CN115065039A - 混合式断路器 - Google Patents

混合式断路器 Download PDF

Info

Publication number
CN115065039A
CN115065039A CN202210752239.9A CN202210752239A CN115065039A CN 115065039 A CN115065039 A CN 115065039A CN 202210752239 A CN202210752239 A CN 202210752239A CN 115065039 A CN115065039 A CN 115065039A
Authority
CN
China
Prior art keywords
circuit
branch
signal
driving
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210752239.9A
Other languages
English (en)
Inventor
高偲智
邓云坤
陈思磊
李兴文
彭晶
赵现平
王科
张鹏成
张枭
李东
李桥安
张黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Yunnan Power Grid Co Ltd filed Critical Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority to CN202210752239.9A priority Critical patent/CN115065039A/zh
Publication of CN115065039A publication Critical patent/CN115065039A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明实施例公开了一种自响应低压直流混合式断路器,所述混合式断路器包括取能电路、驱动控制电路、主通流支路、电力电子支路和耗能缓冲支路。取能电路在故障发生时感应到故障电流并生成供电电压,从而为驱动控制电路供能;驱动控制电路输出驱动信号,驱动主通流支路、电力电子支路运行,使得故障电流得以从主通流支路换流至电力电子支路,之后再次换流至耗能缓冲支路中被清除。在本申请中,通过设置取能电路,使得混合式断路器可以利用故障发生时产生的能量供能且可以准确的检测到故障,从而无需额外配置单独电源和检测模块;通过设置驱动控制电路,在驱动信号的作用下精准的控制混合式断路器的开断时序,保证了混合式断路器运行的可靠性。

Description

混合式断路器
技术领域
本发明涉及电子电路领域,尤其涉及一种自响应低压直流混合式断路器。
背景技术
在“碳达峰、碳中和”的背景下,新能源技术领域的发展越来越迅速,在我们日常生活中,风力发电、水力发电、新能源电动汽车等等都属于新能源技术,这些技术都需要电网配电系统的支持配合,而电网配电系统的运行必然伴随着高要求的用电保护措施。现阶段,低压直流系统是电网配电系统里常用的配电系统,但低压直流系统对用电保护的要求更加严谨。
在现有技术中,低压直流系统的用电保护多数基于断路器,断路器可以快速、可靠的切除故障电流,对维持低压直流系统的用电安全有重要意义。而断路器可以分为机械式断路器、全固态断路器和混合式断路器,其中混合式断路器集成了机械式断路器和全固态断路器的优势,能够实现稳态运行时的低损耗和故障发生时的快速分断。但目前来看,在国内外研究中,混合式断路器在使用时需要单独配备电源为断路器的运行供能,还需要配备检测模块,以在故障发生时准确的检测到故障,这都会增加设备的体积和分布式投运难度;并且混合式断路器的控制需要依靠精确的时序控制来保证开断的可靠性,这也给断路器的研发与应用带来了一定的难度。
发明内容
基于此,有必要针对上述问题,提出了一种混合式断路器。
一种混合式断路器,所述断路器包括:
取能电路、驱动控制电路、主通流支路、电力电子支路、耗能缓冲支路;
所述取能电路的一端与直流母线相连,所述取能电路的另一端与所述驱动控制电路的一端连接,所述驱动控制电路的另一端分别与所述主通流支路、所述电力电子支路连接,所述主通流支路、所述电力电子支路和所述耗能缓冲支路三者并联并位于所述直流母线上,所述直流母线的一端与等效直流电源连接,所述直流母线的另一端与负载连接;
当所述负载发生故障时,所述取能电路用于生成供电电压,并将所述供电电压提供给所述驱动控制电路;
所述驱动控制电路用于输出第一驱动信号,所述第一驱动信号用于驱动所述电力电子支路导通;所述驱动控制电路还用于输出第二驱动信号,所述第二驱动信号用于断开所述主通流支路,以使故障电流从所述主通流支路换流至所述电力电子支路;所述驱动控制电路还用于输出第三驱动信号,所述第三驱动信号用于断开所述电力电子支路,以使所述故障电流从所述电力电子支路换流至所述耗能缓冲支路;
所述耗能缓冲支路用于接收并清除所述故障电流。
可选的,所述取能电路包括感应电路和处理电路,其中,所述感应电路包括第一感应线圈和第二感应线圈,所述第一感应线圈位于所述直流母线上;
当所述负载发生故障时,所述第一感应线圈产生感应电压,所述第一感应线圈用于将所述感应电压耦合至所述第二感应线圈;所述第二感应线圈用于将耦合后的感应电压传输至所述处理电路;所述处理电路用于对所述耦合后的感应电压进行整流、滤波、稳压处理后生成所述供电电压。
可选的,所述处理电路包括整流电路、滤波电路和稳压电路;
所述整流电路用于对所述耦合后的感应电压进行整流处理得到直流电压,并将所述直流电压传输至所述滤波电路;所述滤波电路用于对所述直流电压进行滤波处理,并将滤波后的直流电压传输至所述稳压电路;所述稳压电路用于对所述滤波后的直流电压进行稳压处理后生成所述供电电压。
可选的,所述混合式断路器还包括开关电路,所述开关电路位于所述直流母线上,所述开关电路与所述驱动控制电路连接,所述驱动控制电路还用于输出第四驱动信号,所述第四驱动信号用于驱动所述开关电路关断,以使所述等效直流电源与所述负载断开连接。
可选的,所述驱动控制电路包括依次连接的控制单元、驱动单元和信号输出单元,所述控制单元与所述取能电路连接,所述信号输出单元包括第一信号输出端子、第二信号输出端子和第三信号输出端子;
所述控制单元用于输出控制信号至所述驱动单元,所述驱动单元用于根据所述控制信号控制所述第一信号输出端子输出所述第二驱动信号、所述第二信号输出端子输出所述第一驱动信号或所述第三驱动信号、所述第三信号输出端子输出所述第四驱动信号。
可选的,所述驱动单元包括驱动芯片、第一驱动电路和第二驱动电路;
所述控制单元用于输出第一控制信号或第三控制信号至所述驱动芯片,所述驱动芯片用于根据所述第一控制信号生成所述第一驱动信号或所述第三驱动信号,并将所述第一驱动信号或所述第三驱动信号传输至所述第二信号输出端子;
所述控制单元还用于输出第二控制信号至所述第一驱动电路,所述第一驱动电路用于根据所述第二控制信号生成所述第二驱动信号,并将所述第二驱动信号传输至所述第一信号输出端子;
所述控制单元还用于输出第四控制信号至所述第二驱动电路,所述第二驱动电路用于根据所述第四控制信号生成所述第四驱动信号,并将所述第四驱动信号传输至所述第三信号输出端子。
可选的,所述驱动控制电路用于在延时第一预设时间后输出所述第三驱动信号;所述驱动控制电路还用于在延时第二预设时间后输出所述第四驱动信号,所述第二预设时间根据所述耗能缓冲支路上的故障电流完全清除的时长确定。
可选的,所述主通流支路包括以下任一种:微型断路器、塑壳断路器、框架断路器、继电器;
所述电力电子支路包括以下任一种:绝缘栅双极晶体管、金属氧化物半导体场效应晶体管、集成门极换流晶闸管、晶闸管;
所述耗能缓冲支路包括以下任一种:金属氧化物变阻器、瞬态二极管。
可选的,还包括与所述耗能缓冲支路并联的RC缓冲电路或RCD缓冲电路。
可选的,所述电力电子支路在断开时产生过电压,所述过电压用于触发所述耗能缓冲支路导通,以使所述故障电流从所述电力电子支路换流至所述耗能缓冲支路。
采用本发明实施例,具有如下有益效果:
本申请提出了一种自响应低压直流混合式断路器,所述混合式断路器包括取能电路、驱动控制电路、主通流支路、电力电子支路和耗能缓冲支路。取能电路用于在故障发生时,感应到故障电流,并生成供电电压,从而为驱动控制电路供能;驱动控制电路输出驱动信号,驱动主通流支路、电力电子支路运行,使得故障电流得以从主通流支路换流至电力电子支路,之后再次换流至耗能缓冲支路中被清除。在本申请中,通过设置取能电路,使得混合式断路器可以利用故障发生时产生的能量供能,从而无需额外配置单独电源;且取能电路可以在故障发生时准确的检测到故障,无需额外配备检测模块;通过设置驱动控制电路,在驱动信号的作用下精准的控制混合式断路器的开断时序,保证了混合式断路器运行的可靠性。本申请中的混合式断路器既减小了含有混合式断路器的设备的体积和分布式投运难度,又降低了断路器研发与应用的难度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本申请实施例中一种混合式断路器的结构示意图;
图2为本申请实施例中另一种混合式断路器的结构示意图;
图3为本申请实施例中一种混合式断路器的具体电路结构示意图;
图4为本申请实施例中取能电路100的工作过程示意图;
图5为本申请实施例中驱动控制电路200的具体结构示意图;
图6为本申请实施例中混合式断路器开断故障电流时各支路电流波形示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请提出了一种混合式断路器,具体是一种自响应低压直流混合式断路器,可以理解的是,这种混合式断路器可以应用在多种多样的适用场景内,不限于本申请中提到的新能源技术中的电网配电系统。
请参阅图1,为本申请实施例中一种混合式断路器的结构示意图,具体的,混合式断路器包括:
取能电路100、驱动控制电路200、主通流支路300、电力电子支路400、耗能缓冲支路500。
其中,取能电路100的一端与直流母线001相连,取能电路100的另一端与驱动控制电路200的一端连接,驱动控制电路200的另一端分别与主通流支路300、电力电子支路400连接,主通流支路300、电力电子支路400和耗能缓冲支路500三者并联并位于直流母线001上,直流母线001的一端与等效直流电源002连接,直流母线001的另一端与负载003连接;当负载003发生故障时,取能电路100用于生成供电电压,并将供电电压提供给驱动控制电路200;驱动控制电路200用于输出第一驱动信号,第一驱动信号用于驱动电力电子支路400导通;驱动控制电路200还用于输出第二驱动信号,第二驱动信号用于断开主通流支路300,以使故障电流从主通流支路300换流至电力电子支路400;驱动控制电路200还用于输出第三驱动信号,第三驱动信号用于断开电力电子支路400,以使故障电流从电力电子支路400换流至耗能缓冲支路500;耗能缓冲支路500用于接收并清除故障电流。
可以理解的是,当系统中负载003出现故障(例如负载003发生短路、断路等)时,直流母线001中的电流会发生变化,这种变化可以被取能电路100感应到从而生成供电电压,该供电电压可以给混合式断路器的驱动控制电路200供电,保障驱动控制电路200的正常运行。驱动控制电路200可以生成并发送驱动信号,从而驱动主通流支路300、电力电子支路400,以实现将负载003发生故障时产生的故障电流经过两次换流之后到达耗能缓冲支路500,在耗能缓冲支路500中实现故障电流的完全清除。
在本申请实施例中,通过设置取能电路100使得混合式断路器可以及时检测到系统负载发生的故障,并利用故障发生时的电流变化获取电能,这使得本申请无需再单独配备电源和检测模块,减小了设备的体积和分布式投运难度;通过设置驱动控制电路200,在精确的时序控制下发送驱动信号,驱动不同的支路实现故障电流的两次换流,最终实现故障电流的清除,这使得混合式断路器的开断更加可靠,给断路器的研发与应用带来了很大的便捷。
这种混合式断路器可以解决多种故障问题,具体的,在本申请实施例中,将以负载003发生短路故障为例进行描述。
请参阅图2,为本申请实施例中另一种混合式断路器的结构示意图,具体的,混合式断路器还可以包括开关电路600,开关电路600位于直流母线001上,开关电路600与驱动控制电路200连接,开关电路600用于确保将等效直流电源002与负载003断开连接。驱动控制电路200控制开关电路600的关断,具体控制方式在下面的驱动控制电路200的部分进行详细描述。
可以理解的是,开关电路600可以设置在直流母线001上的任意位置,只要确保在等效直流电源002和负载003之间即可,在本申请实施例中的图2中,举例说明开关电路600位于等效直流电源002的靠近处。开关电路600由机械结构构成,可以是隔离开关。由于电力电子支路400或者耗能缓冲支路500没有空气间隙,无法实现真正的电隔离,因此在本申请实施例中,驱动控制电路200驱动电力电子支路400关断,使得故障电流从电力电子支路400换流至耗能缓冲支路500并被清除后,混合式断路器内还会有少量的漏电流流过。此处设置开关电路600可以使得等效直流电源002和负载003之间在关断时保留有空气间隙,提高了混合式断路器的可靠性。
基于图2,请参阅图3,为本申请实施例中一种混合式断路器的具体电路结构示意图,下面将依据混合式断路器的具体电路结构分别介绍混合式断路器中的各个功能模块。
首先介绍取能电路100。取能电路100包括感应电路110和处理电路120。其中,感应电路110包括第一感应线圈L1和第二感应线圈L2,第一感应线圈L1位于直流母线001上。当负载003发生短路故障时,直流母线001上会有快速上升的故障电流,第一感应线圈L1用于当感应到故障电流时,生成感应电压并将感应电压耦合至第二感应线圈L2,第二感应线圈L2用于将耦合后的感应电压传输至处理电路120。处理电路120包括整流电路121、滤波电路122和稳压电路123,可以理解的是,整流电路121、滤波电路122和稳压电路123并联连接,处理电路120用于对耦合后的感应电压整流、滤波、稳压处理后生成供电电压,其中具体的处理为,整流电路121用于对耦合后的感应电压进行整流处理,得到直流电压并将直流电压传输至滤波电路122,滤波电路122用于对直流电压进行滤波处理,并将滤波后的直流电压传输至稳压电路123,稳压电路123用于对滤波后的直流电压进行稳压处理后生成供电电压,该供电电压可以用于给驱动控制电路200供电。
在本申请实施提供的结构示意图3中,感应电路110为一对相互耦合的电感,整流电路121为桥式整流电路,滤波电路122包括滤波电容和电阻,稳压电路123为稳压二极管。可以理解的是,感应电路110还可以是变压器,整流电路121还可以是其他整流电路,滤波电路122还可以是其他滤波电路,稳压电路123还可以是其他稳压电路。本申请实施例中只是举例说明,并未作过多限定,如有其他电路可以实现同样的作用,则也属于本申请的保护范围。
在一种可行的实现方式中,处理电路120还可以包括一个保护电路,保护电路与稳压电路123串联。稳压电路123可以为稳压管,保护电路可以为保护电阻,保护电阻用于限制流过稳压管的电流,从而保护稳压管不被烧坏。
基于图3,请参阅图4,为本申请实施例中取能电路100的工作过程示意图,具体的:
t0~t3期间,故障电流上升,第一感应线圈L1两端感应出感应电压UL1,且为正值,t4~t5期间,故障电流开始下降,L1两端仍感应出负向感应电压UL1,t3~t4为过渡过程。第二感应线圈L2与第一感应线圈L1耦合,因此L2两端电压UL2波形趋势与UL1相同,幅值取决于第一感应线圈L1与第二感应线圈L2之间的耦合系数。由于整流电路121中整流桥的作用,滤波电容C两端电压UC始终是正值,t0~t1期间为滤波电容C充电过程,其两端电压UC逐渐上升,t1时刻达到稳定值,t5时刻后,由于UL1、UL2回零,故滤波电容C开始放电,一段时间后,UC归零。t1~t5期间,UC达到稳态,稳压管DZ工作,其两端电压恒定,此电压值即为取能电路输出的供电电压,供给驱动控制电路200。
请参阅图3,其中,驱动控制电路200、主通流支路300、电力电子支路400、耗能缓冲支路500、开关电路600的具体连接关系、组成部分、作用为:
主通流支路300、电力电子支路400和耗能缓冲支路500并联,位于直流母线001上,且在等效直流电源002和负载003之间。主通流支路300主要是机械开关,可以是微型断路器、塑壳断路器、框架断路器、继电器等等;电力电子支路400主要是半导体器件,可以是绝缘栅双极晶体管(IGBT)、金属-氧化物半导体场效应晶体管(MOSFET)、集成门极换流晶闸管(IGCT)、晶闸管等等;耗能缓冲支路500主要是金属氧化物变阻器(MOV)、瞬态二极管(TVS)等等。
在本申请实施提供的示意图3中,主通流支路300为机械开关,电力电子支路400为绝缘栅双极晶体管(IGBT),耗能缓冲支路500为金属氧化物变阻器(MOV)。
可以理解的是,一些必要的环境下,耗能缓冲支路500还可以包括电阻-电容(RC)缓冲电路、电阻-电容-二极管(RCD)缓冲电路等等。金属氧化物变阻器(MOV)、瞬态二极管(TVS)、电阻-电容(RC)缓冲电路、电阻-电容-二极管(RCD)缓冲电路等等电路并联连接,用于在必要时起到更有效的缓冲作用。例如,在一些中压、高压环境中,如果只采用金属氧化物变阻器(MOV)作为耗能缓冲支路500,可能造成金属氧化物变阻器(MOV)热失效,此时给金属氧化物变阻器(MOV)并联一个电阻-电容(RC)缓冲电路,耗能缓冲支路500结构将会更加稳固,且避免了振荡和热失效的出现,以使耗能缓冲支路500的使用寿命得以被增长。
基于图3,请参阅图5,为本申请实施例中驱动控制电路200的具体结构示意图。
驱动控制电路200包括依次连接的控制单元210、驱动单元220和信号输出单元230,控制单元210与取能电路100中的稳压电路123的输出侧连接,驱动单元220包括第一驱动电路221、驱动芯片222和第二驱动电路223,信号输出单元230包括信号输出级、第一信号输出端子231、第二信号输出端子232和第三信号输出端子233,其中,第一信号输出端子231与主通流支路300连接,第二信号输出端子232与电力电子支路400连接,第三信号输出端子233与开关电路600连接。控制单元210可以是单片机(MCU)或者其它微型控制芯片,此处采用单片机(MCU)作为控制单元210。由于驱动芯片222最终要实现驱动电力电子支路400的导通或者关断,所以驱动芯片222采用的结构主要由电力电子支路400的具体结构对应决定,可以是绝缘栅双极型晶体管(IGBT)驱动芯片或者其他驱动芯片,在本申请实施例中,由于电力电子支路400采用了绝缘栅双极型晶体管(IGBT),是故此处驱动芯片222采用绝缘栅双极型晶体管(IGBT)驱动芯片。本申请实施例中只是举例说明,并未作过多限定,如有其他电路可以实现同样的作用,则也属于本申请的保护范围。
在本申请实施例中,稳压电路123生成供电电压后,将供电电压传输至驱动控制电路200,驱动控制电路200通过预设的时序精准的控制主通流支路300、电力电子支路400、耗能缓冲支路500和开关电路600分别进行相应的导通和关断,使得故障电流得以进行两次换流,从直流母线001上经过主通流支路300换流至电力电子支路400,继续换流至耗能缓冲支路500,从而在耗能缓冲支路500中消耗至完全清除,具体的,下面将基于图3和图5对这一过程进行详细描述。
控制单元210用于在接收到稳压电路123生成的供电电压后,生成并发送第一控制信号至驱动芯片222,驱动芯片222用于生成并发送第一驱动信号至第二信号输出端子232,第二信号输出端子232用于将第一驱动信号传输至电力电子支路400,从而实现电力电子支路400的导通。
在一种可行的实现方式中,由于电力电子支路400采用了绝缘栅双极型晶体管(IGBT),IGBT的导通电阻显著高于主通流支路300中的机械开关,因此此时虽然电力电子支路400被导通,但故障电流仍然几乎不流过电力电子支路400,是故控制单元210还用于在很短的预设时间内,生成并发送第二控制信号至第一驱动电路221,第一驱动电路221用于生成并发送第二驱动信号至第一信号输出端子231,第一信号输出端子231用于将第二驱动信号传输至主通流支路300,从而实现主通流支路300的关断。主通流支路300关断后,故障电流可以从主通流支路300换流至电力电子支路400。
其中,设置很短的预设时间是由于电力电子支路400被导通后,主通流支路300如果没有被关断则故障电流无法换流,是故需要在很短的时间内,迅速关断主通流支路300。很短的预设时间的具体时长基于实际操作所需时长,此处不作赘述。
其中,由于IGBT的导通压降,故主通流支路300中的机械开关断开的过程中,开关两端的电压降几乎为0,因此机械开关的触头之间几乎没有电弧,避免了触头间隙击穿和触头烧蚀,使得主通流支路300中的机械开关具有更长的使用寿命。
可以理解的是,控制单元210在延时第一预设时间后,生成并发送第三控制信号至驱动芯片222,驱动芯片222用于生成并发送第三驱动信号至第二信号输出端子232,第二信号输出端子232用于将第三驱动信号传输至电力电子支路400,从而驱动电力电子支路400关断。
在一种可行的实现方式中,电力电子支路400中IGBT在关断过程中,由于电流的高变化率,线路中存在有杂散电感,使得IGBT两端生成过电压。而耗能缓冲支路500中MOV是与电压相关的非线性电阻器,MOV两端电压超过阈值时,阻抗就会迅速减小,因此IGBT两端的过电压可以使得耗能缓冲支路500被导通,故障电流也得以从电力电子支路400换流至耗能缓冲支路500。
其中,第一预设时间可以是数百微秒,具体延时时间依据机械开关触头打开至能可靠承受IGBT关断产生的过电压所需时间确定。可以理解的是,耗能缓冲支路500中MOV将过电压钳位在额定电压的1.5~2倍左右,并不断消耗系统的能量,减小故障电流直至故障清除,故障清除后过电压恢复至系统电压。
可以理解的是,在本申请实施例中,在电力电子支路400导通时,主通流支路300两端的电压变为电力电子支路400的导通压降,在本实施例中即为IGBT的导通压降。由于主通流支路300两端的电压几乎为0,因此主通流支路300中的机械开关触头打开时几乎没有电弧产生,机械触头间隙没有电弧烧蚀过程,因此机械开关的绝缘和耐压性能更强,能够耐受住IGBT关断时产生的过电压。由于第一预设时间的具体延时时间是依据机械开关触头打开至能可靠承受IGBT关断产生的过电压所需时间确定的,因此,在本申请实施例中适当缩短第一预设时间也不会造成机械开关触头的过电压击穿,缩短第一预设时间意味着整个故障开断的时间被缩短。
在一种可行的实现方式中,控制单元210在延时第二预设时间后,生成并发送第四控制信号至第二驱动电路223,第二驱动电路223用于生成并发送第四驱动信号至第三信号输出端子233,第三信号输出端子233用于将第四驱动信号传输至开关电路600,驱动开关电路600关断,从而确保切断故障点与电源的连接。
其中,第二预设时间是一个很短的时间,具体取决于故障电流是否得以清除,当故障电流被完全清除后,控制单元210立即生成并发送第四控制信号,第四控制信号经一系列的处理使得开关电路600关断。
可以理解的是,故障点与电源的连接断开后,感应电路110两端不再有感应电压,滤波电路122中的滤波电容中存储的能量逐渐耗散,取能电路100和驱动控制电路200停止工作,整个故障分断过程完成。
在一种可行的实现方式中,稳态情况下,即负载003没有发生故障的情况下,正常电流源经开关电路600、感应电路110中的第一感应线圈L1、主通流支路300流向负载003,此时第一感应线圈L1上没有感应电压,且开关电路600和主通流支路300均为机械开关,故正常电流的通态损耗非常小。
在本申请实施例中,驱动控制电路200可以实现故障清除过程中精准的时序控制,具体的,请参阅图6,为本申请实施例中混合式断路器开断故障电流时各支路电流波形示意图,从该图中可以明确混合式断路器的时序控制过程。
0~t1期间,主通流支路300导通。t0时刻以前,主通流支路300流过稳态电流,在t0时刻,故障发生,主通流支路300电流迅速上升,t1时刻,驱动控制电路200输出驱动电力电子支路400开通的第一驱动信号以及驱动主通流支路300关断的第二驱动信号。t1~t2期间,完成故障电流从主通流支路300至电力电子支路400的换流过程,将该过程记为换流1,表现为主通流支路300电流逐渐降为0,电力电子支路400电流逐渐升高至故障电流大小。t2~t3期间,仅电力电子支路400导通,t3时刻,驱动控制电路200输出驱动电力电子支路400关断的第三驱动信号。t3~t4期间,完成电流从电力电子支路400至耗能缓冲支路500的换流过程,该过程记为换流2,由于电力电子器件开断速度远高于机械开关,因此换流2所需时间远小于换流1所需时间。t4~t5期间,耗能缓冲支路500中MOV器件导通,消耗能量,减小故障电流,至t5时刻,故障电流下降为0,完成故障清除过程,驱动控制电路200输出驱动开关电路600关断的第四驱动信号,以使故障点与电源的连接彻底断开。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种混合式断路器,其特征在于,所述断路器包括:
取能电路、驱动控制电路、主通流支路、电力电子支路、耗能缓冲支路;
所述取能电路的一端与直流母线相连,所述取能电路的另一端与所述驱动控制电路的一端连接,所述驱动控制电路的另一端分别与所述主通流支路、所述电力电子支路连接,所述主通流支路、所述电力电子支路和所述耗能缓冲支路三者并联并位于所述直流母线上,所述直流母线的一端与等效直流电源连接,所述直流母线的另一端与负载连接;
当所述负载发生故障时,所述取能电路用于生成供电电压,并将所述供电电压提供给所述驱动控制电路;
所述驱动控制电路用于输出第一驱动信号,所述第一驱动信号用于驱动所述电力电子支路导通;所述驱动控制电路还用于输出第二驱动信号,所述第二驱动信号用于断开所述主通流支路,以使故障电流从所述主通流支路换流至所述电力电子支路;所述驱动控制电路还用于输出第三驱动信号,所述第三驱动信号用于断开所述电力电子支路,以使所述故障电流从所述电力电子支路换流至所述耗能缓冲支路;
所述耗能缓冲支路用于接收并清除所述故障电流。
2.根据权利要求1所述的混合式断路器,其特征在于,所述取能电路包括感应电路和处理电路,其中,所述感应电路包括第一感应线圈和第二感应线圈,所述第一感应线圈位于所述直流母线上;
当所述负载发生故障时,所述第一感应线圈产生感应电压,所述第一感应线圈用于将所述感应电压耦合至所述第二感应线圈;所述第二感应线圈用于将耦合后的感应电压传输至所述处理电路;所述处理电路用于对所述耦合后的感应电压进行整流、滤波、稳压处理后生成所述供电电压。
3.根据权利要求2所述的混合式断路器,其特征在于,所述处理电路包括整流电路、滤波电路和稳压电路;
所述整流电路用于对所述耦合后的感应电压进行整流处理得到直流电压,并将所述直流电压传输至所述滤波电路;所述滤波电路用于对所述直流电压进行滤波处理,并将滤波后的直流电压传输至所述稳压电路;所述稳压电路用于对所述滤波后的直流电压进行稳压处理后生成所述供电电压。
4.根据权利要求1所述的混合式断路器,其特征在于,所述混合式断路器还包括开关电路,所述开关电路位于所述直流母线上,所述开关电路与所述驱动控制电路连接,所述驱动控制电路还用于输出第四驱动信号,所述第四驱动信号用于驱动所述开关电路关断,以使所述等效直流电源与所述负载断开连接。
5.根据权利要求4所述的混合式断路器,其特征在于,所述驱动控制电路包括依次连接的控制单元、驱动单元和信号输出单元,所述控制单元与所述取能电路连接,所述信号输出单元包括第一信号输出端子、第二信号输出端子和第三信号输出端子;
所述控制单元用于输出控制信号至所述驱动单元,所述驱动单元用于根据所述控制信号控制所述第一信号输出端子输出所述第二驱动信号、所述第二信号输出端子输出所述第一驱动信号或所述第三驱动信号、所述第三信号输出端子输出所述第四驱动信号。
6.根据权利要求5所述的混合式断路器,其特征在于,所述驱动单元包括驱动芯片、第一驱动电路和第二驱动电路;
所述控制单元用于输出第一控制信号或第三控制信号至所述驱动芯片,所述驱动芯片用于根据所述第一控制信号生成所述第一驱动信号或所述第三驱动信号,并将所述第一驱动信号或所述第三驱动信号传输至所述第二信号输出端子;
所述控制单元还用于输出第二控制信号至所述第一驱动电路,所述第一驱动电路用于根据所述第二控制信号生成所述第二驱动信号,并将所述第二驱动信号传输至所述第一信号输出端子;
所述控制单元还用于输出第四控制信号至所述第二驱动电路,所述第二驱动电路用于根据所述第四控制信号生成所述第四驱动信号,并将所述第四驱动信号传输至所述第三信号输出端子。
7.根据权利要求5或6所述的混合式断路器,其特征在于,所述驱动控制电路用于在延时第一预设时间后输出所述第三驱动信号;所述驱动控制电路还用于在延时第二预设时间后输出所述第四驱动信号,所述第二预设时间根据所述耗能缓冲支路上的故障电流完全清除的时长确定。
8.根据权利要求1至6中任一项所述的混合式断路器,其特征在于,所述主通流支路包括以下任一种:微型断路器、塑壳断路器、框架断路器、继电器;
所述电力电子支路包括以下任一种:绝缘栅双极晶体管、金属氧化物半导体场效应晶体管、集成门极换流晶闸管、晶闸管;
所述耗能缓冲支路包括以下任一种:金属氧化物变阻器、瞬态二极管。
9.根据权利要求8所述的混合式断路器,其特征在于,还包括与所述耗能缓冲支路并联的RC缓冲电路或RCD缓冲电路。
10.根据权利要求1至6中任一项所述的混合式断路器,其特征在于,所述电力电子支路在断开时产生过电压,所述过电压用于触发所述耗能缓冲支路导通,以使所述故障电流从所述电力电子支路换流至所述耗能缓冲支路。
CN202210752239.9A 2022-06-29 2022-06-29 混合式断路器 Pending CN115065039A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210752239.9A CN115065039A (zh) 2022-06-29 2022-06-29 混合式断路器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210752239.9A CN115065039A (zh) 2022-06-29 2022-06-29 混合式断路器

Publications (1)

Publication Number Publication Date
CN115065039A true CN115065039A (zh) 2022-09-16

Family

ID=83204444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210752239.9A Pending CN115065039A (zh) 2022-06-29 2022-06-29 混合式断路器

Country Status (1)

Country Link
CN (1) CN115065039A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117060358A (zh) * 2023-10-20 2023-11-14 山东泰开直流技术有限公司 一种混合式直流断路器的供能控制电路、断路器和电气设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117060358A (zh) * 2023-10-20 2023-11-14 山东泰开直流技术有限公司 一种混合式直流断路器的供能控制电路、断路器和电气设备

Similar Documents

Publication Publication Date Title
US10389262B2 (en) Device for temporarily taking over electrical current from an energy transfer or distribution device, when needed
Sano et al. A surgeless solid-state DC circuit breaker for voltage-source-converter-based HVDC systems
CN101268597B (zh) 用继电器为交流到直流转换器实现主动涌流控制
US6952335B2 (en) Solid-state DC circuit breaker
RU2592640C2 (ru) Линейный защитный автомат постоянного напряжения
KR101832868B1 (ko) 직류를 스위칭하기 위한 디바이스
US20150372474A1 (en) Circuit interruption device
CN104779593A (zh) 一种直流固态断路器及其控制方法
CN110392975B (zh) 用于变换输入电压的方法和倍压器以及分离电路
CN103534916A (zh) 功率转换装置
CN106356817A (zh) 一种桥式双向无弧直流断路器
CN111224372A (zh) 具有快速重合闸功能的混合式直流断路器及其开断方法
CN110518545B (zh) 基于双向限流模块的混合式高压直流断路器
JP2017126544A (ja) 無アーク電流開閉装置
CN115065039A (zh) 混合式断路器
CN114640240A (zh) 无桥功率因素校正保护电路及控制方法和功率模块
CN1307798C (zh) 用于可靠地开关电流回路的开关装置
JP2018195565A (ja) 直流遮断装置
JP2018125270A (ja) 直流電力系の安全開閉装置
Askan et al. Variable voltage IGBT gate driver for low voltage hybrid circuit breaker
CN112003357B (zh) 基于固态开关的电路控制方法
CN113922330A (zh) 一种基于复合换流方式的发电机出口断路器及其控制方法
KR101171739B1 (ko) 스위치 전원 주파 과전압 보호회로
CN218568762U (zh) 三相无触点断路器
CN211089117U (zh) 基于晶闸管的固态交流断路器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination