退火后宽温域润滑碳基涂层仍然具有典型的非晶结构,并没有产生石墨纳米晶结构。通过光电子能谱分析,300 ℃退火后宽温域润滑碳基涂层表面的氧含量为5~7 at.%。在拉曼光谱中,300 ℃退火后涂层中存在更加明显的石墨峰。通过划痕试验,300 ℃退火后宽温域润滑碳基涂层与基底的结合力为30~35 N。根据纳米压痕试验结果,此类宽温域润滑碳基涂层表面(400 nm深度)的HE分别为15~20 GPa和90~130GPa。在300 ℃的大气摩擦测试中,此类宽温域润滑碳基涂层的摩擦系数低于0.02,磨损率位于10-7 mm3∙N-1∙m-1量级。
当摩擦温度为500 ℃时,利用场发射扫描电子显微镜和原子力显微镜分别对涂层截面和表面,可以发现500 ℃退火后涂层截面仍为均匀致密的玻璃状结构,其厚度在7~8 μm,整个涂层与基底结合良好,无缝隙存在,表面粗糙度约为30~35 nm,呈现岛状结构。应用透射电镜与电子衍射可知,500 ℃退火后宽温域润滑碳基涂层仍然具有典型的非晶结构,并且产生了类富勒烯纳米晶结构。通过光电子能谱分析,500 ℃退火后宽温域润滑碳基涂层表面的氧含量为10~13 at.%。在拉曼光谱中,500 ℃退火后涂层中存在突出的石墨峰。通过划痕试验,500 ℃退火后宽温域润滑碳基涂层与基底的结合力为35~40 N。根据纳米压痕试验结果,500 ℃退火后宽温域润滑碳基涂层表面(400 nm深度)的HE分别为3~5 GPa和30~60 GPa,磨痕表面压实层的HE和弹性回复系数分别为9~10 GPa、50~60 GPa和89~91 %(如附图3所示)。在500 ℃的大气摩擦测试中,此类宽温域润滑碳基涂层的摩擦系数低于0.04(如附图4所示),磨损率位于10-6 mm3∙N-1∙m-1量级。
实施例2 一种宽温域润滑碳基涂层材料的制备方法,包括以下步骤:
⑴当真空度低于0.5~0.7 Pa时,将Ar和H2通入空心阴极等离子体浸没沉积设备的腔室中,利用氢气等离子体刻蚀对金属基底表面进行10 min的清洁活化。控制总压强为10Pa,H2的分压为90 %,腔体内的初始温度为35 ℃,在阳极上施加功率为200 W的直流电源,在金属基底上施加600 V的偏压电源。
⑵将前体气体Ar和SiH4通入腔室中,控制总压强6~7 Pa,SiH4的分压为4 %,在阳极上施加功率为150 W的直流电源,在待镀基底上施加功率为125 W,占空比为60 %的负偏压,腔体温度为120~130 ℃,沉积速率1.5 μm/h,沉积时间为8 min,得到氢化非晶硅中间层。
⑶当腔体温度为100~130 ℃时,继续通入C2H2气体,控制总压强为9~10 Pa,SiH4与C2H2的压强之比由1:10逐渐降低为1:30,沉积速率9 μm/h,沉积时间20 min,在阳极上施加功率为120 W的直流电源,在基底上施加功率为300 W,占空比为60 %的负偏压,得到Si-DLC过渡层。
⑷继续通入N2气体,控制总压强为9~10 Pa,SiH4的分压为2 %,N2的分压为20 %,C2H2的分压为30 %,沉积速率15 μm/h,沉积时间40 min,在阳极上施加功率为120 W的直流电源,在基底上施加功率为300 W,占空比为60 %的负偏压,得到Si, N-DLC顶层。
实施例3 一种宽温域润滑碳基涂层材料的制备方法,包括以下步骤:
⑴当真空度低于0.5~0.7 Pa时,将Ar和H2通入空心阴极等离子体浸没沉积设备的腔室中,利用氢气等离子体刻蚀对金属基底表面进行20 min的清洁活化。控制总压强为9Pa,H2的分压为80 %,腔体内的初始温度为30 ℃,在阳极上施加功率为175 W的直流电源,在金属基底上施加550 V的偏压电源。
⑵将前体气体Ar和SiH4通入腔室中,控制总压强7 Pa,SiH4的分压为3 %,在阳极上施加功率为125 W的直流电源,在待镀基底上施加功率为300 W,占空比为65 %的负偏压,腔体温度为130~140 ℃,沉积速率1.3 μm/h,沉积时间为15 min,得到氢化非晶硅中间层。
⑶当腔体温度为100~140 ℃时,继续通入C2H2气体,控制总压强为9~10 Pa,SiH4与C2H2的压强之比由1:10逐渐降低为1:30,沉积速率8 μm/h,沉积时间20 min,在阳极上施加功率为135 W的直流电源,在基底上施加功率为400 W,占空比为65 %的负偏压,得到Si-DLC过渡层。
⑷继续通入N2气体,控制总压强为9~10 Pa,SiH4的分压为2 %,N2的分压为20 %,C2H2的分压为30 %,沉积速率12 μm/h,沉积时间40 min,在阳极上施加功率为135 W的直流电源,在基底上施加功率为400 W,占空比为65 %的负偏压,得到Si, N-DLC顶层。

Claims (3)

1.一种宽温域润滑碳基涂层材料,其特征在于:该涂层材料由氢化非晶硅中间层、硅掺杂类金刚石过渡层和硅、氮共掺杂类金刚石顶层组成,并利用空心阴极放电与等离子体浸没注入技术相结合制得的弹性硬质涂层。
2.如权利要求1所述的一种宽温域润滑碳基涂层材料,其特征在于:该涂层的厚度为5~20 μm。
3.如权利要求1所述的一种宽温域润滑碳基涂层材料的制备方法,包括以下步骤:
⑴当真空度低于0.5~0.7 Pa时,采用空心阴极等离子体浸没沉积设备,利用氢气等离子体刻蚀对金属基底表面进行10~30 min的清洁活化;其中前体气体为Ar和H2,总压强为8~10 Pa,H2的分压为80~90 %,腔体内的初始温度为20~35 ℃,在阳极上施加功率为150~200W的直流电源,在金属基底上施加500~600 V的偏压电源;刻蚀过程中腔体温度保持在80~100 ℃;
⑵对清洗后的基底于25~35 ℃沉积制备氢化非晶硅中间层;其中前体气体为Ar和SiH4,总压强6~7 Pa,SiH4的分压为2~4 %,在阳极上施加功率为100~150 W的直流电源,在待镀基底上施加功率为125~500 W,占空比为60~70 %的负偏压,腔体温度为120~150 ℃,沉积速率为1.1~1.5 μm/h,沉积时间为8~20 min;
⑶当腔体温度为100~150 ℃时,在氢化非晶硅中间层上沉积制备硅含量从下往上逐渐下降的硅掺杂类金刚石过渡层;其中前体气体为Ar、SiH4和C2H2,总压强为9~10 Pa,SiH4与C2H2的压强之比由1:10逐渐降低为1:30,沉积速率为6~9 μm/h,沉积时间20 min,在阳极上施加功率为120~150 W的直流电源,在基底上施加功率为300~500 W,占空比为60~70 %的负偏压;
⑷在Si-DLC过渡层上沉积制备硅、氮共掺杂类金刚石顶层;其中前体气体为Ar、SiH4、N2和C2H2,总压强为9~10 Pa,SiH4的分压为2 %,N2的分压为20 %,C2H2的分压为30 %,沉积速率为10~15 μm/h,沉积时间40 min,在阳极上施加功率为120~150 W的直流电源,在基底上施加功率为300~500 W,占空比为60~70 %的负偏压。
CN202210739696.4A 2022-06-28 2022-06-28 一种宽温域润滑碳基涂层材料及其制备方法 Pending CN115125509A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210739696.4A CN115125509A (zh) 2022-06-28 2022-06-28 一种宽温域润滑碳基涂层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210739696.4A CN115125509A (zh) 2022-06-28 2022-06-28 一种宽温域润滑碳基涂层材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115125509A true CN115125509A (zh) 2022-09-30

Family

ID=83379098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210739696.4A Pending CN115125509A (zh) 2022-06-28 2022-06-28 一种宽温域润滑碳基涂层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115125509A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085657A (zh) * 2017-12-29 2018-05-29 苏州大学 基于螺旋波等离子体技术制备氮掺杂类金刚石薄膜的方法
CN113463064A (zh) * 2021-09-03 2021-10-01 长沙中金智能装备有限公司 一种钢筋撕碎用超硬刀盘及制备方法
CN113463062A (zh) * 2021-07-20 2021-10-01 中国科学院兰州化学物理研究所 一种弯管内壁类金刚石碳基涂层沉积方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085657A (zh) * 2017-12-29 2018-05-29 苏州大学 基于螺旋波等离子体技术制备氮掺杂类金刚石薄膜的方法
CN113463062A (zh) * 2021-07-20 2021-10-01 中国科学院兰州化学物理研究所 一种弯管内壁类金刚石碳基涂层沉积方法
CN113463064A (zh) * 2021-09-03 2021-10-01 长沙中金智能装备有限公司 一种钢筋撕碎用超硬刀盘及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAVIN JONGWANNASIRI ET AL.: "Improvement of Thermal Stability and Tribological Performance of Diamond-Like Carbon Composite Thin Films", 《MATERIALS SCIENCES AND APPLICATIONS》 *
XINYU WANG ET AL.: "The effect of acetylene flow rate on the uniform deposition of thick DLC coatings on the inner surface of pipes with different draw ratios", 《VACUUM》 *

Similar Documents

Publication Publication Date Title
KR100404006B1 (ko) 비정질 경질 탄소막, 기계부품, 및 비정질 경질 탄소막의제조방법
Wang et al. High temperature tribology behavior of silicon and nitrogen doped hydrogenated diamond-like carbon (DLC) coatings
TW200927479A (en) Structural material of diamond like carbon complex films and method of manufacturing the same
CN101487121A (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
JP2971928B2 (ja) 潤滑性を有する硬質非晶質炭素―水素―珪素薄膜、表面に該薄膜を有する鉄系金属材料、およびその製造方法
CN109072407B (zh) 特别是活塞环的滑动元件
CN113832447B (zh) 一种导电自润滑复合涂层及其制备方法
CN113201713A (zh) 一种橡胶表面超低摩擦碳基复合薄膜的构筑方法
CN111876753A (zh) 通过含氢碳薄膜与二硫化钼组成配副体系实现超滑宏观的方法
CN108265291A (zh) 一种软质基体表面的碳基涂层及其制备方法
CN115125509A (zh) 一种宽温域润滑碳基涂层材料及其制备方法
JP2018003880A (ja) 摺動部材
JP2002097573A (ja) 摺動部材
JP4558549B2 (ja) 被覆部材の製造方法
CN111286707A (zh) 一种贵金属@洋葱碳杂化的TMC/a-C纳米复合涂层及其制备方法和应用
CN114196913B (zh) 一种超低摩擦固液复合润滑涂层及其制备方法
CN117089819A (zh) 一种高硬度耐磨dlc涂层及制备方法
CN114351088B (zh) 一种固体自润滑涂层及其制备方法
CN114134501A (zh) 钢质表面基于离子氮化及多层复合的dlc涂层的制备方法
CN113549868A (zh) 一种Si、WC增强复合多层非晶碳基宽温域润滑薄膜及其制备方法
CN114921756B (zh) 一种含钨类金刚石涂层及其制备方法
CN113201712B (zh) 一种导电耐磨自润滑碳基薄膜及其制备方法
CN114959699B (zh) 一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法
Wu et al. Preparation and tribological properties of Ni/DLC multilayer film
CN115505157B (zh) 有机无机复合耐磨减摩涂层在聚醚醚酮表面防护中的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination