CN115072790A - 一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用 - Google Patents

一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用 Download PDF

Info

Publication number
CN115072790A
CN115072790A CN202210600038.7A CN202210600038A CN115072790A CN 115072790 A CN115072790 A CN 115072790A CN 202210600038 A CN202210600038 A CN 202210600038A CN 115072790 A CN115072790 A CN 115072790A
Authority
CN
China
Prior art keywords
lanthanum
solution
salt
ldhs
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210600038.7A
Other languages
English (en)
Inventor
张延扬
申朝阳
孔波
贾玉璐
潘丙才
张炜铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202210600038.7A priority Critical patent/CN115072790A/zh
Publication of CN115072790A publication Critical patent/CN115072790A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Composite Materials (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用,属于环境功能材料领域。本发明通过单滴共沉淀法合成LDHs,滤除所得产物,蒸馏水洗并干燥后,将产物加入一定浓度镧盐的醇溶液中搅拌反应,再通过调节溶液pH值来使镧离子原位沉淀,滤出反应沉淀物,醇洗并干燥后即可得到LDHs基纳米镧材料。本发明制得的LDHs基纳米镧材料的镧以弱结晶态分布在LDHs层间及表面,当材料投加至水体后,部分镧会水解产生大量正电荷,并且与LDHs表面羟基络合形成[La(OH)m(H2O)n](3‑m)+的链状结构,发挥吸附电中和、沉淀物网捕等功能来将水体中浊度及藻类悬浮物快速沉降;层间生长的La2(CO3)3及La(OH)3还可以与水体中的磷酸根特异性结合形成稳定的LaPO4晶体,保证了其稳定的除磷能力。

Description

一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方 法及应用
技术领域
本发明属于环境功能材料和水处理技术领域,更具体地说,涉及一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用。
背景技术
当前水体富营养化是严峻的世界性环境问题,而水体磷超标是这一问题的关键性因素。水体控磷已成为遏制富营养化的重要手段。控磷技术除传统铁盐、铝盐、钙盐等混凝剂和沉淀剂外,近年来有更多的针对湖泊等天然水体高效磷吸附药剂的研究。镧是一种毒性低、储量丰富的稀土元素,由于与磷酸盐极强的亲和能力而在除磷领域受到持续关注。其中《Hydrobiologia》2003年494卷的《Application of Phoslock(TM),an innovativephosphorus binding clay,to two Western Australian waterways:preliminaryfindings》中使用的锁磷剂Phoslock自上世纪90年代由澳大利亚联邦科学与工业发展组织(CSIRO)开发至今以来已成功商业化并用于世界各地两百多个湖泊的除磷工作并取得良好效果。
Phoslcok是一种镧改性膨润土,Douglas(US,6350383B1.2002-2-26.)介绍了其主要合成方法:将0.1M LaCl3溶液与高纯度膨润土以液固比100:1混合搅拌24h进行离子交换反应;离心分离,并重复上述离子交换步骤1次,以确保La3+充分取代膨润土层间阳离子;蒸馏水洗涤三次以去除残留La3+,离心分离,烘干得到最终产品。该产品镧负载量约5%,除磷能力约10mg P/g,由于其充分发挥镧的除磷优势,具有良好的锁磷效果,且合成原理及操作步骤相对简单,易于实现工业化,因而得到了较大规模应用。但该药剂在实际应用中仍存在一些不足:如镧负载量不高、絮凝能力弱、水体悬浮固体物质较多时无法发挥除磷性能等等。
目前针对富营养化湖泊的治理,大多采用Flockand Lock的处理方式,先投加聚合氯化铝或者氯化铁等混凝剂来去除湖面上悬浮的藻类等颗粒物,然后多次投加phoslock来达到持续锁磷的效果,如发表于《Water Research》2016年97卷的《Management ofeutrophication in Lake De Kuil(The Netherlands)using combined flocculant eLanthanum modified bentonite treatment》对荷兰De Kuil湖富营养化进行治理,在第一天投加氯化铁使水中藻类及其他悬浮物沉降,随后在第二天、第三天多次投加Phoslock来达到除磷的效果;发表于《Water Research》2013年47卷的《Controlling eutrophicationby combined bloom precipitation and sediment phosphorus inactivation》对Rauwbraken湖富营养化进行治理,通过投加PAC和Phoslock的混合药剂,使得蓝藻沉淀,湖泊总磷降低。Flockand Lock虽然可以治理富营养化湖泊,但是本质未能突破Phoslock的缺陷,并且混凝剂与锁磷剂的联用不仅会带来成本上的提升,还会带来更多的生态风险。
层状双金属氢氧化物(LDHs)是一种具有强大阴离子交换能力的黏土矿物,自然界中常以水滑石矿的形式存在,亦可人工合成。LDHs的金属氢氧化物及其阴离子交换剂双重属性使其具有很大的吸附潜能,适合作为除磷剂载体材料,其多样的中心金属离子及层间阴离子种类和其灵活可调的层状结构使其具备诸多优良特性,现已在多领域受到较多关注。已有较多LDHs用于除磷及混凝的研究,如如《Applied Clay Science》2006年第32卷发表的《Adsorption of phosphate by layered double hydroxides in aqueoussolutions》研究了多种LDHs对正磷酸盐(PO4)均具有较高的去除效果;在《EnvironmentScience Nano》2018年5卷发表的《Size-and surface charge-controlled layereddouble hydroxides for efficient algal flocculation》研究了不同尺寸的Mg/Al-LDHs可以通过静电吸附、沉淀物网捕来去除水中铜绿微囊藻。
镧元素因其与磷酸盐的特异性结合被人们所关注,但是其也具备潜在的混凝性能。如《Chemical Engineering Journal》2021年426卷发表的《Application of ceriumand lanthanum coagulants in wastewater treatment—A comparative assessment tomagnesium,aluminum,and iron coagulants》研究了LaCl3可以混凝处理高磷废水,形成致密沉淀物,加快絮凝速度;《环境化学》2020年39卷发表的《稀土镧改性聚合硫酸铁机理分析及其应用》研究了镧改性聚合硫酸铁,因镧易水解且与铁抢夺羟基形成交叉共聚,相互连接,增长絮凝剂链状结构,加强絮凝剂沉淀网捕作用,加快絮凝速度。基于以上理论,我们希望以LDHs为载体对其进行镧改性,开发一种新型的湖泊锁磷剂,通过调控La的分布与形态,来发挥镧的锁磷及混凝能力。
发明内容
针对目前对富营养化湖泊治理方法存在操作复杂、潜在生态风险增加、耗费更多人力物力等问题,本发明提供一种LDHs基纳米镧材料,其能够同步锁磷除藻降浊。
本发明的技术方案如下:一种可以同步絮凝锁磷的层状双金属基纳米镧材料,其特征在于:包括如下步骤:1)配制双金属盐混合溶液为溶液A,配制沉淀剂溶液为溶液B;2)量取一定量溶液B,将溶液A缓慢泵入溶液B中进行共沉淀反应,并不断搅拌反应体系混合均匀,观察pH达到特定数值反应结束;3)将步骤2)所得反应产物置于一定温度水浴中静置;4)将步骤3)中产物离心分离,蒸馏水洗涤至中性、冻干、研磨成粉末即可获得产物LDHs;5)将LDHs加入一定浓度镧盐的醇溶液中搅拌反应;6)将步骤5)反应体系pH调整为特定数值继续搅拌反应;7)滤出步骤6)中所得产物,醇洗至中性,冻干即可得到层状双金属纳米镧材料;所述步骤1)中双金属盐混合溶液包含一种二价金属盐和一种三价金属盐,其中二价金属盐为镁盐,镁盐为MgCl2或Mg(NO3)2;三价金属盐为铁盐,铁盐为FeCl3或Fe(NO3)3;双金属盐的二价盐和三价盐摩尔比在2:1-4:1之间,溶液A中双金属盐总浓度为1-4mol·L-1;所述步骤1)中溶液B为NaOH溶液,浓度为1-3mol·L-1;或所述溶液B为NaOH和Na2CO3的混合溶液,其中NaOH摩尔浓度:Na2CO3摩尔浓度在12:1-8:1之间;所述层状双金属纳米镧材料用于水体中固体悬浮物质的絮凝,同时还可以对水体中磷元素进行吸附。
进一步地,所述步骤2)反应结束的pH处于9.0-11.0,所述步骤3)中水浴温度为50℃-80℃,水浴时间为12-24h。
进一步地,所述步骤5)镧盐为LaCl3或La(NO3)3;镧盐的醇溶液中镧离子浓度为1-40g·L-1;步骤5)中搅拌反应固液比为1:5-1:200,搅拌时间为12-24h,所述醇为甲醇或乙醇。
进一步地,所述步骤6)使用HCl/NaOH调节体系pH,调节剂浓度为0.1-5mol·L-1,体系pH调节为10.0-12.0。
进一步地,所述层状双金属纳米镧材料为Mg/Fe-LDHs基纳米镧材料,简称La-MF,所述La-MF材料呈白色粉末状,所述La-MF材料粒径为1-10μm,所述La-MF材料中镧负载量为5-30%。
进一步地,将制备得到的层状双金属纳米镧材料用于水体中固体悬浮物质的絮凝,同时还可以对水体中磷元素进行吸附。
相比于现有技术,本发明的有益效果为:
(1)本材料利用LDHs表面羟基吸附La3+,以及醇相中可生成[LaCl4]-、[LaCl5]2-等络合阴离子而插层进入LDHs层间,因而表现出对La3+很高的吸附量,可根据母液镧浓度的调节而控制镧的负载量,材料载镧量可控制在5-30%之间自行调节。
(2)本材料通过载镧后调节pH的方法原位沉淀,使得载入LDHs层间或附着于表面的La3+大部分以La(OH)3弱的结晶态存在,当材料投加至水体中,部分镧会水解产生大量正电荷,并且与LDHs表面羟基络合形成[La(OH)m(H2O)n](3-m)+的链状结构,发挥吸附电中和、沉淀物网捕等功能来将水体中浊度及藻类悬浮物快速沉降;并且通过La3+与PO4 3-的特异性结合使得材料可以发挥良好的长期锁磷的能力。
(3)目前市面上对富营养化湖泊锁磷的治理主要为先投加聚合氯化铝、聚合氯化铁等混凝剂,将湖泊中固体悬浮物质混凝沉降后在投加商用磷钝化剂Phoslock,在颗粒下沉过程中,捕获并螯合水体中无机磷,来达到锁磷的效果。相较之下,本材料可以在絮凝固体悬浮物质的同时达到稳定除磷的效果,单次投加即可达到多重效果,更加方便高效。
(4)本专利使用单滴法合成载体LDHs,单次合成量可达到专利(CN112237897B)双滴法的几十甚至上百倍,并且本专利在合成中未使用高温煅烧,合成步骤较少、较为简便,有利于实现工业化生产。
附图说明
图1为本发明制备方法的工艺流程图
图2a为本发明实施例1中制备的La-MF-1的SEM图
图2b为本发明实施例1中制备的La-MF-1的TEM图
图3为本发明实施例1中制备的La-MF-1和载体Mg/Fe-LDHs的XRD图
图4为本发明实施例2中制备的La-MF-2和载体Mg/Fe-LDHs的XRD图
图5为本发明实施例2中制备的La-MF-3和载体Mg/Fe-LDHs的XRD图
图6为本发明实施例1中制备的La-MF-1在不同投加量下对水体中悬浮固体物质以及磷酸盐的去除率
图7为本发明实施例1中制备的La-MF的结构示意图
具体实施方式
下面结合具体实施例对本发明进一步进行描述
实施例1
1)配制0.9mol·L-1MgCl2和0.3mol·L-1FeCl3双金属盐混合溶液为溶液A,配制沉淀剂2mol·L-1NaOH和0.2mol·L-1Na2CO3为溶液B;
2)量取一定量溶液B,将溶液A缓慢泵入溶液B中进行共沉淀反应,并不断搅拌反应体系混合均匀,观察pH=9.0反应结束;
3)将步骤2)所得反应产物置于65℃水浴中静置18h进行水浴加热结晶;
4)将步骤3)中产物离心分离,蒸馏水洗涤至中性、冻干、研磨成粉末即可获得产物Mg/Fe-LDHs;
5)将上述Mg/Fe-LDHs粉末材料加入0.375gLa·L-1(1g·L-1LaCl3·7H2O)乙醇溶液中搅拌反应12h,反应固液比为1:50;
6)将步骤5)体系pH调为12.0并继续搅拌12h;
7)滤出步骤6)中沉淀反应物,乙醇清洗至中性,冻干即可得到层状双金属纳米镧材料(命名为La-MF-1)。
本实施例制得的材料呈白色粉末状,载体Mg/Fe-LDHs呈现片状结构,粒径为1-10μm,镧纳米颗粒粒径约5-10nm,消解后通过ICP测量其镧负载量为13.12%,说明镧成功负载;镧以纳米颗粒形态分布于载体中,如图2a、2b所示;对样品进行XRD测试,结果如图3所示,材料保留了载体LDHs特征峰,说明载体材料的层状结构依然存在,XRD图谱中无明显镧相关的特征峰,说明镧最有可能以无定形或弱结晶态存在于材料中;BET结构显示材料具有179.5m2·g-1的比表面积,孔道多为2-25nm的中孔,大的比表面积与丰富的孔道结构有利于材料对PO43-的吸附。
实施例2
1)配制0.9mol·L-1MgCl2和0.3mol·L-1FeCl3双金属盐混合溶液为溶液A,配制沉淀剂2mol·L-1NaOH和0.2mol·L-1Na2CO3为溶液B;
2)量取一定量溶液B,将溶液A缓慢泵入溶液B中进行共沉淀反应,并不断搅拌反应体系混合均匀,观察pH=9.0反应结束;
3)将步骤2)所得反应产物置于65℃水浴中静置18h进行水浴加热结晶;
4)将步骤3)中产物离心分离,蒸馏水洗涤至中性、冻干、研磨成粉末即可获得产物Mg/Fe-LDHs;
5)将上述Mg/Fe-LDHs粉末材料加入0.375gLa·L-1(1g·L-1LaCl3·7H2O)乙醇溶液中搅拌反应12h,反应固液比为1:50;
6)滤出步骤5)中沉淀反应物,乙醇清洗至中性,冻干即可得到层状双金属纳米镧材料(命名为La-MF-2)。
本实施例制得的材料呈白色粉末状,载体Mg/Fe-LDHs呈现片状结构,粒径为1-10μm,镧纳米颗粒粒径约5-10nm,消解后通过ICP测量其镧负载量为8.73%,说明镧成功负载;对样品进行XRD测试,结果如图4所示,由于本实施例在镧载入后未进行原位沉淀,因此镧基本都是以游离态存在于层间及表面,XRD无法观察到游离态La。
实施例3
1)配制0.9mol·L-1MgCl2和0.3mol·L-1FeCl3双金属盐混合溶液为溶液A,配制沉淀剂2mol·L-1NaOH和0.2mol·L-1Na2CO3为溶液B;
2)量取一定量溶液B,将溶液A缓慢泵入溶液B中进行共沉淀反应,并不断搅拌反应体系混合均匀,观察pH=9.0反应结束;
3)将步骤2)所得反应产物置于65℃水浴中静置18h进行水浴加热结晶;
4)将步骤3)中产物离心分离,蒸馏水洗涤至中性、冻干、研磨成粉末即可获得产物Mg/Fe-LDHs;
5)将上述Mg/Fe-LDHs粉末材料加入0.375gLa·L-1(1g·L-1LaCl3·7H2O)乙醇溶液中搅拌反应12h,反应固液比为1:50;
6)滤出步骤5)中沉淀反应物,乙醇清洗至中性,冻干.
7)将步骤6)得到的材料于0.2M NH4HCO3溶液中搅拌12h。
8)滤出步骤7)得到的反应物,用蒸馏水洗涤至中性,冻干即可得到层状双金属纳米镧材料(命名为La-MF-3)。
本实施例制得的材料呈白色粉末状,载体Mg/Fe-LDHs呈现片状结构,粒径为1-10μm,镧纳米颗粒粒径约5-10nm,消解后通过ICP测量其镧负载量为8.23%,说明镧成功负载;对样品进行XRD测试,结果如图5所示,因在镧载入后使用沉淀剂对其进行原位沉淀,大量镧水解后与碳酸根结合形成碳酸镧结晶。
应用例1
以La-MF-1为材料测试絮凝固体悬浮物质以及同步除磷的应用示例:配制同时含有2mgP·L-1、30mg·L-1高岭土、10mg·L-1HA以及680nm吸光度为0.2的铜绿微囊藻混合溶液为目标处理水体,材料投加量依次为0.05·L-1、0.1g·L-1、0.2g·L-1、0.3g·L-1、0.4g·L-1、0.5g·L-1。初始pH为8.0模拟混凝实验操作,在600rmp搅拌2min后120rmp搅拌15min,静置1h,取上清液测量浊度、叶绿素a浓度、254nm下的吸光度以及PO43-浓度。
如图6所示,La-MF-1投加量为0.3g·L-1时,浊度去除率为97.98%,叶绿素a去除率依次为97.86%,HA去除率依次为91.44%,PO43-去除率依次为99.87%。上述结果表明材料在0.3g·L-1的投量下絮凝及除磷效果较好。如图7a所示,材料中镧以弱结晶态及少量游离态存在,当材料投加至水体中,部分镧会水解产生大量正电荷,并且与LDHs表面羟基络合形成[La(OH)m(H2O)n](3-m)+的链状结构,发挥吸附电中和、沉淀物网捕等功能来将水体中浊度及藻类悬浮物快速沉降;并且通过La3+与PO43-的特异性结合使得材料可以发挥良好的长期锁磷的能力。
在同等初始条件下,La-MF-2材料对浊度、叶绿素a、HA依旧保持了较好的去除率,但是在除磷方面效果欠佳,在0.5g/L的材料投加量下也仅有40%的磷去除率。如图7b所示,材料中镧都以游离态存在,因此水解产生大量正电荷,通过吸附电中和以及沉淀网捕去除悬浮物质,但也会与磷结合竞争吸附位点,导致除磷效果大幅下降。
应用例2
以La-MF-3为材料测试其除磷及絮凝基础性能的应用示例:配制含有50mgP·L-1的溶液测其磷吸附量;配置含有30mg·L-1高岭土、10mg·L-1HA以及680nm吸光度为0.2的铜绿微囊藻溶液来测其絮凝性能,材料投加量0.5g·L-1。初始pH为8.0,在180rpm下反应72h测其吸附容量;模拟混凝实验操作,在600rmp搅拌2min后120rmp搅拌15min,静置1h,取上清液测量浊度、叶绿素a浓度、254nm下的吸光度。
La-MF-3吸附容量为37.88mgP/g,性能优异。但是在絮凝性能上表现较差,对叶绿素a几乎去除率,对浊度去除率为9.02%,HA去除率为27.42%。如图7c所示,材料中镧以稳定的碳酸镧存在于层间及表面,因此在除磷方面表现较好,但是由于无法水解产生正电荷以及链状结构,所以在絮凝方面表现欠佳。
上述实施案例仅为本发明中部分实施案例,但本发明的实施方式并不受上述实施案例的限制,如实施例中方案的各种形式的组合,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合均应为等效的替换方式,都在本发明的保护范围之内。

Claims (6)

1.一种同步絮凝锁磷的层状双金属基纳米镧材料的制备方法,其特征在于:包括如下步骤:1)配制双金属盐混合溶液为溶液A,配制沉淀剂溶液为溶液B;2)量取一定量溶液B,将溶液A缓慢泵入溶液B中进行共沉淀反应,并不断搅拌反应体系混合均匀,观察pH达到特定数值反应结束;3)将步骤2)所得反应产物置于一定温度水浴中静置;4)将步骤3)中产物离心分离,蒸馏水洗涤至中性、冻干、研磨成粉末即可获得产物LDHs;5)将LDHs加入一定浓度镧盐的醇溶液中搅拌反应;6)将步骤5)反应体系pH调整为特定数值继续搅拌反应;7)滤出步骤6)中所得产物,醇洗至中性,冻干即可得到层状双金属纳米镧材料;所述步骤1)中双金属盐混合溶液包含一种二价金属盐和一种三价金属盐,其中二价金属盐为镁盐,镁盐为MgCl2或Mg(NO3)2;三价金属盐为铁盐,铁盐为FeCl3或Fe(NO3)3;双金属盐的二价盐和三价盐摩尔比在2:1-4:1之间,溶液A中双金属盐总浓度为1-4mol·L-1;所述步骤1)中溶液B为NaOH溶液,浓度为1-3mol·L-1;或所述溶液B为NaOH和Na2CO3的混合溶液,其中NaOH摩尔浓度:Na2CO3摩尔浓度在12:1-8:1之间;所述层状双金属纳米镧材料用于水体中固体悬浮物质的絮凝,同时还可以对水体中磷元素进行吸附。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤2)反应结束的pH处于9.0-11.0,所述步骤3)中水浴温度为50℃-80℃,水浴时间为12-24h。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤5)镧盐为LaCl3或La(NO3)3;镧盐的醇溶液中镧离子浓度为1-40g·L-1;步骤5)中搅拌反应固液比为1:5-1:200,搅拌时间为12-24h,所述醇为甲醇或乙醇。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤6)使用HCl/NaOH调节体系pH,调节剂浓度为0.1-5mol·L-1,体系pH调节为10.0-12.0。
5.根据权利要求1-4任一项所述制备方法制备得到的层状双金属纳米镧材料,其特征在于:所述层状双金属纳米镧材料为Mg/Fe-LDHs基纳米镧材料,简称La-MF,所述La-MF材料呈白色粉末状,所述La-MF材料粒径为1-10μm,所述La-MF材料中镧负载量为5-30%。
6.根据权利要求5所述的层状双金属纳米镧材料的应用,其特征在于:将制备得到的层状双金属纳米镧材料用于水体中固体悬浮物质的絮凝,同时还可以对水体中磷元素进行吸附。
CN202210600038.7A 2022-05-30 2022-05-30 一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用 Pending CN115072790A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210600038.7A CN115072790A (zh) 2022-05-30 2022-05-30 一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210600038.7A CN115072790A (zh) 2022-05-30 2022-05-30 一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用

Publications (1)

Publication Number Publication Date
CN115072790A true CN115072790A (zh) 2022-09-20

Family

ID=83248442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210600038.7A Pending CN115072790A (zh) 2022-05-30 2022-05-30 一种同步锁磷除藻降浊的层状双金属基纳米镧材料的合成方法及应用

Country Status (1)

Country Link
CN (1) CN115072790A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1926969A1 (de) * 1968-05-23 1969-11-27 North American Rockwell Verfahren zur chemischen Entfernung von Phosphorionen aus Abwasser
CN111727172A (zh) * 2017-12-22 2020-09-29 威妥有限公司 镧系元素掺杂的层状双氢氧化物及其生产方法
CN112237897A (zh) * 2020-09-04 2021-01-19 南京大学 一种层状双金属基纳米镧材料及其制备方法和应用
CN113663639A (zh) * 2021-08-25 2021-11-19 四川大学 掺镧层状双氧化物的制备方法、其产物及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1926969A1 (de) * 1968-05-23 1969-11-27 North American Rockwell Verfahren zur chemischen Entfernung von Phosphorionen aus Abwasser
CN111727172A (zh) * 2017-12-22 2020-09-29 威妥有限公司 镧系元素掺杂的层状双氢氧化物及其生产方法
CN112237897A (zh) * 2020-09-04 2021-01-19 南京大学 一种层状双金属基纳米镧材料及其制备方法和应用
CN113663639A (zh) * 2021-08-25 2021-11-19 四川大学 掺镧层状双氧化物的制备方法、其产物及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANGUO CAI等人: ""Enhanced Defluoridation Using Novel Millisphere Nanocomposite of La-Doped Li-Al Layered Double Hydroxides Supported by Polymeric Anion Exchanger"", 《SCIENTIFIC REPORTS》 *

Similar Documents

Publication Publication Date Title
CN112237897B (zh) 一种层状双金属基纳米镧材料及其制备方法和应用
Wu et al. The variation of flocs activity during floc breakage and aging, adsorbing phosphate, humic acid and clay particles
Liu et al. Phosphate capture by ultrathin MgAl layered double hydroxide nanoparticles
Rajput et al. Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP)
Zeng et al. Characterization and coagulation performance of a novel inorganic polymer coagulant—Poly-zinc-silicate-sulfate
Jiang et al. The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant
Dey et al. Cobalt ferrite nanoparticles aggregated schwertmannite: A novel adsorbent for the efficient removal of arsenic
Shahid et al. Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors
Wang et al. Synthesis of zeolite/hydrous lanthanum oxide composite from coal fly ash for efficient phosphate removal from lake water
Gao et al. Millimeter-sized Mg–Al-LDH nanoflake impregnated magnetic alginate beads (LDH-n-MABs): a novel bio-based sorbent for the removal of fluoride in water
Wang et al. Phosphate removal from water using lithium intercalated gibbsite
Sun et al. Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from oil shale ash
Kaegi et al. Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe (III)-precipitates formed in aerated Fe (II) and As (III) containing water
Zhang et al. Novel ferromagnetic nanoparticle composited PACls and their coagulation characteristics
Jia et al. Kinetics, isotherms and multiple mechanisms of the removal for phosphate by Cl-hydrocalumite
JP2001520578A (ja) 沈殿物の改善用材料および改善方法
CN103402624A (zh) 用于从水中去除阴离子污染物的有机-无机复合材料及其制备方法
CN101754932A (zh) 用于制备硫酸钡的方法
Zhuang et al. Preparation of polyaluminum zirconium silicate coagulant and its performance in water treatment
Zelmanov et al. Phosphate removal from aqueous solution by an adsorption ultrafiltration system
CN113908815B (zh) 一种高分子改性吸附剂及其制备方法和其应用
CN101503217A (zh) 废水除磷羧基功能化纳米Fe3O4吸附剂的制备及应用方法
Eskandarpour et al. Magnetic removal of phosphate from wastewater using schwertmannite
US11639301B2 (en) Contaminate removal using aluminum-doped magnetic nanoparticles
Zhao et al. High efficient coagulant simply by mechanochemically activating kaolinite with sulfuric acid to enhance removal efficiency of various pollutants for wastewater treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination