CN115068676B - 一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法 - Google Patents
一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法 Download PDFInfo
- Publication number
- CN115068676B CN115068676B CN202210703415.XA CN202210703415A CN115068676B CN 115068676 B CN115068676 B CN 115068676B CN 202210703415 A CN202210703415 A CN 202210703415A CN 115068676 B CN115068676 B CN 115068676B
- Authority
- CN
- China
- Prior art keywords
- water
- tissue repair
- oil
- slowly releasing
- bioactive factors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/025—Other specific inorganic materials not covered by A61L27/04 - A61L27/12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/102—Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
本发明提供了一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法,该制备方法包括以下步骤:(1)将锂皂石分散在水相溶液中,得冻胶;(2)将步骤(1)所得冻胶与油性高分子有机溶液共混,得共混液;(3)将步骤(2)所得共混液通过模具浇铸冷冻干燥法、静电纺丝法或挤出式3D打印法制得可缓释生物活性因子的水/油两相组织修复支架。本发明所得支架可以获得更优异的分级多孔结构,有利于移植后组织修复,不会引入有毒的化学物质,有效解决了现有技术中缺乏生物功能活性、力学性能不足和降解速率过快等问题。
Description
技术领域
本发明属于生物医药材料技术领域,具体涉及一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法。
背景技术
大块组织缺损(如骨、皮肤等)再生修复仍是临床面临的一大挑战。现阶段临床应用的组织修复替代材料主要包括自体组织、异体组织和人工生物材料等。例如,自体骨移植是植骨手术的“金标准”,但其来源有限,且会造成供区骨组织创伤,难以满足临床需求;异体骨移植可能使患者产生免疫排斥反应,存在引入外源病菌、病毒的风险以及伦理问题;传统的人工生物材料植入仅能起到骨充填作用,缺乏生物功能活性。骨组织工程作为极具潜力的骨再生策略为临床治疗骨缺损开辟了新途径。组织工程是将生命科学与工程学原理和技术相结合,涉及生物材料、细胞以及合适的生物活性因子,其核心是建立多孔支架材料构成的三维复合体,以实现对受损组织的良好修复。
在组织工程中,生物活性因子的活性维持是限制其发展的重要因素。以往的研究中,负载药物的载体与有机溶剂直接接触会显著影响生物因子的活性。目前大部分的水凝胶支架材料虽然能够维持生物因子的活性,但存在力学性能不足,降解速率过快等诸多问题。锂皂石(laponite,LAP)为含硅、锂的纳米盘状粘土材料,在生理环境下,LAP可以被安全降解代谢,其释放的SI,Mg,Li等有利于促进组织再生。LAP晶体表面带有负电荷,边缘因为粒子的部分吸收带有正电荷。LAP在水溶液中会剥离形成“卡屋”结构转变成物理冻胶。这一结构联合表面电荷作用使其具有容纳其他小分子物质的能力。尽管已经有研究将锂皂石应用于药物缓释领域,但基于其溶剂体系来开发设计组织修复支架的技术还未有报道。
发明内容
针对现有技术中存在的上述问题,本发明提供一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法,所得支架可以获得更优异的分级多孔结构,有利于移植后组织修复,不会引入有毒的化学物质,有效解决了现有技术中缺乏生物功能活性、力学性能不足和降解速率过快等问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:提供一种可缓释生物活性因子的水/油两相组织修复支架的制备方法,包括以下步骤:
(1)将锂皂石分散在水相溶液中,得冻胶;
(2)将步骤(1)所得冻胶与油性高分子有机溶液共混,得共混液;
(3)将步骤(2)所得共混液通过模具浇铸冷冻干燥法、静电纺丝法或挤出式3D打印法制得可缓释生物活性因子的水/油两相组织修复支架。
进一步,步骤(1)的具体步骤为:在剧烈搅拌条件下将锂皂石加入水相溶液中搅拌4-48h,室温下静置熟化6-60h,得冻胶。
进一步,锂皂石为锂皂石离子掺杂类变体、锂皂石表面接枝改性类变体、锂皂石表面包覆改性类变体或锂皂石中间插层类变体。
进一步,水相溶液为纯水、PBS或α-MEM培养基。
进一步,锂皂石在纯水中的浓度为1-20wt%;锂皂石在PBS中的浓度为3-20wt%;锂皂石在α-MEM培养基中的浓度为5-20wt%
进一步,步骤(2)的具体步骤为:将油性高分子加入有机溶剂中溶解,然后在搅拌条件下加入步骤(1)所得冻胶共混,得共混液。
进一步,油性高分子为聚乳酸、聚乳酸-羟基乙酸共聚物、聚己内酯、聚L-丙交酯-己内酯、聚酰胺、聚氨酯和胶原蛋白中的至少一种。
进一步,油性高分子的分子量为10-40万道尔顿。
进一步,有机溶剂为二氯甲烷、三氯甲烷、六氟异丙醇和甲酰胺中的至少一种。
进一步,油性高分子和有机溶剂的质量体积比为1:2-5,有机溶剂和冻胶的体积比为0.2-2:1。
进一步,采用模具浇铸冷冻干燥法时,将步骤(2)所得共混液浇铸到聚四氟乙烯模具中,然后放入-20-80℃温度下冷冻2h,再冻干12-48h,得可缓释生物活性因子的水/油两相组织修复支架。
进一步,采用静电纺丝法时,在高压电场下作用下,通过静电纺丝设备的接收板接收纳米纤维制备得到静电纺支架,电纺针头为20-23G,电压为8-25Kv,推注速度为0.4-1ml/h,接收板为平板、滚筒式或图案化接收板,得可缓释生物活性因子的水/油两相组织修复支架。
进一步,采用挤出式3D打印法时,将步骤(2)所得共混溶液加入打印料筒中,在0.05-0.8MPa的压力下,通过层层堆积制备具有贯通孔隙的3D打印支架,打印温度为0-37℃,打印针头速度为0.1-50mm/s,得可缓释生物活性因子的水/油两相组织修复支架。
上述可缓释生物活性因子的水/油两相组织修复支架的制备方法制得的可缓释生物活性因子的水/油两相组织修复支架。
上述可缓释生物活性因子的水/油两相组织修复支架在缓释生物活性因子中的应用。
负载生物活性因子时,在水相溶液中加入生物活性因子,生物活性因子与水相溶液的质量比为1:10-1000。
进一步,生物活性因子为骨形态发生蛋白2(BMP 2)、骨形态发生蛋白7(BMP 7)、成纤维细胞生长因子(FGF)、转化生长因子-β(TGF-β)、上表皮生长因子(EGF)、血小板源性生长因子(PDFG-BB)血管内皮生长因子(VEGF)、阿仑膦酸钠、白藜芦醇、黄芩苷或辛伐他汀。
负载时,将生物活性因子溶解,然后将步骤(3)所得可缓释生物活性因子的水/油两相组织修复支架浸没,在37℃和120rpm条件下震荡24h,取出冲洗3次,放入-20-80℃冰箱中冷冻2h,再-96℃冻干24h。
药物载药率为70~100%,药物释放周期大于28天。
综上所述,本发明具备以下优点:
1、本发明先对锂皂石进行水化处理,再与溶解于有机溶剂中的高分子溶液进行共混。其中,以水相共混,其比锂皂石直接加入高分子比更能保护生物因子活性,且具有很好的缓释效果;通过两相共混后冻干支架可以获得更优异的分级多孔结构,有利于移植后骨的诱导生长,不会引入有毒的化学物质,所制得水/油两相组织修复支架具有优秀的生物相容性。
2、本发明所得支架可以获得更优异的分级多孔结构,有利于移植后骨的诱导生长,不会引入有毒的化学物质,有效解决了现有技术中缺乏生物功能活性、力学性能不足和降解速率过快等问题。
附图说明
图1为不同比例锂皂石溶于水相(水、PBS、α-MEM培养基)后熟化为物理冻胶的图片;
图2为实施例1所制备的LAP/PLGA支架的扫描电镜图;
图3为实施例1所制备的LAP/PLGA支架的光镜图;
图4为实施例1所制备的LAP/PLGA支架与空白对照不同时间点的CCK-8吸光度定量统计结果;
图5为实施例2所制备的LAP/PLGA支架的激光共聚焦图;
图6为实施例3所制备的LAP/PLGA支架制备过程中挤出、固化、成型的光镜图;
图7为实施例3所制备的LAP/PLGA支架植入SD大鼠颅骨缺损模型12周后的micro-CT重建图。
具体实施方式
实施例1
一种可缓释生物活性因子的水/油两相组织修复支架,其制备方法包括以下步骤:
(1)在剧烈搅拌条件下将1.5g锂皂石加入50mL超纯水中搅拌24h,室温下静置熟化48h,得冻胶;
(2)将1g的PLGA(LA:GA=85:15,3.0×104Da)加入2mL二氯甲烷中溶解,然后在搅拌条件下加入步骤(1)所得冻胶(v/v=2:1)共混,得共混液;
(3)将步骤(2)所得共混液加入打印料筒中,在0.2MPa的压力下,计算出匹配的打印针头速度为0.5mm/s,打印所用的针头尺寸为22G,针头和平台温度均为18℃,在计算机控制支持下通过层层堆积制备具有贯通孔隙的3D打印支架。
本实施例所得LAP/PLGA支架的扫描电镜图和光镜图分别如图2和3所示。以及LAP/PLGA支架与空白对照不同时间点的CCK-8吸光度定量统计结果如图4所示。图4中每组数据左侧为实施例1,右侧为空白对照组。
由图1可知,不同水相(水、PBS、α-MEM培养基)均可以在加入LAP后熟化为物理冻胶。
由图2和3可知,基于溶剂体系来开发设计组织修复支架具有优异的可打印性。实施例1所制备的支架具有连续贯通的孔径结构,孔径结构可以根据打印参数进行调节。
由图4可知,实施例1所制备的支架具有优异的生物相容性,表明基于溶剂体系来开发设计组织修复支架不会引入有毒的化学物质。
实施例2
一种可缓释生物活性因子的水/油两相组织修复支架,其制备方法包括以下步骤:
(1)将100ug的BSA-Cy5溶解在5mL的纯水中,在剧烈搅拌条件下将0.15g锂皂石加入5mL的BSA-Cy5溶解液中搅拌24h,室温下静置熟化48h,得冻胶;
(2)将1g的PLGA(LA:GA=85:15,3.0×104Da)加入4mL二氯甲烷中溶解,然后在搅拌条件下加入步骤(1)所得冻胶(v/v=1:1)共混,得共混液;
(3)将步骤(2)所得共混液加入打印料筒中,在0.1MPa的压力下,计算出匹配的打印针头速度为0.5mm/s,打印所用的针头尺寸为22G,针头和平台温度均为18℃,在计算机控制支持下通过层层堆积制备具有贯通孔隙的3D打印支架。
本实施例所得LAP/PLGA支架的激光共聚焦图如图5所示。
由图5可知,生物活性因子能均匀负载在两相支架内部。
实施例3
一种可缓释生物活性因子的水/油两相组织修复支架,其制备方法包括以下步骤:
(1)先将100ug的BMP-2溶解在5mL的纯水中,在剧烈搅拌条件下将1.5g锂皂石加入5mL BMP-2溶解液中搅拌24h,室温下静置熟化48h,得冻胶;
(2)将1g的PLGA(LA:GA=85:15,3.0×104Da)加入4mL二氯甲烷中溶解,然后在搅拌条件下加入步骤(1)所得冻胶(v/v=1:1)共混,得共混液;
(3)将步骤(2)所得共混液加入打印料筒中,在0.2MPa的压力下,计算出匹配的打印针头速度为0.5mm/s,打印所用的针头尺寸为22G,针头和平台温度均为18℃,在计算机控制支持下通过层层堆积制备具有贯通孔隙的3D打印支架。
本实施例所得LAP/PLGA支架制备过程中挤出、固化、成型的光镜图以及植入SD大鼠颅骨缺损模型12周后的micro-CT重建图分别如图6和7所示。
由图6可知,LAP/PLGA两相共混液具有优异的流变学性能和可打印性,能够在挤出、固化、成型过程中实现预期效果。
由图7可知,两相支架具有优异的骨组织修复效果。
实施例4
一种可缓释生物活性因子的水/油两相组织修复支架,其制备方法包括以下步骤:
(1)在剧烈搅拌条件下将0.5g锂皂石加入5mL水相溶液中搅拌24h,室温下静置熟化48h,得冻胶;
(2)将1g的PLGA(LA:GA=85:15,3.0×104Da)加入5mL二氯甲烷中溶解,然后在搅拌条件下加入步骤(1)所得冻胶(v/v=1:3)共混,得共混液;
(3)将步骤(2)所得共混液加入打印料筒中,加入5ml的推注针筒中,在15Kv高压电场下作用下,在推注速度为0.8mL/h的推注速度下分别通过平板,滚筒式和图案化接收板接收纳米纤维制备得到三种不同图案化的静电纺支架。
实施例5
一种可缓释生物活性因子的水/油两相组织修复支架,其制备方法包括以下步骤:
(1)将100ug的BSA-Cy5溶解在5mL的纯水中,在剧烈搅拌条件下将0.5g锂皂石加入5mL的BSA-Cy5溶解液中搅拌24h,室温下静置熟化48h,得冻胶;
(2)将1g的PLGA(LA:GA=85:15,3.0×104Da)加入5mL二氯甲烷中溶解,然后在搅拌条件下加入步骤(1)所得冻胶(v/v=1:1)共混,得共混液;
(3)将步骤(2)所得共混液加入打印料筒中,加入5ml的推注针筒中,在15Kv高压电场下作用下,在推注速度为0.8mL/h的推注速度下分别通过平板,滚筒式和图案化接收板接收纳米纤维制备得到三种不同图案化的静电纺支架。
实施例6
一种可缓释生物活性因子的水/油两相组织修复支架,其制备方法包括以下步骤:
(1)在剧烈搅拌条件下将0.3g锂皂石加入5mL的PBS中搅拌24h,室温下静置熟化48h,得冻胶;
(2)将1g的PLGA(LA:GA=85:15,3.0×104Da)加入3mL二氯甲烷中溶解,然后在搅拌条件下加入步骤(1)所得冻胶(v/v=1:5)共混,得共混液;
(3)将步骤(2)所得共混液加入打印料筒中,加入10×10×10mm的聚四氟乙烯模具中,快速放入-80℃冰箱中冷冻两个小时后再放入-96℃冻干24h后得到水/油两相组织修复支架。
实施例7
一种可缓释生物活性因子的水/油两相组织修复支架,其制备方法包括以下步骤:
(1)在剧烈搅拌条件下将1g焦磷酸钠改性的锂皂石加入5mL的PBS中搅拌24h,室温下静置熟化48h,得冻胶;
(2)将1g的PLGA(LA:GA=85:15,3.0×104Da)加入3mL二氯甲烷中溶解,然后在搅拌条件下加入步骤(1)所得冻胶(v/v=1:5)共混,得共混液;
(3)将步骤(2)所得共混液加入打印料筒中,加入10×10×10mm的聚四氟乙烯模具中,快速放入-80℃冰箱中冷冻两个小时后再放入-96℃冻干24h后得到水/油两相组织修复支架。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。
Claims (7)
1.一种可缓释生物活性因子的水/油两相组织修复支架的制备方法,其特征在于,包括以下步骤:
(1)在剧烈搅拌条件下将锂皂石加入水相溶液中搅拌4-48h,室温下静置熟化6-60h,得冻胶;负载生物活性因子时,在水相溶液中加入生物活性因子;
(2)将油性高分子加入有机溶剂中溶解,然后在搅拌条件下加入步骤(1)所得冻胶共混,得共混液;所述油性高分子为聚乳酸、聚乳酸-羟基乙酸共聚物、聚己内酯、聚L-丙交酯-己内酯、聚酰胺和聚氨酯中的至少一种;
(3)将步骤(2)所得共混液通过模具浇铸冷冻干燥法、静电纺丝法或挤出式3D打印法制得可缓释生物活性因子的水/油两相组织修复支架。
2.如权利要求1所述的可缓释生物活性因子的水/油两相组织修复支架的制备方法,其特征在于,所述锂皂石为锂皂石离子掺杂类变体、锂皂石表面接枝改性类变体、锂皂石表面包覆改性类变体或锂皂石中间插层类变体。
3.如权利要求1所述的可缓释生物活性因子的水/油两相组织修复支架的制备方法,其特征在于,所述水相溶液为纯水、PBS或α-MEM培养基。
4.如权利要求1所述的可缓释生物活性因子的水/油两相组织修复支架的制备方法,其特征在于,所述有机溶剂为二氯甲烷、三氯甲烷、六氟异丙醇和甲酰胺中的至少一种。
5.如权利要求1所述的可缓释生物活性因子的水/油两相组织修复支架的制备方法,其特征在于,所述油性高分子和有机溶剂的质量体积比为1:2-5g/mL,所述有机溶剂和冻胶的体积比为0.2-2:1。
6.权利要求1-5任一项所述的可缓释生物活性因子的水/油两相组织修复支架的制备方法制得的可缓释生物活性因子的水/油两相组织修复支架。
7.权利要求6所述的可缓释生物活性因子的水/油两相组织修复支架在缓释生物活性因子或负载药物中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210703415.XA CN115068676B (zh) | 2022-06-21 | 2022-06-21 | 一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210703415.XA CN115068676B (zh) | 2022-06-21 | 2022-06-21 | 一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115068676A CN115068676A (zh) | 2022-09-20 |
CN115068676B true CN115068676B (zh) | 2023-05-09 |
Family
ID=83252929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210703415.XA Active CN115068676B (zh) | 2022-06-21 | 2022-06-21 | 一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115068676B (zh) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102505176B (zh) * | 2011-11-08 | 2014-08-13 | 东华大学 | 一种锂皂石掺杂的聚乳酸-羟基乙酸纳米纤维的制备方法 |
CN108295302B (zh) * | 2018-01-19 | 2020-11-20 | 中山职业技术学院 | 一种医用聚乳酸改性磷酸钙骨水泥复合3d打印材料的制备方法 |
CN110368524B (zh) * | 2019-07-30 | 2021-12-07 | 东南大学 | 一种生物活性骨修复支架及其制备方法 |
CN112354012A (zh) * | 2020-09-29 | 2021-02-12 | 嘉兴市爵拓科技有限公司 | 一种可控药物缓释的复合纳米载体材料的制备 |
CN112661980B (zh) * | 2020-11-30 | 2022-12-16 | 华南理工大学 | 一种可3d打印的壳聚糖/锂皂石复合水凝胶及其制备方法与应用 |
-
2022
- 2022-06-21 CN CN202210703415.XA patent/CN115068676B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN115068676A (zh) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107523136B (zh) | 温度响应性可降解3d打印生物墨水及3d打印方法 | |
Pandey et al. | Chitosan: Application in tissue engineering and skin grafting | |
Chung et al. | Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering | |
Wang et al. | Silk fibroin/collagen/hyaluronic acid scaffold incorporating pilose antler polypeptides microspheres for cartilage tissue engineering | |
Chiono et al. | Trends in the design of nerve guidance channels in peripheral nerve tissue engineering | |
Reverchon et al. | Supercritical fluids in 3-D tissue engineering | |
US20030082808A1 (en) | Composite biodegradable polymer scaffold | |
EP2793962B1 (en) | Process for modifying the surface morphology of a medical device | |
EP1352666A1 (en) | Channeled biomedical foams and method for producing | |
Zhou et al. | In vitro evaluation of poly (vinyl alcohol)/collagen blended hydrogels for regulating human periodontal ligament fibroblasts and gingival fibroblasts | |
Tang et al. | Functional biomaterials for tendon/ligament repair and regeneration | |
Khang et al. | A manual for biomaterials/scaffold fabrication technology | |
CN113398330A (zh) | 一种可构建多层级仿生孔结构的3d打印生物墨水及其制备方法和打印方法 | |
Xu et al. | Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine | |
Prabaharan et al. | Prospects of bioactive chitosan-based scaffolds in tissue engineering and regenerative medicine | |
CN108992212B (zh) | 骨-软骨一体修复支架及其制备方法 | |
CN114732948A (zh) | 肩袖补片及其制备方法 | |
George et al. | Biopolymer-based scaffolds: Development and biomedical applications | |
Karande et al. | Function and requirement of synthetic scaffolds in tissue engineering | |
Wang et al. | Polylactic acid scaffold with directional porous structure for large-segment bone repair | |
Ali et al. | Advances in Guided Bone Regeneration Membranes: A Comprehensive Review of Materials and Techniques. | |
Ozkendir et al. | Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration | |
Yadav et al. | Applications of Scaffolds in Tissue Engineering: Current Utilization and Future Prospective | |
CN115068676B (zh) | 一种可缓释生物活性因子的水/油两相组织修复支架及其制备方法 | |
Ma et al. | Silk fibroin-based scaffolds for tissue engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |