CN115058056A - 二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用 - Google Patents

二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用 Download PDF

Info

Publication number
CN115058056A
CN115058056A CN202210789530.3A CN202210789530A CN115058056A CN 115058056 A CN115058056 A CN 115058056A CN 202210789530 A CN202210789530 A CN 202210789530A CN 115058056 A CN115058056 A CN 115058056A
Authority
CN
China
Prior art keywords
polyvinyl alcohol
molybdenum disulfide
carbon nanotube
preparation
photothermal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210789530.3A
Other languages
English (en)
Other versions
CN115058056B (zh
Inventor
谢晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Annatai Environmental Protection Technology Co ltd
Original Assignee
Jiangsu Annatai Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Annatai Environmental Protection Technology Co ltd filed Critical Jiangsu Annatai Environmental Protection Technology Co ltd
Priority to CN202210789530.3A priority Critical patent/CN115058056B/zh
Publication of CN115058056A publication Critical patent/CN115058056A/zh
Application granted granted Critical
Publication of CN115058056B publication Critical patent/CN115058056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,包括如下依次进行的工艺步骤:以碳纳米管、钼酸铵及硫脲为原料,采用水热方法制备出二硫化钼/碳纳米管多孔纳米粉末;对聚乙烯醇水热改性处理,获得不溶于水的改性聚乙烯醇;将二硫化钼/碳纳米管纳米粉末加入到改性聚乙烯醇中,搅拌均匀后制得复合水凝胶,然后将复合水凝胶涂敷在聚醚砜泡沫表面后制得光热材料转换膜。本发明制得的二硫化钼/碳纳米管/聚乙烯醇海水淡化膜机械性能高、光热转换效率高、持久性好。

Description

二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用
技术领域
本发明涉及环境材料领域,具体涉及一种二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用,具体是二硫化钼碳纳米管聚乙烯醇基光热材料在海水淡化中应用。
背景技术
太阳能热淡化海水技术是利用太阳辐射加热收集位于水/气界面蒸汽的方法制备淡水,可持续的淡化海水。由于其太阳能转换蒸发效率高、简单易操作以及仅使用清洁的太阳能辐射作为能量输入而受到越来越多的关注。用于高效太阳能界面光热材料应具有宽的太阳能吸收范围、高的光热转换效率、低的热导率、定向的孔隙和用于水分子传输的丰富孔隙率。迄今为止,碳基材料、共轭微孔聚合物、过渡金属层状化合物、金属纳米材料是广泛采用的光热转换材料。
作为过渡金属层状化合物的典型代表,二硫化钼(MoS2)在海水淡化方面有着极大的应用潜力。作为纳滤和脱盐膜表现出了良好的性能,这是由于二硫化钼缺乏交联官能团和亲水性官能团,表面光滑性高,导致其水通量更高。相对于层状的石墨烯膜来说,MoS2薄膜具有独特的光学、热力学和机械稳定性。尤其是具有不同纳米孔径大小的MoS2多孔膜,通过调节纳米孔的大小,海水淡化效率更高,高达70%。与此同时,碳纳米管(CNT)具有太阳能吸收波长范围广,光热转换性能好等特点,被广泛应用于光热转换领域。
发明内容
本发明的目的在于,克服现有技术中存在的缺陷,提供一种二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,将碳纳米管与二硫化钼结合到一起形成光热转换复合材料,并与水凝胶聚乙烯醇(PVA)结合制备出光热转换薄膜,应用于海水淡化。
为实现上述目的,本发明的技术方案是设计一种二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,包括如下依次进行的工艺步骤:
S1:以碳纳米管、钼酸铵及硫脲为原料,采用水热方法制备出二硫化钼/碳纳米管多孔纳米粉末;
S2:对聚乙烯醇水热改性处理,获得不溶于水的改性聚乙烯醇;
S3:将二硫化钼/碳纳米管纳米粉末加入到改性聚乙烯醇中,搅拌均匀后制得复合水凝胶,然后将复合水凝胶涂敷在聚醚砜泡沫表面后制得光热材料转换膜。
在S1步骤也即二硫化钼/碳纳米管多孔纳米粉末的制备方法中,二硫化钼/碳纳米管多孔纳米粉末具有超薄层厚、多孔网络结构,并且具有可调节的孔径和层间间距的特点。解决了现有二硫化钼难于调控层间结构、水渗透率值低和离子选择性差的问题。
进一步的技术方案是,S1步骤为:将钼酸铵、硫脲、碳纳米管放入去离子水中,搅拌均匀后放入水热釜进行水热反应,水热反应结束后水洗、离心、干燥获得二硫化钼/碳纳米管粉末,将硫化钼/碳纳米管粉末经煅烧后获得具有二硫化钼包覆在碳纳米管表面的纳米管交联多孔结构的二硫化钼/碳纳米管多孔纳米粉末。
进一步的技术方案是,在S1步骤中,所述钼酸铵、硫脲、碳纳米管质量比1:(1-3):(0.5-3),水热反应的温度为150-200℃,反应时间4-12h。
进一步的技术方案为,在S1步骤中,煅烧温度400-900℃,煅烧时间2-6h。二硫化钼/碳纳米管多孔纳米粉末由水热法合成制得,是为一种复合材料,其中二硫化钼包覆在碳纳米管表面,形成纳米管交联多孔结构。交联多孔结构由煅烧制得。
进一步的技术方案为,在S1步骤中,煅烧温度500-700℃。
进一步的技术方案为,S2步骤为:称取聚乙烯醇加入去离子水,90℃,搅拌12h,放入水热釜,180℃,反应4h后获得交联的聚乙烯醇,其中,聚乙烯醇的量为:聚乙烯醇与钼酸铵的重量比为1:1。聚乙烯醇水热改性后解决了现有聚乙二醇凝胶易于溶胀、耐久性差的问题。
进一步的技术方案为,在S2步骤中,在去离子水中还加入戊二醛,戊二醛与钼酸铵的重量比为1:(0.01-0.5)。
进一步的技术方案为,在S3步骤中,复合水凝胶各组分的质量分数为:二硫化钼/碳纳米管:聚乙烯醇质量比:0.01-5wt%。涂敷层厚度500nm-5μm。利用二硫化钼/碳纳米管的协同光热转换效应,以及改性聚乙烯醇亲水性,增强光热转换效率。解决现有滤膜不耐油污、机械性能差、转换效率低问题。且滤膜制备过程不产生有毒物质,对环境友好等特点,可用于海水淡化。
进一步的技术方案为,在S3步骤中,复合水凝胶各组分的质量分数为:二硫化钼/碳纳米管:聚乙烯醇质量比:0.01-5wt%。涂敷层厚度500nm-5μm。
本发明的优点和有益效果在于:制得的二硫化钼/碳纳米管/聚乙烯醇海水淡化膜机械性能高、光热转换效率高、持久性好。
二硫化钼/碳纳米管多孔纳米粉末具有超薄层厚、多孔网络结构,并且具有可调节的孔径和层间间距的特点。解决了现有二硫化钼难于调控层间结构、水渗透率值低和离子选择性差的问题。
二硫化钼/碳纳米管多孔纳米粉末由水热法合成制得,是为一种复合材料,其中二硫化钼包覆在碳纳米管表面,形成纳米管交联多孔结构。交联多孔结构由煅烧制得。
聚乙烯醇水热改性后解决了现有聚乙二醇凝胶易于溶胀、耐久性差的问题。
利用二硫化钼/碳纳米管的协同光热转换效应,以及改性聚乙烯醇亲水性,增强光热转换效率。解决现有滤膜不耐油污、机械性能差、转换效率低问题。且滤膜制备过程不产生有毒物质,对环境友好等特点,可用于海水淡化。
附图说明
图1是本发明一种二硫化钼碳纳米管聚乙烯醇基光热材料制备方法实施例一中涉及的合成的二硫化钼/碳纳米管SEM形貌图。
图2为本发明实施例一中制备的二硫化钼/碳纳米管的拉曼图。
图3为本发明实施例一中合成的MoS2/CNT/改性PVA薄膜示意图。
图4为本发明实施例二中合成的二硫化钼/碳纳米管SEM形貌图。
图5为本发明实施例二中合成的二硫化钼/碳纳米管EDS图。
图6为本发明实施例二中合成的二硫化钼/碳纳米管/改性PVA的拉伸曲线图。
图7为本发明实施例三中合成的二硫化钼/碳纳米管SEM形貌图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例一:
本发明是一种二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,
(1)二硫化钼/碳纳米管多孔纳米粉末的制备方法:采用碳纳米管与钼酸铵、硫脲为原料,利用水热法制备出二硫化钼/碳纳米管多孔纳米粉末。称取0.5g钼酸铵、0.5g硫脲、1.5g碳纳米管,质量比1:1:3,放入30ml去离子水中,搅拌均匀后放入水热釜,150℃,反应4h。水洗、离心、干燥获得二硫化钼/碳纳米管粉末。经煅烧温度800℃,煅烧时间6h,获得二硫化钼/碳纳米管多孔纳米粉末,其SEM形貌图见附图1,形成直径为90nm,长度为3-10μm的纳米管状结构。其拉曼图见附图2,其中可见MoS2和CNT的振动峰,说明存在MoS2和CNT两相结构。
(2)改性聚乙二醇水凝胶制备:称取0.5g聚乙二醇加入30mL去离子水中,90℃,搅拌12h,放入水热釜,180℃,反应4h。获得交联的聚乙二醇。
(3)二硫化钼/碳纳米管/聚乙烯醇基多孔光热材料制备方法:将二硫化钼/碳纳米管粉末加入到改性聚乙烯醇中,搅拌均匀性后获得复合水凝胶,再涂敷在聚醚砜泡沫表面。复合水凝胶各组分的质量分数为:二硫化钼/碳纳米管:改性聚乙烯醇质量比:0.01wt%。涂敷层厚度500nm。其示意结构见附图3。
将上述制备的有效膜面积为9cm2的复合光热转换膜置于装有浓度为30g/L NaCl溶液的蒸发杯上,采用AM 1.5G的模拟太阳光进行照射。称取蒸发杯的初始重量和结束重量,进行蒸汽渗透率的计算。光热蒸汽化效率为93%,蒸汽渗透率为1.4kg/m2.h。
实施例二:
与实施例一的不同在于,
(1)二硫化钼/碳纳米管多孔纳米粉末的制备方法:采用碳纳米管与钼酸铵、硫脲为原料,利用水热法制备出二硫化钼/碳纳米管多孔纳米粉末。称取一定量0.5g钼酸铵、1.5g硫脲、0.5g碳纳米管,质量比1:3:1,放入30ml去离子水中,搅拌均匀后放入水热釜,200℃,反应12h。水洗、离心、干燥获得二硫化钼/碳纳米管粉末。经煅烧温度400℃,煅烧时间2h,获得二硫化钼/碳纳米管多孔纳米粉末,其SEM形貌图见附图4,形成交联状网络结构,其中纳米管状结构直径为80nm。EDS谱图见附图5,其中包含C、O、Mo、S元素峰。
(2)改性聚乙二醇水凝胶制备:称取0.5g聚乙二醇加入去离子水,90℃,搅拌12h,放入水热釜,180℃,反应4h。加入0.05g戊二醛,加入质量比1:0.1。获得交联的聚乙二醇。
(3)二硫化钼/碳纳米管/聚乙烯醇基多孔光热材料制备方法:将二硫化钼/碳纳米管粉末加入到改性聚乙烯醇中,搅拌均匀性后获得复合水凝胶,放置过夜消除其中的气泡,再涂敷在聚醚砜泡沫表面。复合水凝胶各组分的质量分数为:二硫化钼/碳纳米管:改性聚乙烯醇质量比:5wt%。涂敷层厚度3μm。
将上述制备的有效膜面积为9cm2的复合光热转换膜置于装有浓度为30g/L NaCl溶液的蒸发杯上,采用光强度为1sun的模拟太阳光进行照射。称取蒸发杯的初始重量和结束重量,进行蒸汽渗透率的计算。光-蒸汽能量转化效率为85%,蒸汽渗透率为1.2kg/m2.h。
用万能材料试验机对此复合水凝胶进行拉伸性能测试,见附图6所示,其断裂强度为25MPa,断裂延伸率为180%。而改性的PVA断裂强度仅为13MPa,断裂延伸率为283%。断裂强度增加1.9倍。
实施例三:
与实施例一的不同在于,
(1)二硫化钼/碳纳米管多孔纳米粉末的制备方法:采用碳纳米管与钼酸铵、硫脲为原料,利用水热法制备出二硫化钼/碳纳米管多孔纳米粉末。称取0.5g钼酸铵、1g硫脲、1g碳纳米管,质量比1:2:2,放入30ml去离子水中,搅拌均匀后放入水热釜,180℃,反应6h。水洗、离心、干燥获得二硫化钼/碳纳米管粉末。经煅烧温度700℃,煅烧时间4h,获得二硫化钼/碳纳米管多孔纳米粉末。其SEM形貌图见附图7,形成交联状网络结构,其中纳米管状结构直径为50nm。
(2)改性聚乙二醇水凝胶制备:称取0.5g聚乙二醇加入去离子水,90℃,搅拌12h,放入水热釜,180℃,反应4h。加入0.25g戊二醛,加入质量比1:0.5。获得交联的聚乙二醇。
(3)二硫化钼/碳纳米管/聚乙烯醇基多孔光热材料制备方法:将二硫化钼/碳纳米管粉末加入到改性聚乙烯醇中,搅拌均匀性后获得复合水凝胶,再涂敷在聚醚砜泡沫表面。复合水凝胶各组分的质量分数为:二硫化钼/碳纳米管:改性聚乙烯醇质量比:1wt%。涂敷层厚度700nm。将上述制备的有效膜面积为9cm2的复合光热转换膜置于装有浓度为30g/LNaCl溶液的蒸发杯上,采用光强度为1sun的模拟太阳光进行照射。称取蒸发杯的初始重量和结束重量,进行蒸汽渗透率的计算。光-蒸汽能量转化效率为115%,蒸汽渗透率为1.7kg/m2.h。
本发明的工作机理为:
制备的二硫化钼/碳纳米管复合结构表面缺陷丰富、超薄层厚和多孔网络结构,具有宽而强的太阳光吸收效率,进而获得较高的光热转换效率。同时,所制备的二硫化钼/碳纳米管复合结构具有三维多孔网络结构,具有良好的水渗透率和离子选择性。改性聚乙烯醇的羟基相互交联形成醚键、降低其表面羟基官能团,导致其溶胀和水溶解性降低,但仍具有良好的亲水性。所获得的二硫化钼/碳纳米管/改性聚乙烯醇基多孔光热转换膜充分协调了光热转换效率、渗透性和亲水性间的关系,同时大幅度改善复合薄膜材料的力学性能和持久性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,包括如下依次进行的工艺步骤:
S1:以碳纳米管、钼酸铵及硫脲为原料,采用水热方法制备出二硫化钼/碳纳米管多孔纳米粉末;
S2:对聚乙烯醇水热改性处理,获得不溶于水的改性聚乙烯醇;
S3:将二硫化钼/碳纳米管纳米粉末加入到改性聚乙烯醇中,搅拌均匀后制得复合水凝胶,然后将复合水凝胶涂敷在聚醚砜泡沫表面后制得光热材料转换膜。
2.根据权利要求1所述的二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,所述S1步骤为:将钼酸铵、硫脲、碳纳米管放入去离子水中,搅拌均匀后放入水热釜进行水热反应,水热反应结束后水洗、离心、干燥获得二硫化钼/碳纳米管粉末,将硫化钼/碳纳米管粉末经煅烧后获得具有二硫化钼包覆在碳纳米管表面的纳米管交联多孔结构的二硫化钼/碳纳米管多孔纳米粉末。
3.根据权利要求2所述的二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,在所述S1步骤中,所述钼酸铵、硫脲、碳纳米管质量比1:(1-3):(0.5-3),水热反应的温度为150-200℃,反应时间4-12h。
4.根据权利要求3所述的二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,在所述S1步骤中,煅烧温度400-900℃,煅烧时间2-6h。
5.根据权利要求4所述的二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,在所述S1步骤中,煅烧温度500-700℃。
6.根据权利要求5所述的二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,所述S2步骤为:称取聚乙烯醇加入去离子水,90℃,搅拌12h,放入水热釜,180℃,反应4h后获得交联的聚乙烯醇,其中,聚乙烯醇的量为:聚乙烯醇与钼酸铵的重量比为1:1。
7.根据权利要求6所述的二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,在所述S2步骤中,在去离子水中还加入戊二醛,戊二醛与钼酸铵的重量比为1:(0.01-0.5)。
8.根据权利要求7所述的二硫化钼碳纳米管聚乙烯醇基光热材料制备方法,其特征在于,在所述S3步骤中,复合水凝胶各组分的质量分数为:二硫化钼/碳纳米管:聚乙烯醇质量比:0.01-5wt%;涂敷层厚度500nm-5μm。
CN202210789530.3A 2022-07-05 2022-07-05 二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用 Active CN115058056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210789530.3A CN115058056B (zh) 2022-07-05 2022-07-05 二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210789530.3A CN115058056B (zh) 2022-07-05 2022-07-05 二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用

