CN115085264A - 一种基于正负序分开控制的双馈电机非对称故障穿越方法 - Google Patents

一种基于正负序分开控制的双馈电机非对称故障穿越方法 Download PDF

Info

Publication number
CN115085264A
CN115085264A CN202210835573.0A CN202210835573A CN115085264A CN 115085264 A CN115085264 A CN 115085264A CN 202210835573 A CN202210835573 A CN 202210835573A CN 115085264 A CN115085264 A CN 115085264A
Authority
CN
China
Prior art keywords
rotor
voltage
positive
stator
negative sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210835573.0A
Other languages
English (en)
Inventor
顾菊平
张思旭
檀立昆
赵佳皓
李鹏昊
朱建红
杨慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202210835573.0A priority Critical patent/CN115085264A/zh
Publication of CN115085264A publication Critical patent/CN115085264A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明提出了一种基于正负序分开控制的双馈电机非对称故障穿越方法,包括以下步骤:步骤S1:非对称故障导致电网电压跌落时,采集双馈电机故障穿越期间的系统数据;步骤S2:根据采集到的数据通过对称分量法将定子电压和转子电流进行正负序分离,并计算出定子电压正序分量和负序分量的标幺值;步骤S3:通过将定子正序有功功率和无功功率设置为0,反向计算出此时的转子正序电流,将此电流值设置为正序控制中转子电流的参考值;本发明将正负序分离进行独立控制,具有较好的灵活性并且可以有效地降低转子电流,限制转子电压,只改变控制策略,无需增加额外的硬件设备,是双馈电机非对称故障穿越的一种经济解决方案。

Description

一种基于正负序分开控制的双馈电机非对称故障穿越方法
技术领域
本发明涉及新能源发电技术领域,具体涉及一种基于正负序分开控制的双馈电机非对称故障穿越方法。
背景技术
近年来风机的装机容量在不断上升,随着风电渗透率的不断提高,风电场对电网的影响变得不可忽视。根据风电场低电压穿越要求,要求风机在电网故障导致的电压跌落期间具备一定的不脱网能力,来实现故障穿越。
目前关于双馈电机故障穿越的方案主要集中在两方面,一方面是增加硬件改变拓扑结构,另一方面是改变软件控制算法。其中硬件方面包括增加撬棒电路、增加储能电路、定转子串联、补偿电网电压等,但硬件成本高并且当撬棒介入时双馈电机就变成了异步电动机会从电网吸收无功进一步加剧电网电压的跌落。控制算法方面有转子端串联虚拟阻抗、灭磁控制方法、磁链跟踪方法等。改变控制算法方案具有成本低,低电压穿越期间可为电网提供无功等优点,但在极端的跌落时可能会存在保护不足的问题,转子端过电流触发撬棒电路。
发明内容
为了解决上述问题,本发明提供一种基于正负序分开控制的双馈电机非对称故障穿越方法,针对电网非对称故障导致双馈电机转子端过电流和过电压的问题,设计了正负序分离并独立的控制方法,该方法具有灵活性,即使由故障导致电网电压发生极端不对称跌落,也可以很好地限制转子端电流,并且无需额外硬件设备,具有良好的经济性。
为了实现以上目的,本发明采取的一种技术方案是:
一种基于正负序分开控制的双馈电机非对称故障穿越方法,包括以下步骤:
S1:非对称故障导致电网电压跌落时,采集双馈电机故障穿越期间的系统数据;
S2:根据采集到的数据通过对称分量法将定子电压和转子电流进行正负序分离,并计算出定子电压正序分量和负序分量的标幺值;
S3:通过将定子正序有功功率和无功功率设置为0,反向计算出此时的转子正序电流,将此电流值设置为正序控制中转子电流的参考值;
S4:由转差率、定转子匝数比、定子正序电压和步骤3中的定子电流计算出转子正序电压,用转子侧变流器输出的最大电压减去转子正序电压的结果作为转子负序电压的最大值,在一些实施方式中,其中步骤4具体为:
Figure BDA0003747887780000021
式中:Ur-max为转子负序电压在负旋转同步坐标系下的最大值,Urmax为转子端SVPWM可以生成的最大电压,s为转差率,Lm为定转子互感Ls为定子自感,Us+为定子正序电压在正向旋转同步坐标系下的电压值,N为定转子线圈的匝数比。
S5:用定子负序电压在负旋转同步坐标系中d轴和q轴分量的占比代替转子端负序电压在负序旋转同步坐标系中d轴和q轴的占比,再乘以转子负序电压的最大值得到转子负序电压的d轴和q轴分量,将上述量转换到转子坐标系下并和转子正序电压αβ分量相加得到总的转子电压αβ值,在一些实施方式中,其中步骤5具体为:
Figure BDA0003747887780000031
式中:
Figure BDA0003747887780000032
Figure BDA0003747887780000033
分别为转子负序电压在负旋转同步坐标系下的dq参考值,
Figure BDA0003747887780000034
Figure BDA0003747887780000035
分别为定子负序电压在负旋转同步坐标系下的dq值。
本发明与现有技术相比具有以下有益效果:
1、本发明在求解转子负序电压允许的最大值时采用动态的求解方法,并不是固定值,这样可以最大限度的限制故障时的转子电压和转子电流,在计算转子负序电压dq的占比时,通过定子负序电压dq的占比来代替,减少了计算量与复杂性。
2、本发明具有灵活性,即使由故障导致电网电压发生极端不对称跌落,也可以很好地限制转子端电流,并且无需额外硬件设备,具有良好的经济性。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其有益效果显而易见。
图1为本发明的流程图;
图2为本发明实施例的拓扑结构图;
图3为本发明实施例的电网电压单相跌落的波形图;
图4为本发明实施例的电网电压正负序分解后正序电压波形图;
图5为本发明实施例的双馈电机等效电路图;
图6为本发明实施例的转子变流器控制框图;
图7为正常矢量控制下,由故障导致电网电压单相跌落至20%时,转子电流和定子输出功率的仿真波形图;
图8为转子负序电压容量采用定值的矢量控制下,由故障导致电网电压单相跌落至20%时,转子电流和定子输出功率的仿真波形图;
图9为本发明控制下,由故障导致电网电压单相跌落至20%时,转子电流和定子输出功率的仿真波形图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本实施例提供了一种基于正负序分开控制的双馈电机非对称故障穿越方法,包括以下步骤:
S1:非对称故障导致电网电压跌落时,采集双馈电机故障穿越期间的系统数据;
S2:根据采集到的数据通过对称分量法将定子电压和转子电流进行正负序分离,并计算出定子电压正序分量和负序分量的标幺值;
S3:通过将定子正序有功功率和无功功率设置为0,反向计算出此时的转子正序电流,将此电流值设置为正序控制中转子电流的参考值;
S4:由转差率、定转子匝数比、定子正序电压和步骤3中的定子电流计算出转子正序电压,用转子侧变流器输出的最大电压减去转子正序电压的结果作为转子负序电压的最大值;
S5:用定子负序电压在负旋转同步坐标系中d轴和q轴分量的占比代替转子端负序电压在负序旋转同步坐标系中d轴和q轴的占比,再乘以转子负序电压的最大值得到转子负序电压的d轴和q轴分量,将上述量转换到转子坐标系下并和转子正序电压αβ分量相加得到总的转子电压αβ值。
其中,双馈电机拓扑结构图如图2所示,电网故障导致电网电压单相跌落至额定电压的20%,采集此时的电网电压如图3所示。通过对称分量法求解出定子端正序电压如图4所示。
正序分量的电压方程和磁链方程如下:
Figure BDA0003747887780000051
Figure BDA0003747887780000052
其中,右下角s代表定子侧,r代表转子侧,右下角+代表正序,右上角+代表正旋转同步坐标系,Lm为定转子互感,Lr为转子自感,Ls为定子自感,p为微分算子,ω1为同步角速度,ωslip=ω1r为转差角速度,ωr是转子角速度。
定子输出的正序功率为:
Figure BDA0003747887780000053
控制方式采用定子磁链定向矢量控制,即
Figure BDA0003747887780000054
定子正序功率将化简为:
Figure BDA0003747887780000055
联立式(3)、(4)和(6)并忽略较小的定子电阻得:
Figure BDA0003747887780000061
转子电流与定子输出功率密切相关,在故障期间为减少正序电流,可令Ps+=Qs+=0,则
Figure BDA0003747887780000062
设置转子正序电流参考值为:
Figure BDA0003747887780000063
正序等效电路图如图5所示已折算到定子侧,ir很小忽略不计,转子正序电压折算到转子侧为:
Figure BDA0003747887780000064
通过式(9)得出转子侧负序电压的最大值表达式为:
Figure BDA0003747887780000065
定子负序电压在转子侧产生的感应电动势大于Ur-max,转子负序电压的dq分量要进行容量分配,分配方案如式(2)所示
Figure BDA0003747887780000066
将转子负序电压dq分量的参考值和正序的参考值分别变换到转子坐标系下并相加作为DVPWM的输入值,转子端控制框图如图6所示。
图7为正常矢量控制下,由故障导致电网电压单相跌落至20%时,转子电流和定子输出功率的仿真波形图。图8为转子负序电压容量采用定值的矢量控制下,由故障导致电网电压单相跌落至20%时,转子电流和定子输出功率的仿真波形图。图9为本方法控制下,由故障导致电网电压单相跌落至20%时,转子电流和定子输出功率的仿真波形图。对比发现本方法可以很好地限制转子电流和功率波动。
以上所述仅为本发明的示例性实施例,并非因此限制本发明专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (3)

1.一种基于正负序分开控制的双馈电机非对称故障穿越方法,其特征在于,包括以下步骤:
步骤S1:非对称故障导致电网电压跌落时,采集双馈电机故障穿越期间的系统数据;
步骤S2:根据采集到的数据通过对称分量法将定子电压和转子电流进行正负序分离,并计算出定子电压正序分量和负序分量的标幺值;
步骤S3:通过将定子正序有功功率和无功功率设置为0,反向计算出此时的转子正序电流,将此电流值设置为正序控制中转子电流的参考值;
步骤S4:由转差率、定转子匝数比、定子正序电压和步骤3中的定子电流计算出转子正序电压,用转子侧变流器输出的最大电压减去转子正序电压的结果作为转子负序电压的最大值;
步骤S5:用定子负序电压在负旋转同步坐标系中d轴和q轴分量的占比代替转子端负序电压在负序旋转同步坐标系中d轴和q轴的占比,再乘以转子负序电压的最大值得到转子负序电压的d轴和q轴分量,将上述量转换到转子坐标系下并和转子正序电压αβ分量相加得到总的转子电压αβ值。
2.根据权利要求1所述的一种基于正负序分开控制的双馈电机非对称故障穿越方法,其特征在于,所述步骤4具体为:
Figure FDA0003747887770000011
式中:Ur-max为转子负序电压的最大值,Urmax为转子端SVPWM生成的最大电压,s为转差率,Lm为定转子互感,Ls为定子自感,Us+为定子正序电压值,N为定转子线圈的匝数比。
3.根据权利要求2所述的一种基于正负序分开控制的双馈电机非对称故障穿越方法,其特征在于,所述步骤5具体为:
Figure FDA0003747887770000021
式中:
Figure FDA0003747887770000022
Figure FDA0003747887770000023
分别为转子负序电压在负旋转同步坐标系下的dq参考值,
Figure FDA0003747887770000024
Figure FDA0003747887770000025
分别为定子负序电压在负旋转同步坐标系下的dq值。
CN202210835573.0A 2022-07-15 2022-07-15 一种基于正负序分开控制的双馈电机非对称故障穿越方法 Pending CN115085264A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210835573.0A CN115085264A (zh) 2022-07-15 2022-07-15 一种基于正负序分开控制的双馈电机非对称故障穿越方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210835573.0A CN115085264A (zh) 2022-07-15 2022-07-15 一种基于正负序分开控制的双馈电机非对称故障穿越方法

Publications (1)

Publication Number Publication Date
CN115085264A true CN115085264A (zh) 2022-09-20

Family

ID=83258871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210835573.0A Pending CN115085264A (zh) 2022-07-15 2022-07-15 一种基于正负序分开控制的双馈电机非对称故障穿越方法

Country Status (1)

Country Link
CN (1) CN115085264A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436043A (zh) * 2023-06-13 2023-07-14 国网江西省电力有限公司电力科学研究院 一种多台变流器不对称故障穿越控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375499A (zh) * 2015-11-12 2016-03-02 浙江日风电气股份有限公司 一种双馈风力发电机定子电流不平衡的抑制方法
CN107425539A (zh) * 2017-06-26 2017-12-01 重庆大学 电网不对称故障下双馈风电机组的增强低电压穿越控制方法
CN113890436A (zh) * 2021-10-28 2022-01-04 江苏方天电力技术有限公司 基于对称和不对称电网故障下双馈风电机组转子侧协调控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375499A (zh) * 2015-11-12 2016-03-02 浙江日风电气股份有限公司 一种双馈风力发电机定子电流不平衡的抑制方法
CN107425539A (zh) * 2017-06-26 2017-12-01 重庆大学 电网不对称故障下双馈风电机组的增强低电压穿越控制方法
CN113890436A (zh) * 2021-10-28 2022-01-04 江苏方天电力技术有限公司 基于对称和不对称电网故障下双馈风电机组转子侧协调控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹贝贞等: "电网电压深度不对称跌落时的双馈风电变流器控制技术" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436043A (zh) * 2023-06-13 2023-07-14 国网江西省电力有限公司电力科学研究院 一种多台变流器不对称故障穿越控制方法
CN116436043B (zh) * 2023-06-13 2023-10-20 国网江西省电力有限公司电力科学研究院 一种多台变流器不对称故障穿越控制方法

Similar Documents

Publication Publication Date Title
Huang et al. Subsynchronous resonance mitigation for series-compensated DFIG-based wind farm by using two-degree-of-freedom control strategy
Wu et al. Decentralized nonlinear control of wind turbine with doubly fed induction generator
CN107579540B (zh) 一种基于hvac并网的海上风电场综合故障穿越方法
Wu et al. Modeling and control of wind turbine with doubly fed induction generator
Yao et al. Capacity configuration and coordinated operation of a hybrid wind farm with FSIG-based and PMSG-based wind farms during grid faults
El Moursi et al. Application of series voltage boosting schemes for enhanced fault ridethrough performance of fixed speed wind turbines
CN111725837B (zh) Dfig虚拟同步机低电压穿越方法、装置、电子设备及介质
Okedu et al. Comparative study of the effects of machine parameters on DFIG and PMSG variable speed wind turbines during grid fault
CN115085264A (zh) 一种基于正负序分开控制的双馈电机非对称故障穿越方法
Chandran et al. Voltage and frequency control with load levelling of PMSG based small-hydro system
CN111049178A (zh) 一种直驱永磁风电机组经vsc-hvdc并网稳定控制分析方法
Penne et al. Active disturbance rejection control of doubly-fed induction generators driven by wind turbines
Liu et al. Simulation study on transient characteristics of DFIG wind turbine systems based on dynamic modeling
Ivanqui et al. “pq theory” control applied to wind turbine trapezoidal PMSG under symmetrical fault
Priya Modelling and performance analysis of grid connected PMSG based wind turbine
CN114928281B (zh) 基于改进自抗扰的电压控制型双馈风电机组故障穿越方法
CN105634014B (zh) 基于动态电压补偿器的双馈异步风力发电机组控制方法
El Azzaoui et al. Comparative study of the sliding mode and backstepping control in power control of a doubly fed induction generator
Li et al. A novel model predictive control strategy of D-PMSG wind turbine systems for LVRT based on two-state unloading resistance and super capacitor
Van et al. Improved control scheme for low voltage ride-through of pmsg-based wind energy conversion systems
Das et al. Mitigating the impact of voltage sags and swells on type IV wind generator systems
CN112260225A (zh) 一种基于组合模型的双馈风电机组三相短路电流计算方法及系统
Dinesh et al. Independent operation of DFIG-based WECS using resonant feedback compensators under unbalanced grid voltage conditions
Abdellatif et al. Fault-ride through capability enhancement of DFIG-based wind turbines by SFCL
Yao et al. Dynamic model and simulation of doubly feed induction generator wind turbine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220920