CN115109365A - 一种双网络pedot柔性导电聚合物及其制备方法 - Google Patents

一种双网络pedot柔性导电聚合物及其制备方法 Download PDF

Info

Publication number
CN115109365A
CN115109365A CN202210655816.2A CN202210655816A CN115109365A CN 115109365 A CN115109365 A CN 115109365A CN 202210655816 A CN202210655816 A CN 202210655816A CN 115109365 A CN115109365 A CN 115109365A
Authority
CN
China
Prior art keywords
polymer
network
pedot
solution
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210655816.2A
Other languages
English (en)
Inventor
陈珊珊
兰林楷
李宝佳
赵文聪
徐炜权
王铃淇
段柳科
周永利
刘孝明
孙宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202210655816.2A priority Critical patent/CN115109365A/zh
Publication of CN115109365A publication Critical patent/CN115109365A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于新型导电高分子材料领域,具体涉及一种双网络PEDOT柔性导电聚合物及其制备方法。本发明的聚合物由导电高分子材料和柔性聚合物材料通过共混方式制备得到,其制备方法为溶液加工法,制备工艺简单,在相对温和的条件下即可进行有效制备。此外,本发明提供的聚合物电极材料具有300‑541S/cm的电导率和17‑80%断裂伸长率,其综合性能,即电学和力学性能,处在较高水平。

Description

一种双网络PEDOT柔性导电聚合物及其制备方法
技术领域
本发明属于新型导电高分子材料领域,具体涉及一种双网络PEDOT柔性导电聚合物及其制备方法。
背景技术
表皮电信号监测对心脏、肌肉和大脑等相关疾病的诊断和治疗具有重要意义,因此需要具备良好生物兼容性的类皮肤电子设备用于实时、准确传输此类电信号。然而,当前用于传输生理电信号的标准表皮电极,如Ag/AgCl凝胶电极,会由于凝胶电解质中的溶剂蒸发导致电极和皮肤表面之间的机械失配,从而在长时间的监测中出现信号衰减。因此,迫切需要开发具有皮肤适应性、可拉伸性和高导电性的干电极,以实现高分辨率的电生理信号和精确的生物电势监测。
聚合物电极材料是一种利用导电高分子内部载流子(电子、空穴等)迁移实现电荷运输的柔性功能材料,评价电极材料性能指标的基础参数有电导率(S/cm)、断裂伸长率(%)和杨氏模量(MPa)。其中,PEDOT:PSS作为一种具有代表性的生物相容性导电聚合物,由于其固有的机械柔性、电学性能和溶液加工特性,是一种理想的电极候选材料。然而,由于PEDOT:PSS的核壳结构,即过量亲水的PSS包裹着导电组分PEDOT,未经处理的PEDOT:PSS薄膜电导率低于1S/cm。同时由于其刚性共轭骨架,纯PEDOT:PSS薄膜具有非常有限的机械形变,其杨氏模量大于500MPa且断裂伸长率在5%左右,因此不适合用于类皮肤的电子设备。
目前的研究主要集中于单方面利用极性有机溶剂、无机酸和有机酸等提高电导率,例如利用乙二醇掺杂可获得700-800S/cm;或者单方面利用表面活性剂、离子液体和柔性聚合物等提高其拉伸性能,例如与柔性聚乙烯醇共混获得172S/cm的电导率和47%的断裂伸长率聚合物电极。因此目前仍缺乏有效的方式或策略来协同调控PEDOT:PSS薄膜的电导特性和力学性能。
综上所述,开发一种低成本、电导特性和力学性能双优的聚合物电极材料可以缓解现有技术的不足。
发明内容
有鉴于此,本发明的目的在于提供一种双网络PEDOT柔性导电聚合物以及制备方法,具体技术方案如下。
一种双网络PEDOT柔性导电聚合物,所述聚合物由导电高分子材料和柔性聚合物材料通过共混方式制备得到;所述导电高分子材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐;所述柔性聚合物材料包括初级网络材料和次级网络材料,所述初级网络材料为水溶性柔性聚合物材料,所述次级网络材料为在紫外或加热条件下可交联的有机小分子材料;所述双网络PEDOT柔性导电聚合物的导电率范围为300-541S/cm,断裂伸长率为17-80%,杨氏模量范围为12-140MPa。
上述的双网络PEDOT柔性导电聚合物中,电导特性主要来自于导电高分子材料的电荷输运,力学性能主要来自于柔性聚合物材料链段的伸长、滑移。
本发明所述的“柔性聚合物材料”是指具有可弯曲、拉伸和扭转性能的水溶性聚合物材料。
上述的双网络PEDOT柔性导电聚合物中,所述初级网络材料提供主要力学承载能力,所述次级网络进一步提升电极材料力学性能和电导特性。
进一步,所述导电高分子材料和所述柔性聚合物材料的质量比为1/9–1/1。
进一步,所述初级网络材料包括聚乙烯醇、聚乙二醇和聚环氧乙烷和/或水性聚氨酯中的一种或多种。
进一步,所述次级网络材料含有可交联的双键和极性官能团,所述极性官能团包括碳基(C=O)和/或羟基(-OH),所述双键还连接有吸电子单元。
双键连接吸电子单元可以增强聚合力。吸电子单元指能降低与其相邻原子电子云密度的单元,例如此处吸电子单元为碳基,能降低与其相连双键的电子云密度从而使得双键反应活性增加。
次级网络材料还应具有合适的支链长度以降低结构规整度,提升分子链段运动能力。
进一步,所述次级网络材料包括聚乙二醇二丙烯酸酯、丙烯酸、丙烯酸-2-羟乙基酯和/或丙烯酸-4-羟丁基酯中的一种或多种。
进一步,所述共混方式包括机械搅拌、漩涡搅拌和/或超声震荡中的一种或多种。
本发明所述双网络PEDOT柔性导电聚合物的制备方法,包括如下步骤:
1)制备聚合物共混溶液:将柔性聚合物材料中的初级网络材料在室温~120℃配置成水溶液,往PEDOT:PSS溶液中加入极性有机溶剂搅拌,所述极性有机溶剂相对所述PEDOT:PSS溶液的体积占比为5-6%,极性有机溶剂能诱导PEDOT:PSS相分离进一步提高PEDOT:PSS薄膜电导特性;搅拌状态下加入配置好的初级网络材料水溶液和次级网络材料水溶液,继续搅拌得到聚合物共混溶液,所述PEDOT:PSS溶液与加入的总柔性聚合物材料的质量比为1/9-1/1;
2)制备双网络PEDOT柔性导电聚合物:将所述聚合物共混溶液滴加在基底材料(包括玻璃基底或聚四氟乙烯基底)上烘干制得薄膜,再将得到薄膜浸泡在乙二醇或甲醇溶液中,用乙二醇或甲醇处理能进一步提高PEDOT:PSS薄膜电导特性,然后去除薄膜表面的有机溶剂并继续烘干,得到所述双网络PEDOT柔性导电聚合物。
在上述步骤1)中,不同的柔性聚合物在水中的溶解度不同导致需要不同的温度,例如水性聚氨酯在室温下就能配制成均一水溶液,而聚乙烯醇需要在加热的条件下才能很好的溶解在水溶液中。
进一步,所述极性有机溶剂包括乙二醇、甲醇、山梨醇和/或二甲基亚砜中的一种或多种。
进一步,所述步骤2)中往PEDOT:PSS溶液中加入极性有机溶剂在800-1500rpm搅拌10-30分钟;继续加入初级网络材料水溶液和次级网络材料水溶液在800-1500rpm下搅拌0.5-2小时。
进一步,所述步骤3)中将聚合物共混溶液滴加在基底材料上于65-120℃烘烤0.5-2小时,或者于365nm UV下照射6-12小时;去除薄膜表面的有机溶剂后继续于65-120℃烘烤0.5-2小时。
有益技术效果
1)本发明提供的聚合物电极材料制备方法为溶液加工法,制备工艺简单,在相对温和的条件下即可进行有效制备。
2)本发明提供的聚合物电极材料具有300-541S/cm的电导率和17-80%断裂伸长率,聚合物电极的综合性能,即电学和力学性能,同时处在较高水平。
3)本发明的制备方法还可以在制备了聚合物共混溶液后,通过匀胶旋凃法、刮棒涂布法、夹缝式挤压型涂布、喷墨打印、卷对卷印刷工艺和刮刀制备工艺等,在不同面积、多种衬底上直接制备聚合物电极材料,生产步骤快速、简单且极大降低了生产成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明制备的聚合物电极材料;
图2为本发明实施案例4中制备的聚合物电极材料的电导特性;
图3为本发明实施案例4中制备的聚合物电极材料的力学性能;
图4为本发明实施案例4中制备的聚合物电极材料的心电信号测试结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如在本说明书中使用的,术语“大约”,典型地表示为所述值的+/-5%,更典型的是所述值的+/-4%,更典型的是所述值的+/-3%,更典型的是所述值的+/-2%,甚至更典型的是所述值的+/-1%,甚至更典型的是所述值的+/-0.5%。
在本说明书中,某些实施方式可能以一种处于某个范围的格式公开。应该理解,这种“处于某个范围”的描述仅仅是为了方便和简洁,且不应该被解释为对所公开范围的僵化限制。因此,范围的描述应该被认为是已经具体地公开了所有可能的子范围以及在此范围内的独立数字值。例如,范围
Figure BDA0003687607980000061
的描述应该被看作已经具体地公开了子范围如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及此范围内的单独数字,例如1,2,3,4,5和6。无论该范围的广度如何,均适用以上规则。
实施例1
称取500mg聚乙烯醇于20mL玻璃瓶中,并加入9.5mL去离子水,加入磁力搅拌子后在120℃下搅拌至溶液变成澄清透明,停止加热搅拌冷却至室温。往5mL玻璃瓶内移加1mLPH1000溶液(即PEDOT:PSS水溶液,其固含量为1.3wt%,下同),同时加入5v%的乙二醇,加入搅拌子在1500rpm下搅拌20分钟;在搅拌的状态下加入260μL的聚乙烯醇水溶液和6.5mg的聚乙二醇丙烯酸酯(PEGDA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,整体放入干燥箱中干燥2小时,设定温度为85℃。将干燥的薄膜取出,在薄膜表面滴加400μL乙二醇,使其完全浸泡导电薄膜,静置30分钟;将导电薄膜表面的乙二醇倾倒干净,同时使用高纯氮气枪去除表面残留的乙二醇,放入干燥箱继续干燥1小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物,如图1所示。
经测试,该聚合物电极材料的导电率为442S/cm;断裂伸长率为46%,杨氏模量为16Mpa。
实施例2
称取500mg聚乙烯醇于20mL玻璃瓶中,并加入9.5mL去离子水,加入磁力搅拌子后在120℃下搅拌至溶液变成澄清透明,停止加热搅拌冷却至室温。往5mL玻璃瓶内移加1mLPH1000溶液,同时加入5v%的乙二醇,加入搅拌子在1500rpm下搅拌20分钟;在搅拌的状态下加入260μL的聚乙烯醇水溶液和6.5mg的聚乙二醇丙烯酸酯(PEGDA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,整体放入干燥箱中干燥2小时,设定温度为85℃。将干燥的薄膜取出,将其浸泡在乙二醇溶液中,静置30分钟;将导电薄膜从乙二醇溶液中取出,同时使用高纯氮气枪去除表面残留的乙二醇,放入干燥箱继续干燥2小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物,如图1所示。
实施例3
配制5wt%的水性聚氨酯水溶液,往5mL玻璃瓶内移加1mL PH1000溶液,同时加入5v%的乙二醇,加入搅拌子在1500rpm下搅拌20分钟;在搅拌的状态下加入260μL的水性聚氨酯水溶液和6.5mg的聚乙二醇丙烯酸酯(PEGDA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,整体放入干燥箱中干燥2小时,设定温度为85℃。将干燥的薄膜取出,在薄膜表面滴加400μL乙二醇,使其完全浸泡导电薄膜,静置30分钟;将导电薄膜表面的乙二醇倾倒干净,同时使用高纯氮气枪去除表面残留的乙二醇,放入干燥箱继续干燥1小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物。
实施例4
称取500mg聚乙烯醇于20mL玻璃瓶中,并加入9.5mL去离子水,加入磁力搅拌子后在120℃下搅拌至溶液变成澄清透明,停止加热搅拌冷却至室温。往5mL玻璃瓶内移加1mLPH1000溶液,同时加入5v%的乙二醇,加入搅拌子在1500rpm下搅拌20分钟;在搅拌的状态下加入260μL的聚乙烯醇水溶液和39mg的丙烯酸-2-羟乙基酯(2-HEA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,在365nm UV灯下照射12小时。将干燥的薄膜取出,在薄膜表面滴加400μL乙二醇,使其完全浸泡导电薄膜,静置30分钟;将导电薄膜表面的乙二醇倾倒干净,同时使用高纯氮气枪去除表面残留的乙二醇,放入干燥箱继续干燥1小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物。
经测试,该聚合物电极材料的导电率为541S/cm;断裂伸长率为58%,杨氏模量为26Mpa。
不同丙烯酸-2-羟乙基酯含量下聚合物电极材料的电导特性如图2所示,不同丙烯酸-2-羟乙基酯含量下聚合物电极材料的力学性能如图3所示。聚合物电极的力学性能和电导特性随丙烯酸-2-羟乙基酯含量的变化会出现较大差别,其中在其质量占比为60%时有相对优异的综合性能,电导率为541S/cm,断裂伸长为58%。
将该聚合物电极材料应用在心电信号测试中,测试结果如图4所示,具有清晰的PQSRT波形,表明该聚合物电极材料能够准确地实现心电信号监测。
实施例5
称取500mg聚乙烯醇于20mL玻璃瓶中,并加入9.5mL去离子水,加入磁力搅拌子后在120℃下搅拌至溶液变成澄清透明,停止加热搅拌冷却至室温。往5mL玻璃瓶内移加1mLPH1000溶液,同时加入5v%的乙二醇,加入搅拌子在1500rpm下搅拌20分钟;在搅拌的状态下加入260μL的聚乙烯醇水溶液和39mg的丙烯酸-2-羟乙基酯(2-HEA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,整体放入干燥箱中干燥2小时,设定温度为85℃。将干燥的薄膜取出,在薄膜表面滴加400μL乙二醇,使其完全浸泡导电薄膜,静置30分钟;将导电薄膜表面的乙二醇倾倒干净,同时使用高纯氮气枪去除表面残留的乙二醇,放入干燥箱继续干燥1小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物。
实施例6
称取500mg聚乙烯醇于20mL玻璃瓶中,并加入9.5mL去离子水,加入磁力搅拌子后在120℃下搅拌至溶液变成澄清透明,停止加热搅拌冷却至室温。往5mL玻璃瓶内移加1mLPH1000溶液,同时加入5v%的乙二醇,加入搅拌子在1500rpm下搅拌20分钟;在搅拌的状态下加入260μL的聚乙烯醇水溶液和39mg的丙烯酸-2-羟乙基酯(2-HEA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,整体放入干燥箱中干燥2小时,设定温度为85℃。将干燥的薄膜取出,在薄膜表面滴加400μL甲醇,使其完全浸泡导电薄膜,静置30分钟;将导电薄膜表面的甲醇倾倒干净,同时使用高纯氮气枪去除表面残留的甲醇,放入干燥箱继续干燥1小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物。
实施例7
称取500mg聚乙烯醇于20mL玻璃瓶中,并加入9.5mL去离子水,加入磁力搅拌子后在120℃下搅拌至溶液变成澄清透明,停止加热搅拌冷却至室温。往5mL玻璃瓶内移加1mLPH1000溶液,同时加入260μL的聚乙烯醇水溶液和39mg的丙烯酸-2-羟乙基酯(2-HEA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,整体放入干燥箱中干燥2小时,设定温度为85℃。将干燥的薄膜取出,将其浸泡在甲醇溶液中,静置30分钟;将导电薄膜从甲醇溶液中取出,同时使用高纯氮气枪去除表面残留的甲醇,放入干燥箱继续干燥1小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物。
实施例8
称取500mg聚乙烯于20mL玻璃瓶中,并加入9.5mL去离子水,加入磁力搅拌子后在120℃下搅拌至溶液变成澄清透明,停止加热搅拌冷却至室温。往5mL玻璃瓶内移加1mLPH1000溶液,同时加入5v%的乙二醇,加入搅拌子在1500rpm下搅拌20分钟;在搅拌的状态下加入260μL的聚乙烯醇水溶液和39mg的丙烯酸-4-羟丁基酯(4-HBA),在1500rpm下继续搅拌40分钟。移取1.2mL配制好的混合溶液,小心的滴涂在玻璃基底表面,在365nm UV灯下照射12小时。将干燥的薄膜取出,在薄膜表面滴加400μL乙二醇,使其完全浸泡导电薄膜,静置30分钟;将导电薄膜表面的乙二醇倾倒干净,同时使用高纯氮气枪去除表面残留的乙二醇,放入干燥箱继续干燥1小时,设定温度为65℃,得到双网络PEDOT柔性导电聚合物。
实施例9
本发明制备得的双网络PEDOT柔性导电聚合物材料物理性能
Figure BDA0003687607980000121
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种双网络PEDOT柔性导电聚合物,其特征在于,所述聚合物由导电高分子材料和柔性聚合物材料通过共混方式制备得到;所述导电高分子材料为聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐;所述柔性聚合物材料包括初级网络材料和次级网络材料,所述初级网络材料为水溶性柔性聚合物材料,所述次级网络材料为在紫外或加热条件下可交联的有机小分子材料;所述双网络PEDOT柔性导电聚合物的导电率范围为300-541S/cm,断裂伸长率为17-80%,杨氏模量范围为12-140MPa。
2.如权利要求1所述的双网络PEDOT柔性导电聚合物,其特征在于,所述导电高分子材料和所述柔性聚合物材料的质量比为1/9–1/1。
3.如权利要求1所述的双网络PEDOT柔性导电聚合物,其特征在于,所述初级网络材料包括聚乙烯醇、聚乙二醇和聚环氧乙烷和/或水性聚氨酯中的一种或多种。
4.如权利要求1所述的双网络PEDOT柔性导电聚合物,其特征在于,所述次级网络材料含有可交联的双键和极性官能团,所述极性官能团包括碳基(C=O)和/或羟基(-OH),所述双键还连接有吸电子单元。
5.如权利要求4所述的双网络PEDOT柔性导电聚合物,其特征在于,所述次级网络材料包括聚乙二醇二丙烯酸酯、丙烯酸、丙烯酸-2-羟乙基酯和/或丙烯酸-4-羟丁基酯中的一种或多种。
6.如权利要求1所述的双网络PEDOT柔性导电聚合物,其特征在于,所述共混方式包括机械搅拌、漩涡搅拌和/或超声震荡中的一种或多种。
7.权利要求1所述的双网络PEDOT柔性导电聚合物的制备方法,其特征在于,包括如下步骤:
1)制备聚合物共混溶液:将柔性聚合物材料中的初级网络材料在室温~120℃配置成水溶液,往PEDOT:PSS溶液中加入极性有机溶剂搅拌,所述极性有机溶剂相对所述PEDOT:PSS溶液的体积占比为5-6%,搅拌状态下加入配置好的初级网络材料水溶液和次级网络材料水溶液,继续搅拌得到聚合物共混溶液,所述PEDOT:PSS溶液与加入的总柔性聚合物材料的质量比为1/9-1/1;
2)制备双网络PEDOT柔性导电聚合物:将所述聚合物共混溶液滴加在基底材料上烘干制成薄膜,再将得到薄膜浸泡在乙二醇或甲醇溶液中,去除薄膜表面的有机溶剂并继续烘干,得到所述双网络PEDOT柔性导电聚合物。
8.如权利要求7所述的制备方法,其特征在于,所述极性有机溶剂包括乙二醇、甲醇、山梨醇和/或二甲基亚砜中的一种或多种。
9.如权利要求7所述的制备方法,其特征在于,所述步骤2)中往PEDOT:PSS溶液中加入极性有机溶剂在800-1500rpm搅拌10-30分钟;继续加入初级网络材料水溶液和次级网络材料水溶液在800-1500rpm下搅拌0.5-2小时。
10.如权利要求7所述的制备方法,其特征在于,所述步骤3)中将聚合物共混溶液滴加在基底材料上于65-120℃烘烤0.5-2小时,或者于365nm UV下照射6-12小时;去除薄膜表面的有机溶剂后继续于65-120℃烘烤0.5-2小时。
CN202210655816.2A 2022-06-10 2022-06-10 一种双网络pedot柔性导电聚合物及其制备方法 Pending CN115109365A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210655816.2A CN115109365A (zh) 2022-06-10 2022-06-10 一种双网络pedot柔性导电聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210655816.2A CN115109365A (zh) 2022-06-10 2022-06-10 一种双网络pedot柔性导电聚合物及其制备方法

Publications (1)

Publication Number Publication Date
CN115109365A true CN115109365A (zh) 2022-09-27

Family

ID=83326339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210655816.2A Pending CN115109365A (zh) 2022-06-10 2022-06-10 一种双网络pedot柔性导电聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN115109365A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200422338A (en) * 2003-01-28 2004-11-01 Toppan Forms Co Ltd Conductive polymer gel and method of producing the same, actuator, iontophoretic patch label, biomedical electrode, toner, conductive functional member, antistatic sheet, printed circuit member, conductive paste, electrode for fuel cell, and fuel cell
JP2005145987A (ja) * 2003-01-28 2005-06-09 Toppan Forms Co Ltd 導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極
CN107892891A (zh) * 2017-05-04 2018-04-10 南京诺邦新材料有限公司 一种用于医用电极片的导电压敏胶及其制备方法
US20180146873A1 (en) * 2015-07-08 2018-05-31 Nippon Telegraph And Telephone Corporation Biomedical electrode and wearable electrode
CN108210940A (zh) * 2017-06-02 2018-06-29 深圳市前海未来无限投资管理有限公司 医用导电水凝胶及其制备方法与应用
CN111058124A (zh) * 2019-12-13 2020-04-24 东华大学 一种杂化交联透明离子导电有机水凝胶纤维的制备方法
CN113943428A (zh) * 2021-10-21 2022-01-18 郭艳 一种心电检测用导电凝胶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200422338A (en) * 2003-01-28 2004-11-01 Toppan Forms Co Ltd Conductive polymer gel and method of producing the same, actuator, iontophoretic patch label, biomedical electrode, toner, conductive functional member, antistatic sheet, printed circuit member, conductive paste, electrode for fuel cell, and fuel cell
JP2005145987A (ja) * 2003-01-28 2005-06-09 Toppan Forms Co Ltd 導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極
US20180146873A1 (en) * 2015-07-08 2018-05-31 Nippon Telegraph And Telephone Corporation Biomedical electrode and wearable electrode
CN107892891A (zh) * 2017-05-04 2018-04-10 南京诺邦新材料有限公司 一种用于医用电极片的导电压敏胶及其制备方法
CN108210940A (zh) * 2017-06-02 2018-06-29 深圳市前海未来无限投资管理有限公司 医用导电水凝胶及其制备方法与应用
CN111058124A (zh) * 2019-12-13 2020-04-24 东华大学 一种杂化交联透明离子导电有机水凝胶纤维的制备方法
CN113943428A (zh) * 2021-10-21 2022-01-18 郭艳 一种心电检测用导电凝胶及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LAN, LK等: "Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring", ACS APPLIED MATERIALS & INTERFACES, vol. 14, no. 17, pages 20113 - 20121 *
ZHANG, Y等: "Lignin sulfonate induced ultrafast polymerization of double network hydrogels with anti-freezing, high strength and conductivity and their sensing applications at extremely cold conditions", COMPOSITES PART B-ENGINEERING, vol. 217 *
马飞祥;丁晨;凌忠文;袁伟;孟秀清;苏文明;崔铮;: "导电织物制备方法及应用研究进展", 材料导报, no. 01, pages 120 - 131 *

Similar Documents

Publication Publication Date Title
Pyarasani et al. Polyaniline-based conducting hydrogels
US20200401042A1 (en) Directly photo-patternable, stretchable, electrically conductive polymer
US20200299466A1 (en) Pure conducting polymer hydrogel and hydrogel precursor materials having extraordinary electrical, mechanical and swelling properties and methods of making
US8491819B2 (en) High work-function and high conductivity compositions of electrically conducting polymers
KR102403191B1 (ko) 접착식 전극 패치
US20190390068A1 (en) Electrically conductive hydrogels with tunable properties
KR102183663B1 (ko) 이차전지용 고체 전해질 조성물 및 이로부터 제조된 고체 전해질
CN114292433B (zh) 一种光固化3d打印用生物导电水凝胶及其制备方法
Chen et al. Triple‐network‐based conductive polymer hydrogel for soft and elastic bioelectronic interfaces
US20120211702A1 (en) Electrically Conducting Polymer And Copolymer Compositions, Methods For Making Same And Applications Therefor
JP3066431B2 (ja) 導電性高分子複合物の製造方法
CN114805673A (zh) 一种天然高分子导电水凝胶及其制备方法和应用
CN115109365A (zh) 一种双网络pedot柔性导电聚合物及其制备方法
CN113651979B (zh) 一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法
JP3843505B2 (ja) 高分子電解質及び電池
EP2206170A1 (de) Verfahren zur beschichtung von unpolaren polyaromaten enthaltenden schichten
Selampinar et al. Synthesis of a hexafluoropropylidene‐bis (phthalic anhydride)‐based polyimide and its conducting polymer composites with polypyrrole
CN116039075B (zh) 一种制备pedot:pss柔性导线的快速液相3d打印方法
CN117070052A (zh) 一种新型柔性导电聚合物薄膜电极材料及其制备方法
CN112968131B (zh) 一种可拉伸光电探测器及其制备方法
CN116640417A (zh) 一种制备具有可拉伸性传感器的柔性导电聚合物及方法
KR20230113487A (ko) 고전도성 pedot:pss와 이온성 액체 복합체 잉크, 제조방법 및 그 응용
CN118374851A (zh) 一种用于电极表面修饰的pedot:sds的制备方法
DE102004033288A1 (de) Kondensationsprodukte aus 3,4-Alkylendioxythiophen-Derivaten mit Ketonen und daraus erhältliche elektrisch leitfähige Polymere
CN116462926A (zh) 一种用于制备导电水凝胶的组合物、导电水凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220927

WD01 Invention patent application deemed withdrawn after publication