Publications (2)

Publication Number Publication Date
CN115058056A true CN115058056A (zh) 2022-09-16
CN115058056B CN115058056B (zh) 2024-05-07

Family

ID=83205204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210789530.3A Active CN115058056B (zh) 2022-07-05 2022-07-05 二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用

Country Status (1)

Country Link
CN (1) CN115058056B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695500A (zh) * 2018-05-22 2018-10-23 山西长征动力科技有限公司 碳管改性二硫化钼锂离子电池负极材料的制备方法
CN109603596A (zh) * 2019-01-21 2019-04-12 浙江大学 一种金属有机框架材料光热海水淡化膜
CN110511558A (zh) * 2019-09-02 2019-11-29 哈尔滨工业大学(威海) 一种基于聚氨酯泡沫的海水淡化材料的制备方法
CN111171340A (zh) * 2019-12-25 2020-05-19 浙江浙能技术研究院有限公司 一种基于pva水凝胶的光热蒸发材料及其制备和应用
CN113024884A (zh) * 2021-03-25 2021-06-25 浙江浙能技术研究院有限公司 一种可实现高太阳能蒸发速率的复合四元水凝胶及制备方法
CN113860413A (zh) * 2021-11-11 2021-12-31 山东大学 一种基于生物质水凝胶/纳米碳材的太阳能蒸发器及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695500A (zh) * 2018-05-22 2018-10-23 山西长征动力科技有限公司 碳管改性二硫化钼锂离子电池负极材料的制备方法
CN109603596A (zh) * 2019-01-21 2019-04-12 浙江大学 一种金属有机框架材料光热海水淡化膜
CN110511558A (zh) * 2019-09-02 2019-11-29 哈尔滨工业大学(威海) 一种基于聚氨酯泡沫的海水淡化材料的制备方法
CN111171340A (zh) * 2019-12-25 2020-05-19 浙江浙能技术研究院有限公司 一种基于pva水凝胶的光热蒸发材料及其制备和应用
CN113024884A (zh) * 2021-03-25 2021-06-25 浙江浙能技术研究院有限公司 一种可实现高太阳能蒸发速率的复合四元水凝胶及制备方法
CN113860413A (zh) * 2021-11-11 2021-12-31 山东大学 一种基于生物质水凝胶/纳米碳材的太阳能蒸发器及其应用

Also Published As

Publication number Publication date
CN115058056B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US10729988B2 (en) Bilayered structures for solar steam generation
Rana et al. Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future
Elsheikh et al. Thin film technology for solar steam generation: A new dawn
US10744461B2 (en) Ultrafiltration membrane based on bacterial nanocellulose and graphene oxide
CN103736400B (zh) 一种氧化石墨烯复合纳滤膜的制备方法
US10946340B2 (en) Superhydrophobic coated micro-porous carbon foam membrane and method for solar-thermal driven desalination
Chen et al. MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation
CN110510690B (zh) 一种具有抗盐析出性能的多孔光热膜及其制备和应用
CN113149114B (zh) 一种太阳能水蒸发材料
CN108622924B (zh) 硫化银量子点-石墨烯气凝胶复合材料及其制备方法
CN110182789B (zh) 一种吸光隔热一体化光热蒸发材料及其制备方法和应用
Wu et al. Chitosan assisted MXene decoration onto polymer fabric for high efficiency solar driven interfacial evaporation of oil contaminated seawater
CN113149116B (zh) 具有高海水淡化效率及自清洁功能的多孔陶瓷膜及制备法
Li et al. Porous wood-carbonized solar steam evaporator
CN110511438A (zh) 一种利用微流法制备光热蒸发凝胶薄膜的方法
CN109265717B (zh) 一种具有抗菌性能的多孔光热膜及其制备和应用
CN115058056B (zh) 二硫化钼碳纳米管聚乙烯醇基光热材料制备方法及应用
CN111635604B (zh) 一种天然胶体复合的水凝胶及其制备方法、应用
Li et al. Preparation of graphitized carbon-coated glass fiber cloth materials with high mechanical strength, corrosion resistance, and solar-driven water evaporation performance
CN114212851B (zh) 一种基于天然植物杆的太阳能海水淡化材料及其制备方法和应用
CN109910418B (zh) 具有多孔结构的导热聚四氟乙烯薄膜及其制备方法
Fargharazi et al. PVA: GA polymer hydrogel/activated carbon (AC) nanocomposite as solar photothermal materials: study of structural, optical absorption and water purification properties
CN114159984B (zh) 一种含MnO2纳米线或纳米管的太阳能光驱动水蒸发复合膜及其制备方法
KR20190038331A (ko) 플라즈모닉 흡수체 및 이를 이용한 태양-수증기 생성 장치
CN116672895A (zh) 一种多功能复合型疏水膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant