CN115125492A - Pvd法在跟微粒表面生长惰性层减少银粒粘连的方法 - Google Patents

Pvd法在跟微粒表面生长惰性层减少银粒粘连的方法 Download PDF

Info

Publication number
CN115125492A
CN115125492A CN202210789835.4A CN202210789835A CN115125492A CN 115125492 A CN115125492 A CN 115125492A CN 202210789835 A CN202210789835 A CN 202210789835A CN 115125492 A CN115125492 A CN 115125492A
Authority
CN
China
Prior art keywords
silver
particles
inert layer
nano
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210789835.4A
Other languages
English (en)
Inventor
王凭慧
钱昆
韩勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanke Innovation Park New Material Technology Shenzhen Co ltd
Original Assignee
Nanke Innovation Park New Material Technology Shenzhen Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanke Innovation Park New Material Technology Shenzhen Co ltd filed Critical Nanke Innovation Park New Material Technology Shenzhen Co ltd
Priority to CN202210789835.4A priority Critical patent/CN115125492A/zh
Publication of CN115125492A publication Critical patent/CN115125492A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了银粉制备领域的PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,其步骤包括:S1:将硝酸银置于坩埚中,并将坩埚置于真空箱中,通过分子涡轮泵进行抽真空处理;S2:往真空箱中充入低压纯净惰性气体,并通过钩电阻加热器或石墨加热器进行加热蒸发,产生原物质烟雾,该PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,通过PVD法对硝酸银进行加热熔化,通过导入惰性气体,在超真空环境下进行蒸发冷凝,形成纳米银粉微粒,并进一步通过使用双室高温炉对银粉微粒进行双室气相沉积,使涂层原料反应物沉积在纳米银粉微粒的表层,使其表面形成惰性层,有效的避免纳米银粉微粒之间出现团聚而相互粘连。

Description

PVD法在跟微粒表面生长惰性层减少银粒粘连的方法
技术领域
本发明涉及银粉制备技术领域,具体为PVD法在跟微粒表面生长惰性层减少银粒粘连的方法。
背景技术
物理气相沉积技术是指在真空条件下采用物理方法将材料源(固体或液体)表面气化成气态原子或分子,或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术,物理气相沉积是主要的表面处理技术之一,PVD(物理气相沉积)镀膜技术主要分为三类:真空蒸发镀膜、真空溅射镀膜和真空离子镀膜,物理气相沉积的主要方法有:真空蒸镀、溅射镀膜、电弧等离子体镀膜、离子镀膜和分子束外延等。相应的真空镀膜设备包括真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机。
现有的通过PVD法制备的银粉微粒,加工后的银粒表面活性较强,容易出现团聚,银粒之间相互粘连,为此我们提出了PVD法在跟微粒表面生长惰性层减少银粒粘连的方法。
发明内容
本发明的目的在于提供PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,以解决上述背景技术中提出了现有的通过PVD法制备的银粉微粒,加工后的银粒表面活性较强,容易出现团聚,银粒之间相互粘连的问题。
为实现上述目的,本发明提供如下技术方案:PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,包括如下步骤:
S1:将硝酸银置于坩埚中,并将坩埚置于真空箱中,通过分子涡轮泵进行抽真空处理;
S2:往真空箱中充入低压纯净惰性气体,并通过钩电阻加热器或石墨加热器进行加热蒸发,产生原物质烟雾;
S3:此时由于惰性气体的对流,烟雾上升,接近充液氮的冷却棒,原物质原子与惰性气体原子碰撞而损失能量冷却造成局部饱和,形成原子簇,最终形成纳米银;
S4:在冷却棒上用聚四氟乙烯刮刀刮下纳米银微粒进行收集;
S5:将纳米银微粒置于双室高温炉中的反应室中,将SiC置于涂层室中,通过调节二者温度差和适合方位,进行高温溅射涂层至纳米银微粒表面,形成致密的惰性层。
优选的,所述S1中分子涡轮泵的抽真空处理具体为使其内部的真空度为0.1-0.3pa。
优选的,所述S2中惰性气体可为纯净度为99.99%的He或Ar,所述加热温度为500-800℃。
优选的,所述S5中双室高温炉的温度为800-1000℃。
与现有技术相比,本发明的有益效果是:该PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,通过PVD法对硝酸银进行加热熔化,通过导入惰性气体,在超真空环境下进行蒸发冷凝,形成纳米银粉微粒,并进一步通过使用双室高温炉对银粉微粒进行双室气相沉积,使涂层原料反应物沉积在纳米银粉微粒的表层,使其表面形成惰性层,有效的避免纳米银粉微粒之间出现团聚而相互粘连。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将硝酸银置于坩埚中,并将坩埚置于真空箱中,通过分子涡轮泵进行抽真空处理,真空度为0.1pa,往真空箱中充入低压纯净惰性气体,可为纯净度为99.99%的He或Ar,并通过钩电阻加热器或石墨加热器进行加热蒸发,温度设置为500℃,并产生原物质烟雾,此时由于惰性气体的对流,烟雾上升,接近充液氮的冷却棒,原物质原子与惰性气体原子碰撞而损失能量冷却造成局部饱和,形成原子簇,最终形成纳米银,在冷却棒上用聚四氟乙烯刮刀刮下纳米银微粒进行收集,将纳米银微粒置于双室高温炉中的反应室中,温度为800℃,将SiC置于涂层室中,通过调节二者温度差和适合方位,进行高温溅射涂层至纳米银微粒表面,形成致密的惰性层。
实施例2
将硝酸银置于坩埚中,并将坩埚置于真空箱中,通过分子涡轮泵进行抽真空处理,真空度为0.2pa,往真空箱中充入低压纯净惰性气体,可为纯净度为99.99%的He或Ar,并通过钩电阻加热器或石墨加热器进行加热蒸发,温度设置为600℃,并产生原物质烟雾,此时由于惰性气体的对流,烟雾上升,接近充液氮的冷却棒,原物质原子与惰性气体原子碰撞而损失能量冷却造成局部饱和,形成原子簇,最终形成纳米银,在冷却棒上用聚四氟乙烯刮刀刮下纳米银微粒进行收集,将纳米银微粒置于双室高温炉中的反应室中,温度为900℃,将SiC置于涂层室中,通过调节二者温度差和适合方位,进行高温溅射涂层至纳米银微粒表面,形成致密的惰性层。
实施例3
将硝酸银置于坩埚中,并将坩埚置于真空箱中,通过分子涡轮泵进行抽真空处理,真空度为0.3pa,往真空箱中充入低压纯净惰性气体,可为纯净度为99.99%的He或Ar,并通过钩电阻加热器或石墨加热器进行加热蒸发,温度设置为800℃,并产生原物质烟雾,此时由于惰性气体的对流,烟雾上升,接近充液氮的冷却棒,原物质原子与惰性气体原子碰撞而损失能量冷却造成局部饱和,形成原子簇,最终形成纳米银,在冷却棒上用聚四氟乙烯刮刀刮下纳米银微粒进行收集,将纳米银微粒置于双室高温炉中的反应室中,温度为1000℃,将SiC置于涂层室中,通过调节二者温度差和适合方位,进行高温溅射涂层至纳米银微粒表面,形成致密的惰性层。
综上所述,本发明通过PVD法对硝酸银进行加热熔化,通过导入惰性气体,在超真空环境下进行蒸发冷凝,形成纳米银粉微粒,并进一步通过使用双室高温炉对银粉微粒进行双室气相沉积,使涂层原料反应物沉积在纳米银粉微粒的表层,使其表面形成惰性层,有效的避免纳米银粉微粒之间出现团聚而相互粘连。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
虽然在上文中已经参考实施例对本发明进行了描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的实施例中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举性的描述仅仅是出于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (4)

1.PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,其特征在于:包括如下步骤:
S1:将硝酸银置于坩埚中,并将坩埚置于真空箱中,通过分子涡轮泵进行抽真空处理;
S2:往真空箱中充入低压纯净惰性气体,并通过钩电阻加热器或石墨加热器进行加热蒸发,产生原物质烟雾;
S3:此时由于惰性气体的对流,烟雾上升,接近充液氮的冷却棒,原物质原子与惰性气体原子碰撞而损失能量冷却造成局部饱和,形成原子簇,最终形成纳米银;
S4:在冷却棒上用聚四氟乙烯刮刀刮下纳米银微粒进行收集;
S5:将纳米银微粒置于双室高温炉中的反应室中,将SiC置于涂层室中,通过调节二者温度差和适合方位,进行高温溅射涂层至纳米银微粒表面,形成致密的惰性层。
2.根据权利要求1所述的PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,其特征在于:所述S1中分子涡轮泵的抽真空处理具体为使其内部的真空度为0.1-0.3pa。
3.根据权利要求1所述的PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,其特征在于:所述S2中惰性气体可为纯净度为99.99%的He或Ar,所述加热温度为500-800℃。
4.根据权利要求1所述的PVD法在跟微粒表面生长惰性层减少银粒粘连的方法,其特征在于:所述S5中双室高温炉的温度为800-1000℃。
CN202210789835.4A 2022-07-06 2022-07-06 Pvd法在跟微粒表面生长惰性层减少银粒粘连的方法 Withdrawn CN115125492A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210789835.4A CN115125492A (zh) 2022-07-06 2022-07-06 Pvd法在跟微粒表面生长惰性层减少银粒粘连的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210789835.4A CN115125492A (zh) 2022-07-06 2022-07-06 Pvd法在跟微粒表面生长惰性层减少银粒粘连的方法

Publications (1)

Publication Number Publication Date
CN115125492A true CN115125492A (zh) 2022-09-30

Family

ID=83382836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210789835.4A Withdrawn CN115125492A (zh) 2022-07-06 2022-07-06 Pvd法在跟微粒表面生长惰性层减少银粒粘连的方法

Country Status (1)

Country Link
CN (1) CN115125492A (zh)

Similar Documents

Publication Publication Date Title
US5405458A (en) Method of producing hard film of Ti-Si-N composite material
Mattox Physical vapor deposition (PVD) processes
Elofsson et al. Tilt of the columnar microstructure in off-normally deposited thin films using highly ionized vapor fluxes
JP4296256B2 (ja) 超伝導材料の製造方法
Bleykher et al. The properties of Cu films deposited by high rate magnetron sputtering from a liquid target
CN115125492A (zh) Pvd法在跟微粒表面生长惰性层减少银粒粘连的方法
JP2007297712A (ja) プラズマを利用して堆積された薄いシード層を介してのメタライゼーション
Martin et al. Control of film properties during filtered arc deposition
KR100711488B1 (ko) 알루미늄-마그네슘 합금 피막의 제조방법
US4198449A (en) Method for the preparation of thin films of high-temperature-resistant metals such as tungsten, molybdenum, rhenium or osmium
Choi et al. Annealing temperature effect on the surface properties of the MoSe thin films
CN106637116A (zh) 一种二次电子发射薄膜的简易制备方法
Miyake et al. Chemical vapour deposition of molybdenum on graphite
CN112626470A (zh) 一种碳自掺杂且浓度呈梯度分布的cn薄膜的制备方法
US3963839A (en) Method for the preparation of thin layers of tungsten and molybdenum
US20130015057A1 (en) CATHODE SPUTTER DEPOSITION OF A Cu(In,Ga)X2 THIN FILM
JPS6316464B2 (zh)
KR20060073250A (ko) 알루미늄-마그네슘 합금 피막의 제조방법
Choe et al. Synthesis of tin oxide films by dual ion beam sputtering using Sn target and oxygen ion beam
KR100258056B1 (ko) 이중 이온 빔 스퍼터링을 이용한 Sn 타아겟으로부터의 가스센서용 SnO2 박막의 제조방법
Huang et al. Ion beam assisted deposition of TiN thin film on Si (100)
Bleykher et al. Peculiarities of metal coatings deposition using magnetron sputtering systems with hot and evaporative targets
US3647524A (en) Vapor phase metal plating process
CN108118292B (zh) 覆膜440c不锈钢刀片及其制备方法
KR100407803B1 (ko) 알루미늄 증발용 저항가열 증발원 및 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220930

WW01 Invention patent application withdrawn after publication