CN115055189A - 一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用 - Google Patents

一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用 Download PDF

Info

Publication number
CN115055189A
CN115055189A CN202210741477.XA CN202210741477A CN115055189A CN 115055189 A CN115055189 A CN 115055189A CN 202210741477 A CN202210741477 A CN 202210741477A CN 115055189 A CN115055189 A CN 115055189A
Authority
CN
China
Prior art keywords
bivo
mgo
mco
solution
catalytic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210741477.XA
Other languages
English (en)
Other versions
CN115055189B (zh
Inventor
王其召
陈凯怡
王李娜
刘泽骏
丁飞
梅琼
杨贵东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN202210741477.XA priority Critical patent/CN115055189B/zh
Publication of CN115055189A publication Critical patent/CN115055189A/zh
Application granted granted Critical
Publication of CN115055189B publication Critical patent/CN115055189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明属于化学催化材料技术领域,涉及一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用,包括以下步骤:1)MgO/BiVO4的制备;2)将M金属盐和Co(NO3)2·6H2O溶解于水中,再加入尿素和NH4F,搅拌溶解得到混合液C;3)将混合液C与MgO/BiVO4薄膜置于反应釜中,加热至100℃~150℃反应5~8h,待反应冷却后,取出薄膜并干燥,得到三明治结构复合光电催化材料MCo2O4/MgO/BiVO4。本发明复合光电催化材料为三明治结构,能抑制光生电子的复合,在温和条件下增强光电合成氨效率。

Description

一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及 应用
技术领域
本发明属于化学催化材料技术领域,涉及一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用。
背景技术
氮是生物地球化学循环的重要组成部分,大气中的氮含量约占78%,但是不能被直接利用,而以含氮化合物形式存在的,例如氨(NH3),是制备肥料、医药和燃料等重要的化工原料。此外,NH3因其具有较高的能量密度(22.5MJ·Kg-1)和高的氢含量(17.8wt%)也可用做载体来储存能量。但是时至今日,工业上从氮气合成氨主要使用Haber-Bosch法(简称哈伯-博施),该方法采用Fe基催化剂在150-200个标准大气压和300-500℃的条件下让氮气和氢气进行反应生成氨,反应过程对反应容器要求较高,反应过程耗能多,会产生大量温室气体,且反应过程中消耗的氢气占每年世界天然气消耗量的3-5%。
针对Haber-Bosch法的缺点,研发出一种绿色可持续、原料可再生、且反应条件温和的固氮方法迫在眉睫。近年来,得益于温和的操作条件和对可再生能源的利用,将电化学和光化学应用于多相催化剂来实现氮气还原反应受到越来越多的科研人员的关注。
BiVO4具有优良的特性,如窄带隙、良好的分散性、无毒性、耐腐蚀而引起了人们的极大兴趣。BiVO4还是一种色泽明亮的黄色颜料,目前是含铅、铬、镉等重金属元素颜料的新型替代颜料。同时,BiVO4也是一种典型的n型直接带隙半导体,主要有三种晶体结构,即四方晶系锆石型(t-z)、单斜晶系白钨矿型(m-s)和四方晶系白钨矿型(t-s),由于白钨矿型和锆石型禁带宽度分别为2.4eV和2.9eV,在这三种晶体结构中,单斜晶系白钨矿型 BiVO4在可见光照射下具有更高的光催化活性,这是因为BiVO4半导体中Bi6s轨道发生变化,在价带中,O2p和Bi6s轨道的明显重叠是光生电荷载体移动的一个优势,这导致了光电催化活性的提高。近几年,BiVO4在光电催化分解水和光降解污染物等方面已做出了许多贡献。然而,BiVO4在光电催化合成氨领域鲜有研究,并且纯的BiVO4光生载流子再复合率依然较高,极大地影响了光电催化反应效率。因此,需要找到降低BiVO4光生电子- 空穴对复合的有效方法才能从根本上解决问题。
发明内容
本发明的目的是提供一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用,特殊的三明治结构能抑制光生电子的复合,在温和条件下增强光电合成氨效率。
为了实现上述目的,本发明的有益效果是:
一种MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,包括以下步骤:
1)MgO/BiVO4的制备
1.1)将Bi(NO3)3·5H2O加入pH值为1.5~2的KI溶液中,超声分散,得到橙红色的溶液A;
1.2)将对苯醌分散在乙醇溶液中,超声溶解,得到棕色的溶液B;
1.3)将溶液B缓慢滴加到溶液A中,直至颜色由橙红色变为红棕色,再加入 Mg(NO3)2·6H2O得到混合溶液;并将混合溶液作为电镀液,经电化学沉积得到薄膜,并冲洗、干燥;
1.4)将含乙酰丙酮氧钒的二甲基亚砜溶液滴涂于干燥薄膜上,在450~500℃下煅烧 2h~3h,冷却至室温后,在NaOH溶液中浸泡,最后干燥得到MgO/BiVO4薄膜;
2)将M金属盐和Co(NO3)2·6H2O溶解于水中,再加入尿素和NH4F,搅拌溶解得到混合液C;
3)将步骤2)的混合液C与步骤1.4)的MgO/BiVO4薄膜置于反应釜中,加热至 100℃~150℃反应5~8h,待冷却、干燥后,得到复合光电催化材料MCo2O4/MgO/BiVO4
进一步的,所述步骤1.1)中,KI与Bi(NO3)3·5H2O的质量比为5~6:1。
进一步的,所述步骤1.2)含对苯醌的乙醇溶液中,对苯醌的浓度为0.1~0.3mol/L。
进一步的,所述步骤1.3)中,Mg(NO3)2·6H2O与Bi(NO3)3·5H2O的质量比为1:1~9;电化学沉积条件是,以FTO为工作电极,Ag/AgCl电极为参比电极,Pt片电极为对电极,在-0.1V的电位,电沉积3~5min。
进一步的,所述步骤1.4)含乙酰丙酮氧钒的二甲基亚砜溶液中乙酰丙酮氧钒的浓度为0.1~0.3mol/L。
进一步的,所述步骤2)中,M金属盐与Co(NO3)2·6H2O的摩尔比为1:1~2;所述 Co(NO3)2·6H2O、尿素和NH4F的摩尔比为1:13~15:3~5。
进一步的,所述M金属盐为Zn(NO3)2·6H2O或Mn(NO3)2
一种基于项所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法所制备的MCo2O4/MgO/BiVO4复合光电催化材料。
进一步的,所述MCo2O4/MgO/BiVO4复合光电催化材料是以MgO为中间层的三明治结构。
一种MCo2O4/MgO/BiVO4复合光电催化材料在光电催化合成氨中的应用。
本发明的有益效果是:
1、本发明用电沉积法将中间层MgO与BiVO4成功复合,用水热法将尖晶石 MCo2O4(M=Zn,Mn)负载在MgO/BiVO4上制得MCo2O4/MgO/BiVO4,材料稳定,且材料为三明治结构,MgO作为中间层能降低光催化剂过多的表面缺陷,有效减少光生电荷在表面缺陷位置的复合,促进光生电荷的定向迁移分离,增加电荷的分离效率,提高光电催化性能。
2、本发明制备的MCo2O4为氮还原助催化剂,与n型BiVO4形成异质结,抑制光生电子的复合,MCo2O4/MgO的协同作用加速表面电荷传输,MCo2O4/MgO/BiVO4材料增强光电催化合成氨效率。
附图说明
图1为BiVO4、MgO/BiVO4、MCo2O4/MgO/BiVO4(M=Zn,Mn)的XRD图;
图2为BiVO4、MCo2O4/BiVO4、MCo2O4/MgO/BiVO4(M=Zn,Mn)的紫外可见漫反射光谱图;
图3为BiVO4、MCo2O4/BiVO4(M=Zn,Mn)、MCo2O4/MgO/BiVO4(M=Zn,Mn)的线性扫描伏安曲线图;
图4为BiVO4、MCo2O4/BiVO4(M=Zn,Mn)、MCo2O4/MgO/BiVO4(M=Zn,Mn)的瞬态光电流图;
图5为BiVO4、MCo2O4/MgO/BiVO4(M=Zn,Mn)的光电流转换图;
图6为BiVO4、MgO/BiVO4、MCo2O4/MgO/BiVO4(M=Zn,Mn)的电化学阻抗图;
图7为BiVO4、MgO/BiVO4、MCo2O4/MgO/BiVO4(M=Zn,Mn)的电化学合成氨效率及法拉第效率图;
图8为BiVO4、MgO/BiVO4、MCo2O4/MgO/BiVO4(M=Zn,Mn)的电化学合成肼(N2H4) 效率图。
具体实施方式
下面结合附图以及实施例对本发明做详细的说明。
本发明提供一种MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,包括以下步骤:
1)MgO/BiVO4的制备
1.1)将Bi(NO3)3·5H2O加入pH值为1.5~2的KI溶液中,超声分散,得到橙红色的溶液A;
1.2)将对苯醌分散在乙醇溶液中,超声溶解,得到棕色的溶液B;
1.3)将溶液B缓慢滴加到溶液A中,直至颜色由橙红色变为红棕色,再加入 Mg(NO3)2·6H2O得到混合溶液;并将混合溶液作为电镀液,经电化学沉积得到薄膜,并冲洗、干燥;
1.4)将含乙酰丙酮氧钒的二甲基亚砜溶液滴涂于干燥薄膜上,在450~500℃下煅烧 2h~3h,冷却至室温后,在NaOH溶液中浸泡,最后干燥得到MgO/BiVO4薄膜。
本发明步骤1.1)中,步骤1.1)中,KI与Bi(NO3)3·5H2O的质量比为5~6:1。
进一步的,制备时,KI与Bi(NO3)3·5H2O的质量比为5:1、5.5:1、6:1;本发明骤1.2)含对苯醌的乙醇溶液中,对苯醌的浓度为0.1~0.3mol/L。
进一步的,制备时,浓度为0.1mol/L、0.2mol/L、0.3mol/L。
本发明步骤1.3)中,Mg(NO3)2·6H2O与Bi(NO3)3·5H2O的质量比为1:1~9;电化学沉积条件是,以FTO为工作电极,Ag/AgCl电极为参比电极,Pt片电极为对电极,在-0.1V 的电位,电沉积3~5min。
进一步的,制备时,Mg(NO3)2·6H2O与Bi(NO3)3·5H2O的质量比为1:1、1:2、1:3、 1:4、1:5、1:6、1:7、1:8、1:9。
本发明步骤1.4)含乙酰丙酮氧钒的二甲基亚砜溶液中乙酰丙酮氧钒的浓度为0.1~0.3mol/L。
进一步的,制备时,浓度为0.1mol/L、0.2mol/L、0.3mol/L。温度为450℃、460℃、470℃、480℃、490℃、500℃;煅烧时间为2h、2.5h和3h。
2)将M金属盐和Co(NO3)2·6H2O溶解于水中,再加入尿素和NH4F,搅拌溶解得到混合液C。
步骤2)中,M金属盐与Co(NO3)2·6H2O的摩尔比为1:1~2;Co(NO3)2·6H2O、尿素和NH4F的摩尔比为1:13~15:3~5。
进一步的,制备时,M金属盐与Co(NO3)2·6H2O的摩尔比分别为1:1、1:1.5、1:2; Co(NO3)2·6H2O、尿素和NH4F的摩尔比分别为1:13:3、1:13:4、1:13:5、1:14: 3、1:14:4、1:15:5、1:15:3、1:15:4、1:15:5。
本发明中,M金属盐为Zn(NO3)2·6H2O或Mn(NO3)2
3)将步骤2)的混合液C与步骤1.4)的MgO/BiVO4薄膜置于反应釜中,加热至 100℃~150℃反应5~8h,待冷却、干燥后,得到复合光电催化材料MCo2O4/MgO/BiVO4
进一步的,制备时,分别加热至100℃、110℃、120℃、125℃、130℃、135℃、140℃、150℃;反应分别为5h、6h、7h、8h。
本发明制备的MCo2O4/MgO/BiVO4复合光电催化材料是以MgO为中间层的三明治结构,用于光电催化合成氨,对氨有较高的选择性,能增强氨的合成转化效率。
下面以几组较优的实施方式对本发明提供的三明治结构的MCo2O4/MgO/BiVO4复合光电催化材料的制备和性能进行进一步阐明。
实施例1
1)MgO/BiVO4的制备
1.1)称量3.32g碘化钾加入水溶剂中,室温中磁力搅拌使其溶解;使用硝酸调节使上述溶液pH值为1.5~2;称量0.970g五水硝酸铋(Bi(NO3)3·5H2O)加入上述溶液,在剧烈搅拌下直至完全溶解,溶液颜色由黑红色逐渐变为橙红色,此溶液为溶液A。
1.2)称量0.498g对苯醌(C6H4O2),分散在乙醇溶液中,超声至完全溶解得到棕色的溶液,此溶液为溶液B。
1.3)将溶液B缓慢滴加到溶液A中,颜色由橙红色逐渐变为红棕色,再加入0.15gMg(NO3)2·6H2O,再搅拌使其充分混合得到混合溶液;将混合溶液作为电镀液进行电化学沉积得到薄膜,电化学沉积是在以FTO为工作电极,Ag/AgCl电极为参比电极,Pt片电极为对电极,在相对于Ag/AgCl电极-0.1V的电位下,电沉积3min。得到薄膜用超纯水冲洗并在60℃下干燥备用。
1.4)称取0.15g乙酰丙酮氧钒(VO(acac)2),加入到2.5mL二甲基亚砜中,搅拌至完全溶解。用微量注射器量取60μL上述溶液均匀滴于上述干燥薄膜上。将其放于马弗炉中,500℃下煅烧2h。待反应完全温度降至室温,取出将其浸入NaOH溶液中浸泡除去多余的V2O5,在60℃下干燥得到MgO/BiVO4薄膜。
2)将0.5mmol Zn(NO3)2·6H2O和0.5mmol Co(NO3)2·6H2O溶解于50ml纯水中,再加入7mmol尿素和2mmol NH4F,搅拌至完全溶解得到混合液C。
3)将上述制备好的MgO/BiVO4薄膜垂直放置于50ml反应釜内胆底部,导电面冲向胆壁,将混合液C置于50ml内胆中,小心放入反应釜,120℃反应6h;待反应降到室温后取出薄膜,在70℃烘干,即可制得ZnCo2O4/MgO/BiVO4
实施例2
1)MgO/BiVO4的制备与实施例1相同。
2)与实施例1不同的是,将0.5mmol的Zn(NO3)2·6H2O替换为质量浓度为50%的 Mn(NO3)2溶液70μL,其余步骤皆同实施例1。
3)与实施例1相同制得MnCo2O4/MgO/BiVO4
MnCo2O4/MgO/BiVO4的合成氨效率为34.02μmol h-1g-1 cat,法拉第效率为40.2%。
实施例3~实施例7
实施例3~实施例7提供的MCo2O4/MgO/BiVO4复合光电催化材料,制备步骤参照实施例1,但是具体的物料配比以及反应参数,参见表1。
表1实施例3~实施例7物料配比以及反应参数
Figure BDA0003718159650000061
Figure BDA0003718159650000071
对于实施例1~实施例7制备的MCo2O4/MgO/BiVO4复合光电催化材料(M=Zn或Mn),取实施例1制备的ZnCo2O4/MgO/BiVO4复合光电催化材料和实施例2制备的 MnCo2O4/MgO/BiVO4复合光电催化材料,分别测定其合成氨效率和法拉第效率。
经过测定,ZnCo2O4/MgO/BiVO4的合成氨效率为35.52μmol h-1g-1 cat,法拉第效率为30.99%;MnCo2O4/MgO/BiVO4的合成氨效率为34.02μmol h-1g-1 cat,法拉第效率为40.2%。
进一步的,通过试验对制备的MCo2O4/MgO/BiVO4复合光电催化材料的性能进行验证。
试验1复合材料的结构表征
样品:纯BiVO4、实施例1制备的MgO/BiVO4、实施例1制备的ZnCo2O4/MgO/BiVO4、实施例2制备的MnCo2O4/MgO/BiVO4
试验过程:上述样品,在扫描速度10°/min,扫描角度10-80°条件下,采用帕纳科X’Pert PRO型X射线衍射仪器,得到各个样品的XRD图谱,结果参见图1。
从图1可以看出,纯BiVO4的衍射峰符合单斜白钨矿晶系标准衍射峰(JCPDS.No.75-1867),与玻璃片基底FTO相比,除BiVO4外没有检测到其他杂质峰。其中,2θ为26.8°和43.2°的峰强度较大。当与BiVO4复合后,MgO/BiVO4和ZnCo2O4/MgO/BiVO4复合样品在43.2°的衍射峰强度均增强,MnCo2O4/MgO/BiVO4复合样品在43.2°的峰消失。
试验2
光吸收能力是评价半导体材料光催化性能的重要指标,我们使用紫外-可见漫反射光谱对制备材料的光吸收能力进行了系统分析。
样品:
第一组:纯BiVO4;按照实施例1的方法,其中不加Mg(NO3)2·6H2O得到的 ZnCo2O4/BiVO4复合材料;实施例1制备的ZnCo2O4/MgO/BiVO4
第二组:纯BiVO4;按照实施例2的方法制备,但是不加Mg(NO3)2·6H2O得到的MnCo2O4/BiVO4复合材料;实施例2制备的MnCo2O4/MgO/BiVO4
试验过程:上述样品,在光谱范围200-800nm,以BaSO4为参考条件下,采用AgilentCary 100型紫外分光光度测试仪器,得到各个样品的紫外-可见漫反射光谱,结果参见图2。
从图2可知,纯BiVO4样品吸收边大概在500nm左右。随着尖晶石型组合物的复合,MCo2O4/MgO/BiVO4(M=Zn,Mn)的光吸收边红移,所制备样品的颜色随着MgO MCo2O4的不断复合也逐渐加深,与漫反射结果相一致。这说明MCo2O4/MgO/BiVO4(M=Zn,Mn)能够利用更多的光来激发产生光生载流子,进而促使样品的光电催化性能提升。
试验3
为了考察BiVO4、MCo2O4/MgO/BiVO4(M=Zn,Mn)复合样品的光电催化活性,我们以N2(99.999%)为氮源,以氙灯模拟太阳光,以1mol/L的KOH为电解质来研究样品的光电催化合成氨性能。
样品:
第一组:纯BiVO4;按照实施例1的方法,其中不加Mg(NO3)2·6H2O得到的 ZnCo2O4/BiVO4复合材料;实施例1制备的ZnCo2O4/MgO/BiVO4
第二组:纯BiVO4;按照实施例2的方法,其中不加Mg(NO3)2·6H2O得到的 MnCo2O4/BiVO4复合材料;实施例2制备的MnCo2O4/MgO/BiVO4
反应前在阴极池预通0.5h~1h氮气,形成氮气饱和的KOH溶液,然后进行恒定电位电解(阴极发生氮气还原反应和析氢反应,阳极发生析氧反应),时间为2h,搅拌速度设定为400r,反应2h后取样测试,得到第一组和第二组材料的线性扫描伏安曲线图,参见图3。
从图3中看出,在1.23Vvs.RHE,BiVO4的光电流为1.45mA/cm2,ZnCo2O4/BiVO4和MnCo2O4/BiVO4的光电流密度分别为4.13mA/cm2和2.79mA/cm2,分别是BiVO4的2.85和 1.92倍。ZnCo2O4/MgO/BiVO4和MnCo2O4/MgO/BiVO4的光电流密度分别为4.595mA/cm2和3.36mA/cm2,分别是BiVO4的3.16和2.32倍。
由图可知,MCo2O4/MgO/BiVO4(M=Zn,Mn)的光电流密度远远高于纯BiVO4薄膜的光电流密度。这主要是因为光生空穴富集在BiVO4薄膜表面发生了大量的电子-空穴对的再复合。而当MgO作为中间层负载于BiVO4表面后,能够有效地减少空穴堆积状况的发生, MCo2O4(M=Zn,Mn)抑制了水氧化过程中载流子的再结合,延长了载流子的寿命,提高了光量子效率。最终增强了光电催化性能,增加了光电催化产氨量。
试验4
为了进一步探讨MCo2O4/MgO/BiVO4复合光阳极的光敏性,做了I-t曲线(如图4所示),即复合电极的瞬时光电流响应。I-t曲线是通过和线性扫描伏安曲线相同的条件下,相同的仪器测试的。
样品:
第一组:纯BiVO4;按照实施例1的方法,其中不加Mg(NO3)2·6H2O得到的 ZnCo2O4/BiVO4复合材料;实施例1制备的ZnCo2O4/MgO/BiVO4
第二组:纯BiVO4;按照实施例2的方法制备,但是不加Mg(NO3)2·6H2O得到的MnCo2O4/BiVO4复合材料;实施例2制备的MnCo2O4/MgO/BiVO4
将复合电极与纯BiVO4相比,MCo2O4/MgO/BiVO4复合电极的光电流密度远远高于纯BiVO4薄膜的光电流密度。这主要是因为光生空穴富集在BiVO4薄膜表面发生了大量的电子-空穴对的再复合;而当MgO作为钝化层来降低光催化剂过多的表面缺陷,可以有效减少光生电荷在上述位置的复合,促进光生电荷的定向迁移分离,增加电荷的分离效率,提高光催化性能,MCo2O4与n型MgO/BiVO4半导体形成异质结,有利于电子空穴的分离,能够有效地减少空穴堆积状况的发生,从而抑制了水氧化过程中载流子的再结合,延长了载流子的寿命,提高了光量子效率。最终增强了光电催化性能,增加了光电催化合成氨产量。
试验5
样品:纯BiVO4、实施例1制备的ZnCo2O4/MgO/BiVO4、实施例2制备的 MnCo2O4/MgO/BiVO4
薄膜的光电转化效率由公式IPCE(%)=[1240*J)/λp]*100%计算得到。J为光电流密度,λ为入射光波长,p为入射光的功率密度。在350~520nm波长范围内,复合光电薄膜的IPCE 值都高于纯的BiVO4薄膜,根据上述公式,J为线性扫描伏安曲线得到的光电流密度,P 为在不同入射波长下测试得到的相应的光功率密度。以波长为自变量通过计算得到图5。
由图5可知,在450nm处,BiVO4、MnCo2O4/MgO/BiVO4、ZnCo2O4/MgO/BiVO4薄膜的光电转化效率分别为11.7%、53.0%和61.9%。这就证明复合薄膜材料对可见光有更有效地吸收和更高的光量子效率。
试验6
样品:纯BiVO4、实施例1制备的MgO/BiVO4、实施例1制备的ZnCo2O4/MgO/BiVO4、实施例2制备的MnCo2O4/MgO/BiVO4
试验过程:将上述样品分别作为光阳极,然后通过对光阳极施加一个正弦扰动电压,分别测试光阳极体相或者界面处电荷传输的行为,得到上述样品的奈奎斯曲线图,如图6 所示。
参见图6,半径大小可直接为我们提供光电阳极的光电化学活性的强弱,半径越小时,其光电阳极体相或者界面电荷迁移得就越快,光电性能就越好。与LSV和I-t分析结果一致,在光照条件下,复合材料的光生电子-空穴对的分离效率都比纯BiVO4电极高。说明电极材料的载流子传输速率越快,光生电子和空穴再复合率越低。
试验7
为了考察制备的BiVO4,MCo2O4/MgO/BiVO4(M=Zn,Mn)复合样品的光催化活性,以N2(99.999%)为氮源,以氙灯模拟太阳光,以1M KOH为电解质来研究样品的光电催化合成氨性能。为了保证光电测试为合成氨测试提供理论支撑,这里的条件是光电测试的条件,也是实际中合成氨测试的条件。
样品:纯BiVO4、实施例1制备的ZnCo2O4/MgO/BiVO4、实施例2制备的 MnCo2O4/MgO/BiVO4
反应前阴极电解池首先预通0.5h氮气,形成氮气饱和的KOH溶液,反应时间为2h并不断搅拌,得到合成氨效率和法拉第效率,样品的光电催化性能,结果如图7所示;进一步测定合成氨过程中产物中的NH4+和N2H4的含量,结果如图8所示。
NH4+含量和N2H4的含量的检测方法如下所述。
NH4+含量的测定:使用靛酚蓝比色法进行氨产量的定量分析,细节如下:从阴极电解池取4mL~5mL测试后的电解液加入到1ml~2mL浓度为0.05mol/L~0.1mol/L的次氯酸钠、2ml~3mL溶度为1M的氢氧化钠溶液(5wt%水杨酸和5wt%柠檬酸钠)和0.2ml~0.5mL浓度为1wt%的硝普钠混合溶液当中,该溶液在室温避光静置2h~3h,之后用紫外可见光光谱仪对其进行测试。
N2H4含量的测定:用Watt-Chrisp法进行肼产量的定量分析,细节如下:将5.99g~6.03g C9H11NO溶解在30mL~40ml浓盐酸和300mL~500mL乙醇的混合溶液中,超声均匀备用。从阴极电解池取5mL测试后的电解液加入5mL~7ml上述的显色剂,将其摇匀,在室温下避光静止2h~3h,之后用紫外可见光光谱仪对其进行测试。
从图7中看出,纯BiVO4表现了一定的合成氨性能,合成氨效率为6.34μmol h-1g-1 cat; ZnCo2O4/MgO/BiVO4合成氨效率为53.52μmol h-1g-1 cat,而MnCo2O4/MgO/BiVO4合成氨效率为34.02μmol h-1g-1 cat,MCo2O4/MgO/BiVO4(M=Zn,Mn)表现出了良好的光电合成氨效率。从图7中还可以看出,BiVO4的法拉第效率为6.34%,ZnCo2O4/MgO/BiVO4的法拉第效率为13%,为BiVO4的2.05倍;MnCo2O4/MgO/BiVO4的法拉第效率为17%,为BiVO4的2.68 倍。
从图8可知,ZnCo2O4/MgO/BiVO4和MnCo2O4/MgO/BiVO4合成中间产物肼的效率分别是0.016和0.013μmol h-1g-1 cat,比BiVO4合成中间产物肼的效率低(0.023μmol h-1g-1 cat),可见MCo2O4/MgO/BiVO4(M=Zn,Mn)具有很强的氨选择性。
综上所述,本发明用电沉积法将中间层MgO与BiVO4成功复合,用水热法将尖晶石MCo2O4复合在MgO/BiVO4上,形成三明治结构MCo2O4/MgO/BiVO4(M=Zn,Mn)。研究表明,制备的三明治结构中,MgO作为中间层来降低光催化剂过多的表面缺陷,可以有效减少光生电荷的复合,促进光生电荷的定向迁移分离,提高了光电流密度和光电转换效率。 MCo2O4为氮还原助催化剂,与n型BiVO4形成异质结,抑制光生电子的复合,MCo2O4/MgO 的协同作用加速表面电荷传输效率,增强光电合成氨效率。

Claims (10)

1.一种MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,其特征在于,包括以下步骤:
1)MgO/BiVO4的制备
1.1)将Bi(NO3)3·5H2O加入pH值为1.5~2的KI溶液中,超声分散,得到橙红色的溶液A;
1.2)将对苯醌分散在乙醇溶液中,超声溶解,得到棕色的溶液B;
1.3)将溶液B缓慢滴加到溶液A中,直至颜色由橙红色变为红棕色,再加入Mg(NO3)2·6H2O得到混合溶液;并将混合溶液作为电镀液,经电化学沉积得到薄膜,并冲洗、干燥;
1.4)将含乙酰丙酮氧钒的二甲基亚砜溶液滴涂于干燥薄膜上,在450~500℃下煅烧2h~3h,冷却至室温后,在NaOH溶液中浸泡,最后干燥得到MgO/BiVO4薄膜;
2)将M金属盐和Co(NO3)2·6H2O溶解于水中,再加入尿素和NH4F,搅拌溶解得到混合液C;
3)将步骤2)的混合液C与步骤1.4)的MgO/BiVO4薄膜置于反应釜中,加热至100℃~150℃反应5~8h,待冷却、干燥后,得到复合光电催化材料MCo2O4/MgO/BiVO4
2.根据权利要求1所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,其特征在于,所述步骤1.1)中,KI与Bi(NO3)3·5H2O的质量比为5~6:1。
3.根据权利要求1所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,其特征在于,所述步骤1.2)含对苯醌的乙醇溶液中,对苯醌的浓度为0.1~0.3mol/L。
4.根据权利要求1所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,其特征在于,所述步骤1.3)中,Mg(NO3)2·6H2O与Bi(NO3)3·5H2O的质量比为1:1~9;电化学沉积条件是,以FTO为工作电极,Ag/AgCl电极为参比电极,Pt片电极为对电极,在-0.1V的电位下,电沉积3~5min。
5.根据权利要求1所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,其特征在于,所述步骤1.4)含乙酰丙酮氧钒的二甲基亚砜溶液中,乙酰丙酮氧钒的浓度为0.1~0.3mol/L。
6.根据权利要求1所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,其特征在于,所述步骤2)中,M金属盐与Co(NO3)2·6H2O的摩尔比为1:1~2;所述Co(NO3)2·6H2O、尿素和NH4F的摩尔比为1:13~15:3~5。
7.根据权利要求6所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法,其特征在于,所述M金属盐为Zn(NO3)2·6H2O或Mn(NO3)2
8.一种基于权利要求1-7任一项所述的MCo2O4/MgO/BiVO4复合光电催化材料的制备方法所制备的MCo2O4/MgO/BiVO4复合光电催化材料。
9.根据权利要求8所述的MCo2O4/MgO/BiVO4复合光电催化材料,其特征在于,所述MCo2O4/MgO/BiVO4复合光电催化材料是以MgO为中间层的三明治结构。
10.一种如权利要求9所述的MCo2O4/MgO/BiVO4复合光电催化材料在光电催化合成氨中的应用。
CN202210741477.XA 2022-06-28 2022-06-28 一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用 Active CN115055189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210741477.XA CN115055189B (zh) 2022-06-28 2022-06-28 一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210741477.XA CN115055189B (zh) 2022-06-28 2022-06-28 一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN115055189A true CN115055189A (zh) 2022-09-16
CN115055189B CN115055189B (zh) 2023-08-08

Family

ID=83204698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210741477.XA Active CN115055189B (zh) 2022-06-28 2022-06-28 一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN115055189B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334304A (ja) * 1999-05-31 2000-12-05 Tokyo Gas Co Ltd ガス中coの選択的酸化触媒及びガス中coの選択的酸化方法
CN104159669A (zh) * 2012-03-08 2014-11-19 国立大学法人东京大学 光水分解反应用电极以及其制造方法
CN108404934A (zh) * 2018-04-13 2018-08-17 西北师范大学 一种z型结构的杂化二氧化钛光催化剂的制备及应用
CN108579765A (zh) * 2018-04-13 2018-09-28 西北师范大学 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
CN108611653A (zh) * 2018-04-13 2018-10-02 西北师范大学 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
CN109913896A (zh) * 2019-03-01 2019-06-21 西北师范大学 一种负载双金属氧化物纳米粒子的钒酸铋复合材料的制备及应用
CN109985615A (zh) * 2019-04-12 2019-07-09 西安石油大学 一种高活性有机染料降级光催化剂锌镁复合氧化物的制备方法
US20210140055A1 (en) * 2018-06-22 2021-05-13 Georgia Tech Research Corporation Method of forming a desired nitrogen-containing compound
CN113235124A (zh) * 2021-05-18 2021-08-10 西北师范大学 一种S-FeOOH/钒酸铋复合光阳极及其制备方法
CN114411175A (zh) * 2022-01-24 2022-04-29 江苏大学 非晶态金属氧化物修饰p-BiVO4复合异质结的制备方法及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334304A (ja) * 1999-05-31 2000-12-05 Tokyo Gas Co Ltd ガス中coの選択的酸化触媒及びガス中coの選択的酸化方法
CN104159669A (zh) * 2012-03-08 2014-11-19 国立大学法人东京大学 光水分解反应用电极以及其制造方法
CN108404934A (zh) * 2018-04-13 2018-08-17 西北师范大学 一种z型结构的杂化二氧化钛光催化剂的制备及应用
CN108579765A (zh) * 2018-04-13 2018-09-28 西北师范大学 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
CN108611653A (zh) * 2018-04-13 2018-10-02 西北师范大学 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
US20210140055A1 (en) * 2018-06-22 2021-05-13 Georgia Tech Research Corporation Method of forming a desired nitrogen-containing compound
CN109913896A (zh) * 2019-03-01 2019-06-21 西北师范大学 一种负载双金属氧化物纳米粒子的钒酸铋复合材料的制备及应用
CN109985615A (zh) * 2019-04-12 2019-07-09 西安石油大学 一种高活性有机染料降级光催化剂锌镁复合氧化物的制备方法
CN113235124A (zh) * 2021-05-18 2021-08-10 西北师范大学 一种S-FeOOH/钒酸铋复合光阳极及其制备方法
CN114411175A (zh) * 2022-01-24 2022-04-29 江苏大学 非晶态金属氧化物修饰p-BiVO4复合异质结的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAO WANG ET.AL: "Effect of MgO doping on the BiVO4 sensing electrode performance for YSZ-based potentiometric ammonia sensor", 《SOLID STATE ELECTRONICS》, vol. 147, pages 19 - 25, XP085417020, DOI: 10.1016/j.sse.2018.05.002 *
DONGBO XU ET.AL: "Synthesis of ternary spinel MCo2O4 (M = Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting", 《CHEMICAL ENGINEERING JOURNAL》, vol. 392, pages 124838 *
谢倩;贾正栋;邓爱霞;滕谋勇;陶绪泉;刘凤香;: "水热法制备不同形貌和结构的BiVO_4/GO复合光催化剂", 聊城大学学报(自然科学版), no. 02, pages 59 - 63 *

Also Published As

Publication number Publication date
CN115055189B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
Maeda Metal‐complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light
Shen et al. In-situ construction of metallic Ni3C@ Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production
Zhou et al. High-performance photoelectrochemical water splitting of BiVO4@ Co-MIm prepared by a facile in-situ deposition method
Liu et al. Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure
She et al. Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation
Abe Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation
Yoshino et al. Photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa) 0.5 ZnS2 in the presence of basic additives
Toe et al. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis
Bessekhouad et al. Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst
Tang et al. Halogen bonding induced aqueously stable CsPbBr3@ MOFs-Derived Co3O4/N-doped-C heterostructure for high-performance photoelectrochemical water oxidation
CN111569896A (zh) BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水
Liang et al. Ag 2 ZnSnS 4/Mo-mesh photoelectrode prepared by electroplating for efficient photoelectrochemical hydrogen generation
Maeda CO2 reduction using oxynitrides and nitrides under visible light
Ma et al. Semiconductors for photocatalytic and photoelectrochemical solar water splitting
Yu et al. Low-temperature strategy for vapor phase hydrothermal synthesis of C\N\S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
Wang et al. Cooperative hydrogen production and C− C coupling organic synthesis in one photoredox cycle
Garay-Rodriguez et al. Photocatalytic hydrogen evolution over the isostructural titanates: Ba3Li2Ti8O20 and Na2Ti6O13 modified with metal oxide nanoparticles
Liu et al. An effective Z-scheme hybrid photocatalyst based on zinc porphyrin derivative and anatase titanium dioxide microsphere for carbon dioxide reduction
Chen et al. Porous TiWO3/SrWO4 with high titanium molar ratio for efficient photoelectrocatalytic nitrogen reduction under mild conditions
Kamimura et al. Photoelectrochemical synthesis of aniline from nitrobenzene in a neutral aqueous solution by using a p-type Cu2ZnSnS4 electrode
CN111705333A (zh) Ag-Pi/BiVO4异质结合成方法及其应用于光电解水
CN115055189B (zh) 一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用
CN115233255A (zh) MOF衍生的NiO/BiVO4复合光电极制备方法及其光电应用
Wang et al. The CuSCN layer between BiVO4 and NiFeOx for facilitating photogenerated carrier transfer and water oxidation kinetics
Najafabadi et al. Embedding cobalt polyoxometalate in polypyrrole shell for improved photoelectrochemical performance of BiVO4 core

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant