CN115090001B - 一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法 - Google Patents

一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法 Download PDF

Info

Publication number
CN115090001B
CN115090001B CN202210779661.3A CN202210779661A CN115090001B CN 115090001 B CN115090001 B CN 115090001B CN 202210779661 A CN202210779661 A CN 202210779661A CN 115090001 B CN115090001 B CN 115090001B
Authority
CN
China
Prior art keywords
chamber
extraction
stirring
adsorption
stirrer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210779661.3A
Other languages
English (en)
Other versions
CN115090001A (zh
Inventor
刘智敏
苏敬淳
许志刚
田宇
叶柯希
彭玥寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210779661.3A priority Critical patent/CN115090001B/zh
Publication of CN115090001A publication Critical patent/CN115090001A/zh
Application granted granted Critical
Publication of CN115090001B publication Critical patent/CN115090001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/452Magnetic mixers; Mixers with magnetically driven stirrers using independent floating stirring elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

本发明属于磁固相萃取技术领域,本发明提供了一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法。该萃取装置包括搅拌室、吸附萃取室和微孔滤膜,其使用方法包括以下步骤:在吸附萃取室中加入磁性吸附剂;用热熔胶将微孔滤膜固定在搅拌室和吸附萃取室的交接处;向萃取装置中添加含有分析物的液体;在搅拌室中放入搅拌子,进行搅拌萃取。本发明提出了将搅拌子与萃取所使用的磁性吸附剂分隔开来的方法,并利用搅拌进行萃取,解决了搅拌子在搅拌时极易吸附磁性吸附剂的问题,提升了萃取效率。

Description

一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法
技术领域
本发明涉及磁固相萃取技术领域,尤其涉及一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法。
背景技术
目前,在进行萃取操作时,常用的方法为震荡法,但是其存在着萃取效率较低,富集倍数较低,且操作不够简便等技术缺陷。而在进行磁固相萃取时,可以使用搅拌子来加速目标物在吸附剂与溶剂之间的分配平衡,以此来增大萃取效率。但是,当使用搅拌子时,磁性吸附剂极易被吸附在搅拌子上,难以将磁性吸附剂与搅拌子完全分离,导致后续萃取效率降低。萃取完成后磁性吸附剂的解吸也难以操控。
因此,如何提供一种操作方法简便,萃取效率高的萃取装置及其使用方法成为了本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法。其目的是解决搅拌子在搅拌时极易吸附磁性吸附剂的问题,从而提升萃取效率。
为了达到上述目的,本发明采用如下技术方案:
本发明提供了一种适用于颗粒材料搅拌萃取的萃取装置,包括搅拌室、吸附萃取室和微孔滤膜;
所述搅拌室位于吸附萃取室的上方,微孔滤膜位于搅拌室和吸附萃取室的交接处;
所述微孔滤膜的直径大于搅拌室和吸附萃取室的交接处的中部瓶颈的直径。
进一步的,所述搅拌室中放入搅拌子,搅拌子的长度小于搅拌室和吸附萃取室的交接处的中部瓶颈的直径。
进一步的,所述吸附萃取室内放置磁性吸附剂。
本发明提供了上述萃取装置的使用方法,包括以下步骤:
在吸附萃取室中加入磁性吸附剂;用热熔胶将微孔滤膜固定在搅拌室和吸附萃取室的交接处;向萃取装置中添加含有分析物的液体;在搅拌室中放入搅拌子,进行搅拌萃取。
进一步的,向萃取装置中添加含有分析物的液体时,利用洗耳球增大搅拌室压强,克服搅拌室与吸附萃取室的压强差,从而使液体顺利进入吸附萃取室与磁性吸附剂接触。
经由上述的技术方案可知,与现有技术相比,本发明的有益效果如下:
本发明提供的萃取装置及其使用方法与震荡法相比,明显提高了萃取效率;本发明的技术方案解决了磁固相萃取时,搅拌子极易吸附磁性吸附剂的问题,并且提高了后续的萃取效率,还解决了搅拌子与磁性吸附剂难以分离、难以完全将磁性纳米颗粒所吸附的目标物质洗脱、难以计算萃取率等问题。
附图说明
图1为本发明提供的萃取装置的整体结构示意图,其中,1为搅拌室、2为吸附萃取室、3为微孔滤膜、4为搅拌子、5为磁性吸附剂;
图2为本发明提供的萃取装置的尺寸图。
具体实施方式
本发明提供了萃取装置的使用方法,包括以下步骤:
在吸附萃取室中加入磁性吸附剂;用热熔胶将微孔滤膜固定在搅拌室和吸附萃取室的交接处;向萃取装置中添加含有分析物的液体;在搅拌室中放入搅拌子,进行搅拌萃取。
在本发明中,所述微孔滤膜优选为PTFE微孔滤膜。
本发明提供的萃取装置的尺寸图如图2所示,利用此萃取装置进行萃取时,含有分析物的液体的添加量为40~60mL,优选为45~55mL,进一步优选为50mL。
在本发明中,用热熔胶将微孔滤膜固定在搅拌室和吸附萃取室的交接处,此时吸附萃取室不与外界大气压连通,只能通过微孔滤膜与搅拌室交换气体分子与液体内的分子、离子。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)称取50mg磁性颗粒并置于吸附萃取室内;
(2)使用热熔胶将PTFE微孔滤膜粘在搅拌室与吸附萃取室中间;
(3)分别向该装置内加入50mL样品溶液,使萃取标准溶液的浓度分别为0.1mg/L、0.2mg/L、0.4mg/L、0.6mg/L、10mg/L、20mg/L,进行萃取标准曲线的建立;
(4)向搅拌室内放置一个直径为1.5cm的搅拌子;
(5)将该装置置于磁力搅拌器上搅拌1小时;
(6)将装置从磁力搅拌器上取下后静置一分钟,后使用磁铁将磁性颗粒吸附在吸附萃取室内,然后除去水相;
(7)向吸附萃取室内加入2mL正己烷,超声解吸15分钟;
(8)解吸完成后,取0.5mL液体于一圆底烧瓶中,用氮气将烧瓶内正己烷吹干,后加入0.5mL色谱甲醇,超声处理两分钟,使多氯联苯溶解到色谱甲醇中;
(9)使用高效液相色谱分析上清液;
(10)液相色谱条件:采用C18柱,流动相为乙腈/水=90/10(v/v),柱温为25℃,流速为1mL/min,检测波长为254nm;
(11)分别用高效液相色谱检测后,得到各个浓度的萃取液所对应的峰面积,分别做三氯联苯和六氯联苯的峰面积-浓度曲线,即其萃取标准曲线。
结果显示:三氯联苯的萃取标准曲线方程为:y=0.2955C+0.2728,R=0.9942;六氯联苯的萃取标准曲线方程为:y=0.6207C+0.6322,R=0.9778。
实施例2
(1)称取50mg磁性颗粒置于吸附萃取室内;
(2)使用热熔胶将PTFE微孔滤膜粘在搅拌室与吸附萃取室中间;
(3)向该装置内加入50mL含有未知浓度三氯联苯和六氯联苯的样品溶液;
(4)向搅拌室内放置一个直径为1.5cm的搅拌子;
(5)将该装置置于磁力搅拌器上搅拌萃取1小时;
(6)将装置从磁力搅拌器上取下后静置一分钟,后使用磁铁将磁性颗粒吸附在吸附萃取室内,然后除去水相;
(7)向吸附萃取室内加入2mL正己烷,超声解吸15分钟;
(8)解吸完成后,取0.5mL液体于一圆底烧瓶中,用氮气将烧瓶内正己烷吹干,后加入0.5mL色谱甲醇,超声处理两分钟,使多氯联苯溶解到色谱甲醇中;
(9)使用高效液相色谱分析上清液;
(10)液相色谱条件:采用C18柱,流动相为乙腈/水=90/10(v/v),柱温为25℃,流速为1mL/min,检测波长为254nm。
(11)分析结果表明:样品中三氯联苯的浓度为0.1mg/L、六氯联苯的浓度为0.1mg/L。
实施例3
(1)称取50mg磁性颗粒置于吸附萃取室内;
(2)使用热熔胶将PTFE微孔滤膜粘在搅拌室与吸附萃取室中间;
(3)再向该装置内加入50mL含有未知浓度三氯联苯和六氯联苯的样品溶液,其溶液的离子强度为25%的NaCl溶液;
(4)向搅拌室内放置一个直径为1.5cm的搅拌子;
(5)将该装置置于磁力搅拌器上搅拌1小时;
(6)将装置从磁力搅拌器上取下后静置一分钟,后使用磁铁将磁性颗粒吸附在吸附萃取室内,然后除去水相;
(7)向吸附萃取室内加入2mL正己烷,超声解吸15分钟;
(8)解吸完成后,取0.5mL液体于一圆底烧瓶中,用氮气将烧瓶内正己烷吹干,后加入0.5mL色谱甲醇,超声处理两分钟,使多氯联苯溶解到色谱甲醇中;
(9)使用高效液相色谱分析上清液;
(10)液相色谱条件:采用C18柱,流动相为乙腈/水=90/10(v/v),柱温为25℃,流速为1mL/min,检测波长为254nm。
(11)分析结果表明:样品中三氯联苯的浓度为0.1mg/L、六氯联苯的浓度为0.1mg/L。
实施例4
(1)称取70mg磁性颗粒并置于吸附萃取室内;
(2)使用热熔胶将PTFE微孔滤膜粘在搅拌室与吸附萃取室中间;
(3)再向该装置内加入50mL含有未知浓度三氯联苯和六氯联苯的样品溶液;
(4)向搅拌室内放置一个直径为1.5cm的搅拌子;
(5)将该装置置于磁力搅拌器上搅拌1小时;
(6)将装置从磁力搅拌器上取下后静置一分钟,后使用磁铁将磁性颗粒吸附在吸附萃取室内,然后除去水相;
(7)向吸附萃取室内加入2mL正己烷,超声解吸15分钟;
(8)解吸完成后,取0.5mL液体于一圆底烧瓶中,用氮气将烧瓶内正己烷吹干,后加入0.5mL色谱甲醇,超声处理两分钟,使多氯联苯溶解到色谱甲醇中;
(9)使用高效液相色谱分析上清液;
(10)液相色谱条件:采用C18柱,流动相为乙腈/水=90/10(v/v),柱温为25℃,流速为1mL/min,检测波长为254nm。
(11)分析结果表明:样品中三氯联苯的浓度为0.1mg/L、六氯联苯的浓度为0.1mg/L。
实施例5
(1)称取50mg磁性颗粒并置于吸附萃取室内;
(2)使用热熔胶将PTFE微孔滤膜粘在搅拌室与吸附萃取室中间;
(3)再向该装置内加入50mL含有未知浓度三氯联苯和六氯联苯的样品溶液;
(4)向搅拌室内放置一个直径为1.5cm的搅拌子;
(5)将该装置置于磁力搅拌器上搅拌1小时;
(6)将装置从磁力搅拌器上取下后静置一分钟,使用磁铁将磁性颗粒吸附在吸附萃取室内,然后除去水相;
(7)向吸附萃取室内加入2mL正己烷,超声解吸15分钟;
(8)解吸完成后,取0.5mL液体于一圆底烧瓶中,用氮气将烧瓶内正己烷吹干,后加入0.5mL色谱甲醇,超声处理两分钟,使多氯联苯溶解到色谱甲醇中;
(9)使用高效液相色谱分析上清液;
(10)液相色谱条件:采用C18柱,流动相为乙腈/水=90/10(v/v),柱温为25℃,流速为1mL/min,检测波长为254nm。
(11)分析结果表明:样品中三氯联苯的浓度为0.31mg/L、六氯联苯的浓度为0.30mg/L。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (3)

1.一种适用于颗粒材料搅拌萃取的萃取装置,其特征在于,包括搅拌室、吸附萃取室和微孔滤膜;
所述搅拌室位于吸附萃取室的上方,微孔滤膜位于搅拌室和吸附萃取室的交接处;
所述微孔滤膜的直径大于搅拌室和吸附萃取室的交接处的中部瓶颈的直径;
所述搅拌室中放入搅拌子,搅拌子的长度小于搅拌室和吸附萃取室的交接处的中部瓶颈的直径;
所述吸附萃取室内放置磁性吸附剂。
2.权利要求1所述萃取装置的使用方法,其特征在于,包括以下步骤:
在吸附萃取室中加入磁性吸附剂;用热熔胶将微孔滤膜固定在搅拌室和吸附萃取室的交接处;向萃取装置中添加含有分析物的液体;在搅拌室中放入搅拌子,进行搅拌萃取。
3.根据权利要求2所述的使用方法,其特征在于,向萃取装置中添加含有分析物的液体时,利用洗耳球增大搅拌室压强,克服搅拌室与吸附萃取室的压强差,从而使液体顺利进入吸附萃取室与磁性吸附剂接触。
CN202210779661.3A 2022-07-04 2022-07-04 一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法 Active CN115090001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210779661.3A CN115090001B (zh) 2022-07-04 2022-07-04 一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210779661.3A CN115090001B (zh) 2022-07-04 2022-07-04 一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法

Publications (2)

Publication Number Publication Date
CN115090001A CN115090001A (zh) 2022-09-23
CN115090001B true CN115090001B (zh) 2023-05-16

Family

ID=83294532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210779661.3A Active CN115090001B (zh) 2022-07-04 2022-07-04 一种适用于颗粒材料搅拌萃取的萃取装置及其使用方法

Country Status (1)

