CN115094306A - 屈服强度960MPa级海洋工程用钢板及生产方法 - Google Patents

屈服强度960MPa级海洋工程用钢板及生产方法 Download PDF

Info

Publication number
CN115094306A
CN115094306A CN202210587845.XA CN202210587845A CN115094306A CN 115094306 A CN115094306 A CN 115094306A CN 202210587845 A CN202210587845 A CN 202210587845A CN 115094306 A CN115094306 A CN 115094306A
Authority
CN
China
Prior art keywords
steel plate
960mpa
temperature
yield strength
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210587845.XA
Other languages
English (en)
Other versions
CN115094306B (zh
Inventor
赵燕青
齐建军
孙力
陈振业
莫德敏
庞辉勇
张朋
杨浩
魏浩
石帅
高云哲
白丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Hegang Material Technology Research Institute Co ltd
HBIS Co Ltd
Original Assignee
HBIS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HBIS Co Ltd filed Critical HBIS Co Ltd
Priority to CN202210587845.XA priority Critical patent/CN115094306B/zh
Publication of CN115094306A publication Critical patent/CN115094306A/zh
Application granted granted Critical
Publication of CN115094306B publication Critical patent/CN115094306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种屈服强度960MPa级海洋工程用钢板及生产方法,属于冶金技术领域。钢板化学成分及质量含量为C:0.15~0.17%,Si:0.25~0.35%,Mn:0.75~1.1%,P≤0.010%,S≤0.004%,Nb:0.018~0.025%,V:0.02~0.04%,Cr:1.45~1.50%,Mo:0.50~0.60%,B:0.0010~0.0018%,Ti:0.013~0.018%,Alt:0.02~0.05%,余量为Fe和不可避免的杂质。其生产方法包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序。本发明钢板合金成本低,在高温回火前增加一次低温回火工序,保证了钢板的低温韧性。

Description

屈服强度960MPa级海洋工程用钢板及生产方法
技术领域
本发明属于冶金技术领域,具体涉及一种屈服强度960MPa级海洋工程用钢板及生产方法。
背景技术
近年来,我国在海洋工程装备用钢的生产方面取得了很大的进步,随着海洋工程装备的大型化及深海作业需求的增加,海洋工程装备用钢的强度需求逐渐增加,采用高强度或超高强度钢可以有效减轻海洋工程装备结构自重,提升海洋工程装备运行效率,高强度成为海洋工程装备用钢的发展方向。
目前国内屈服强度960MPa级钢板存在强度高但冲击韧性普遍较差,或合金成本高、推广难度大等问题。
公开号为CN111455269A的发明专利申请公开了一种屈服强度960MPa级甚高强度海工钢板及其制造方法,其通过成分设计,经过淬火和回火热处理得到合理的性能,但该专利公布的成分设计含Ni:1.00%~2.00%,合金成本高,不利于推广应用。
因此,通过合理的成分设计和工艺设计,开发屈服强度960MPa级低成本海工钢板具有重要的意义。
发明内容
为解决上述技术问题,本发明提供一种屈服强度960MPa级海洋工程用钢板及生产方法,该钢板合金成本低,力学性能良好。本发明采用如下技术方案:
一种屈服强度960MPa级海洋工程用钢板,所述钢板化学成分及质量百分含量为C:0.15~0.17%,Si:0.25~0.35%,Mn:0.75~1.1%,P≤0.010%,S≤0.004%,Nb:0.018~0.025%, V:0.02~0.04%,Cr:1.45~1.50%,Mo:0.50~0.60%,B:0.0010~0.0018%,Ti:0.013~0.018%,Alt:0.02~0.05%,余量为Fe和不可避免的杂质。
所述钢板厚度为15~50mm,钢板组织为马氏体+贝氏体。
所述钢板屈服强度≥960MPa,抗拉强度980~1150MPa,延伸率≥12%,-40℃横向冲击功≥120J。
上述屈服强度960MPa级海洋工程用钢板的生产方法,包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序;所述淬火工序,加热温度900~930℃,加热系数为2~3min/mm,出炉后水冷;所述两阶段回火工序,一阶段回火加热温度420~450℃,加热系数为4~5min/mm,出炉后空冷,二阶段回火加热温度570~610℃,加热系数为4~5min/mm,出炉后空冷。
所述加热工序,钢坯最高加热温度1240~1250℃,均热温度1210~1220℃,总加热时间≥10min/cm,均热段在炉时间≥40min。
所述轧制工序,采用两阶段控制轧制工艺,第一阶段轧制温度为1040~1150℃,待温轧制厚度为2.6~3.2倍成品钢板厚度;第二阶段开轧温度为900~930℃,第二阶段终轧温度为820~850℃。
采用上述技术方案所产生的有益效果在于:1、本发明钢板的化学成分设计采用低C,保证钢板良好的焊接性;采用Nb、V、Ti微合金化设计,细化晶粒;添加Cr、Mo和B等合金元素提高钢的淬透性,保证钢板的综合性能。2、本发明钢板的化学成分设计未含Ni元素,钢板合金成本大幅度降低,更适合钢板的大规模推广应用。3、本发明钢板采用两阶段回火工序,即在高温回火前增加一次低温回火工序,此低温回火工序可减少组织M-A岛中残余奥氏体边缘的位错密度和相变残余应力,抑制碳化物在残余奥氏体边缘位置形核,改善高温回火后析出相聚集区中的碳化物的尺寸和分布,减轻M-A岛高温回火转变产物的危害性,提高钢板高温回火后的低温冲击韧性。4、本发明钢板具有良好的综合性能,屈服强度≥960MPa,抗拉强度980~1150MPa,延伸率≥12%,-40℃横向冲击功≥120J,钢板厚度为15~50mm。
附图说明
图1为本发明实施例1钢板的显微组织图。
具体实施方式
下面结合实施例对本发明做进一步详细说明。
实施例1-10
一种屈服强度960MPa级海洋工程用钢板的生产方法,其工艺流程包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序。
加热工序:钢坯最高加热温度1240~1250℃,均热温度1210~1220℃,总加热时间≥10min/cm,均热段在炉时间≥40min。
轧制工序:采用两阶段控制轧制工艺,第一阶段轧制温度为1040~1150℃,待温轧制厚度为2.6~3.2倍成品钢板厚度;第二阶段开轧温度为900~930℃,第二阶段终轧温度为820~850℃。
淬火工序:加热温度900~930℃,加热系数为2~3min/mm,出炉后水冷。
两阶段回火工序:一阶段回火加热温度420~450℃,加热系数为4~5min/mm,出炉后空冷,二阶段回火加热温度570~610℃,加热系数为4~5min/mm,出炉后空冷。
各实施例生产工序参数见表1、2,所得钢板化学成分及质量百分含量见表3,钢板规格及性能见表4。
表1. 各实施例加热、轧制工序参数
Figure DEST_PATH_IMAGE002
表2. 各实施例淬火、两阶段回火工序参数
Figure DEST_PATH_IMAGE004
表3. 各实施例钢板化学成分及质量百分含量(%)
Figure DEST_PATH_IMAGE006
表4. 各实施例钢板规格及性能
Figure DEST_PATH_IMAGE008

Claims (7)

1. 一种屈服强度960MPa级海洋工程用钢板,其特征在于,所述钢板化学成分及质量百分含量为C:0.15~0.17%,Si:0.25~0.35%,Mn:0.75~1.1%,P≤0.010%,S≤0.004%,Nb:0.018~0.025%, V:0.02~0.04%,Cr:1.45~1.50%,Mo:0.50~0.60%,B:0.0010~0.0018%,Ti:0.013~0.018%,Alt:0.02~0.05%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的屈服强度960MPa级海洋工程用钢板,其特征在于,所述钢板厚度为15~50mm,钢板组织为马氏体+贝氏体。
3.根据权利要求1或2所述的屈服强度960MPa级海洋工程用钢板,其特征在于,所述钢板屈服强度≥960MPa,抗拉强度980~1150MPa,延伸率≥12%,-40℃横向冲击功≥120J。
4.基于权利要求1-3任一项所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述生产方法包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序;所述淬火工序,加热温度900~930℃,加热系数为2~3min/mm,出炉后水冷;
所述两阶段回火工序,一阶段回火加热温度420~450℃,加热系数为4~5min/mm,出炉后空冷,二阶段回火加热温度570~610℃,加热系数为4~5min/mm,出炉后空冷。
5.根据权利要求4所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述加热工序,钢坯最高加热温度1240~1250℃,均热温度1210~1220℃,总加热时间≥10min/cm,均热段在炉时间≥40min。
6.根据权利要求4所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述轧制工序,采用两阶段控制轧制工艺,第一阶段轧制温度为1040~1150℃,待温轧制厚度为2.6~3.2倍成品钢板厚度。
7.根据权利要求4所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述轧制工序,第二阶段开轧温度为900~930℃,第二阶段终轧温度为820~850℃。
CN202210587845.XA 2022-05-27 2022-05-27 屈服强度960MPa级海洋工程用钢板及生产方法 Active CN115094306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210587845.XA CN115094306B (zh) 2022-05-27 2022-05-27 屈服强度960MPa级海洋工程用钢板及生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210587845.XA CN115094306B (zh) 2022-05-27 2022-05-27 屈服强度960MPa级海洋工程用钢板及生产方法

Publications (2)

Publication Number Publication Date
CN115094306A true CN115094306A (zh) 2022-09-23
CN115094306B CN115094306B (zh) 2023-05-09

Family

ID=83288260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210587845.XA Active CN115094306B (zh) 2022-05-27 2022-05-27 屈服强度960MPa级海洋工程用钢板及生产方法

Country Status (1)

Country Link
CN (1) CN115094306B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256056A (ja) * 1996-03-25 1997-09-30 Nippon Steel Corp 高効率で且つ均一性の良い強靭厚鋼板の製造法
JP2008266758A (ja) * 2007-04-25 2008-11-06 Jfe Steel Kk 低温靭性に優れ、かつ強度異方性が小さい高張力鋼材ならびにその製造方法
CN102953000A (zh) * 2011-08-19 2013-03-06 鞍钢股份有限公司 一种超高强度钢板及其制造方法
CN103320697A (zh) * 2013-06-17 2013-09-25 中国石油集团渤海石油装备制造有限公司 一种应用于超深井工况的钻杆管体及其制造方法
CN104498837A (zh) * 2014-12-01 2015-04-08 舞阳钢铁有限责任公司 大厚度屈服强度890Mpa以上级别调质钢板及其生产方法
CN109468529A (zh) * 2018-10-12 2019-03-15 舞阳钢铁有限责任公司 一种无镍超高强钢板及其生产方法
JP2020117796A (ja) * 2019-01-28 2020-08-06 Jfeスチール株式会社 超低降伏比高張力厚鋼板およびその製造方法
CN111826593A (zh) * 2020-07-27 2020-10-27 中国兵器工业第五九研究所 一种具有高温高耐磨性的中低碳中低合金钢及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256056A (ja) * 1996-03-25 1997-09-30 Nippon Steel Corp 高効率で且つ均一性の良い強靭厚鋼板の製造法
JP2008266758A (ja) * 2007-04-25 2008-11-06 Jfe Steel Kk 低温靭性に優れ、かつ強度異方性が小さい高張力鋼材ならびにその製造方法
CN102953000A (zh) * 2011-08-19 2013-03-06 鞍钢股份有限公司 一种超高强度钢板及其制造方法
CN103320697A (zh) * 2013-06-17 2013-09-25 中国石油集团渤海石油装备制造有限公司 一种应用于超深井工况的钻杆管体及其制造方法
CN104498837A (zh) * 2014-12-01 2015-04-08 舞阳钢铁有限责任公司 大厚度屈服强度890Mpa以上级别调质钢板及其生产方法
CN109468529A (zh) * 2018-10-12 2019-03-15 舞阳钢铁有限责任公司 一种无镍超高强钢板及其生产方法
JP2020117796A (ja) * 2019-01-28 2020-08-06 Jfeスチール株式会社 超低降伏比高張力厚鋼板およびその製造方法
CN111826593A (zh) * 2020-07-27 2020-10-27 中国兵器工业第五九研究所 一种具有高温高耐磨性的中低碳中低合金钢及其制备方法

Also Published As

Publication number Publication date
CN115094306B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2022022047A1 (zh) 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
CN107475620B (zh) 低温压力容器用调质型A537Cl2钢板及其生产方法
CN114959460B (zh) 一种低屈强比易焊接耐候桥梁钢及其制造方法
WO2020098306A1 (zh) 一种大厚度nm500耐磨钢及生产方法
CN109252107B (zh) 一种高平直度超高强钢的生产方法
WO2022052335A1 (zh) 一种大厚度低碳当量高韧性耐磨钢板及其制造方法
CN102691018A (zh) 一种低压缩比超高强度海洋工程用钢板及其生产方法
CN102400043A (zh) 一种大厚度海洋工程用钢板及其生产方法
CN109576449B (zh) 一种抵抗剩磁增加、节约生产能耗的9Ni钢板的生产方法
CN106834946B (zh) 大厚度保高温抗拉强度钢板SA299GrB及其制备方法
CN103451520A (zh) 一种q345工程用钢及其生产方法
CN113652607A (zh) 一种1000MPa级调质型水电用钢板及其生产方法
CN106399840A (zh) 低成本低屈强比调质型q690e钢板及生产方法
CN111748730B (zh) 900MPa级别高韧性高磁性热轧磁轭钢及其生产方法
CN102191430A (zh) 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN113637908B (zh) 一种大厚度低温环境用高锰钢板及其生产方法
CN102260823A (zh) 一种经济型屈服强度690MPa级高强钢板及其制造方法
CN111748732A (zh) 1000MPa级别高韧性高磁性热轧磁轭钢及其生产方法
CN113930692A (zh) 一种先进压水堆核电站用高均质化超厚钢板及其制造方法
CN103882335B (zh) 一种屈服强度800MPa级热轧高强度钢及其生产方法
CN104651735A (zh) 一种韧性大于50J/cm2的低合金耐磨钢及生产方法
CN111041329A (zh) 一种海洋工程用高强高韧性钢板及其生产方法
CN114058960B (zh) 一种25~60mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法
CN115558863A (zh) 一种屈服强度≥750MPa的低屈强比海工钢及其生产工艺
CN114277222A (zh) 一种Mn-Ni-Cr-Mo-Nb钢板的热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240219

Address after: No.385, South TIYU street, Shijiazhuang City, Hebei Province

Patentee after: HBIS Co.,Ltd.

Country or region after: China

Patentee after: Hebei Hegang Material Technology Research Institute Co.,Ltd.

Address before: No.385, South TIYU street, Shijiazhuang City, Hebei Province

Patentee before: HBIS Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right