Country Link
CN (1) CN115090001B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749277A (zh) * 2015-03-26 2015-07-01 聊城大学 基于磁性竹炭分散基质固相萃取的多氯联苯检测方法
CN107875672A (zh) * 2017-11-20 2018-04-06 福州大学 用于固体吸附材料的微萃取搅拌棒装置及其使用方法
CN108918221A (zh) * 2018-07-12 2018-11-30 中国航发哈尔滨轴承有限公司 一种轴承钢中碳化物相低温电解萃取系统
CN109589808A (zh) * 2018-12-27 2019-04-09 太原理工大学 一种碳基表面分子印迹二维复合膜的制备方法
CN110156090A (zh) * 2019-06-28 2019-08-23 中国科学院合肥物质科学研究院 一种用于制备Fe3O4磁性纳米颗粒的流体合成制备装置及其控制方法
JP2019197035A (ja) * 2018-05-11 2019-11-14 株式会社日立ハイテクノロジーズ 撹拌装置、分析装置、分注方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749277A (zh) * 2015-03-26 2015-07-01 聊城大学 基于磁性竹炭分散基质固相萃取的多氯联苯检测方法
CN107875672A (zh) * 2017-11-20 2018-04-06 福州大学 用于固体吸附材料的微萃取搅拌棒装置及其使用方法
JP2019197035A (ja) * 2018-05-11 2019-11-14 株式会社日立ハイテクノロジーズ 撹拌装置、分析装置、分注方法
CN108918221A (zh) * 2018-07-12 2018-11-30 中国航发哈尔滨轴承有限公司 一种轴承钢中碳化物相低温电解萃取系统
CN109589808A (zh) * 2018-12-27 2019-04-09 太原理工大学 一种碳基表面分子印迹二维复合膜的制备方法
CN110156090A (zh) * 2019-06-28 2019-08-23 中国科学院合肥物质科学研究院 一种用于制备Fe3O4磁性纳米颗粒的流体合成制备装置及其控制方法

Also Published As

Publication number Publication date
CN115090001A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Sanagi et al. Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples
Yan et al. Ionic liquid molecularly imprinted polymers for application in pipette-tip solid-phase extraction coupled with gas chromatography for rapid screening of dicofol in celery
Manzo et al. A molecularly imprinted polymer as the sorptive phase immobilized in a rotating disk extraction device for the determination of diclofenac and mefenamic acid in wastewater
Castillo-García et al. Nanomaterials as tools in chromatographic methods
Sun et al. Facile synthesis of trifluoromethyl covalent organic framework for the efficient microextraction of per-and polyfluorinated alkyl substances from milk products
Hu et al. Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers
Dakova et al. Solid phase selective separation and preconcentration of Cu (II) by Cu (II)-imprinted polymethacrylic microbeads
Cestari et al. The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica—A kinetic study
Sánchez-González et al. Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography—tandem mass spectrometry
Chen et al. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry
Hu et al. Preparation and evaluation of a porous monolithic capillary column for microextraction of estrogens from urine and milk samples online coupled to high-performance liquid chromatography
Zarejousheghani et al. Selective mixed-bed solid phase extraction of atrazine herbicide from environmental water samples using molecularly imprinted polymer
Cao et al. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry
Yu et al. Automated analysis of non-steroidal anti-inflammatory drugs in human plasma and water samples by in-tube solid-phase microextraction coupled to liquid chromatography-mass spectrometry based on a poly (4-vinylpyridine-co-ethylene dimethacrylate) monolith
Zhao et al. Preparation of thiol-and amine-bifunctionalized hybrid monolithic column via “one-pot” and applications in speciation of inorganic arsenic
Tahmasebi et al. An efficient approach to selective electromembrane extraction of naproxen by means of molecularly imprinted polymer-coated multi-walled carbon nanotubes-reinforced hollow fibers
Basheer et al. Determination of aldehydes in rainwater using micro-solid-phase extraction and high-performance liquid chromatography
Kamaruzaman et al. A simple microextraction and preconcentration approach based on a mixed matrix membrane
Jin et al. Synthesis and evaluation of molecularly imprinted polymer for the determination of the phthalate esters in the bottled beverages by HPLC
Qin et al. Selective extraction and detection of norfloxacin from marine sediment and seawater samples using molecularly imprinted silica sorbents coupled with HPLC
Wang et al. Carboxylated carbon nanospheres as solid-phase extraction adsorbents for the determination of perfluorinated compounds in water samples by liquid chromatography–tandem mass spectrometry
Wang et al. On-site separation and enrichment of heavy metal ions in environmental waters with multichannel in-tip microextraction device based on chitosan cryogel
Ren et al. Novel molecularly imprinted phenolic resin–dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk
Zhang et al. Adsorptive behavior and solid-phase microextraction of bare stainless steel sample loop in high performance liquid chromatography
Hu et al. Preparation of a new sorbent based on boronate affinity monolith and evaluation of its extraction performance for nitrogen-containing pollutants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant