CN115050539A - 基于ipd具有超高自谐振频率的3d电感器及其应用 - Google Patents

基于ipd具有超高自谐振频率的3d电感器及其应用 Download PDF

Info

Publication number
CN115050539A
CN115050539A CN202210636523.XA CN202210636523A CN115050539A CN 115050539 A CN115050539 A CN 115050539A CN 202210636523 A CN202210636523 A CN 202210636523A CN 115050539 A CN115050539 A CN 115050539A
Authority
CN
China
Prior art keywords
inductor
inductance
metal
turns
ipd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210636523.XA
Other languages
English (en)
Inventor
强天
沈浚哲
雷玉双
高敏佳
马杨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210636523.XA priority Critical patent/CN115050539A/zh
Publication of CN115050539A publication Critical patent/CN115050539A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/006Details of transformers or inductances, in general with special arrangement or spacing of turns of the winding(s), e.g. to produce desired self-resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及一种基于IPD具有超高自谐振频率的3D电感器,包括基板以及由上至下依次设置于基板上的第一金属层和第二金属层;晶元;至少两个测量Pad点和两个共面波导接地金属板以晶元的中心点对称设置;3D电感主体包括电感连接柱、两端均设置有电感连接柱且通过电感连接柱连接的电感上层金属部和电感下层金属部,电感上层金属部通过测量Pad点连接第一金属层,第一金属层通过电感连接柱连接电感下层金属部,电感下层金属部连接第二金属层。本发明第一金属层和第二金属层呈上下交错的结构排列在至少两个测量Pad点之间形成3D电感器结构,实现超高自谐振频率,提高器件品质因数,极大的减小了器件的芯片尺寸。

Description

基于IPD具有超高自谐振频率的3D电感器及其应用
技术领域
本发明涉及射频微波技术领域,尤其是指一种基于IPD具有超高自谐振频率的3D电感器及其应用。
背景技术
射频(RF)电路是指被处理信号的电磁波长与电路或器件尺寸处于相同数量级的电路,目前,其被广泛应用于多种领域,如电视、广播、雷达、移动电话、自动识别系统等。近年来,随着包括智能手机在内的小型移动设备的功能变得越来越复杂,电子零部件小型化的需求不断增加。因此,RF电路作为手持无线产品的重要组成电路,对无源器件和无源器件电路的小型化提出了更高的要求。
电感器是基本的无源元件,用于防止电流变化。当从电池或电源施加电流时,电感器使用磁场临时存储电流。当电流变化时,磁场会感应出与电流变化相反的电压。在RF电路中,电感器被广泛应用,它是一种用于信号处理的器件,主要用于频率匹配或作为传输电信号的电路中的滤波装置。而RF电感器中射频信号的频率远高于交流或直流电流。与电容器和电阻器一样,电感器构成了无线电通信设备所必需的谐振(可调谐)电路中的绝大多数元件。RF电感器的选择主要涉及以下关键参数:尺寸、电感值、自谐振频率(SRF)、品质因数(Q值)和温度额定值等。SRF作为其中一个重要参数,决定了电感在射频波段的工作特性,即在SRF以下的频段,电感实际的特性表征为感性;而在SRF以上的频段,其实际的特性表征为容性;且一个电感的实际工作频率越靠近SRF,其电感值、Q值特性越不稳定,容易发生感性和容性的翻转。
目前,市场上的主流RF电感器有以下两种:射频陶瓷电感器和绕线电感器。射频陶瓷电感器成本效益高,SRF高,但Q值和电流容量较低;绕线电感器具有较高的Q和电流容量,但是直流电阻较低,器件尺寸较大。近年来,为了实现无源系统小型化,集成无源器件技术得到了很好地发展。集成无源器件(IPD)是将电阻器、电容器、电感器/线圈、微带线、阻抗匹配元件或其任意组合集成在同一封装或同一基板上的电子元件。随着半导体制造能力的提升,从亚微米进入到纳米阶段,主动式电子元件的集成度随之大幅提升,相应的搭配主动式元件的无源元件需求量也迅速增加。IPD技术能够缩小器件尺寸、降低互连复杂性、提高组件容差、产量和可靠性,是一种经济有效的方法。因此,设计得到一种基于IPD的具有超高自谐振频率的电感器,使得电感的实际工作频率远低于SRF显得尤为重要。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术存在的问题,提出一种基于IPD具有超高自谐振频率的3D电感器,其基于IPD技术通过第一金属层和第二金属层呈上下交错的结构排列在至少两个测量Pad点之间形成3D电感器结构,实现了电感器的超高自谐振频率,使得电感值在信号带宽内尽可能的稳定,并且在提高器件品质因数的同时,极大的减小了器件所占的芯片尺寸;其为高频电感在射频电路中的应用提供了一种有效的解决方案,有助于推进3D电感器在射频电路中的探索与应用。
为解决上述技术问题,本发明提供一种基于IPD具有超高自谐振频率的3D电感器,包括基板以及由上至下依次设置于所述基板上的第一金属层和第二金属层,还包括:
晶元;
测量Pad点,其数量至少为两个,至少两个测量Pad点以所述晶元的中心点对称设置在所述晶元上,且晶元在至少两个测量Pad点之间设置有预留区域;
共面波导接地金属板,其数量至少为两个,至少两个共面波导接地金属板以所述晶元的中心点对称设置在所述晶元上;
3D电感主体,其设置于所述晶元的预留区域,所述3D电感主体包括电感连接柱、电感上层金属部和电感下层金属部,所述电感上层金属部和电感下层金属部的两端均设置有电感连接柱,且电感上层金属部和电感下层金属部通过电感连接柱连接,所述电感上层金属部通过测量Pad点连接所述第一金属层,所述第一金属层通过电感连接柱连接电感下层金属部,所述电感下层金属部连接第二金属层,以使第一金属层和第二金属层呈上下交错的结构排列在至少两个测量Pad点之间。
在本发明的一个实施例中,还包括金属连接部,其用于连接测量pad点与电感连接柱,所述金属连接部包括相连接的矩形连接块和半圆连接块。
在本发明的一个实施例中,测量Pad点的数量为两个,两个测量Pad点以所述晶元的中心点对称设置。
在本发明的一个实施例中,所述测量pad点的宽长比为1:1。
在本发明的一个实施例中,测量pad点到共面波导接地金属的间距为44-110um。
在本发明的一个实施例中,共面波导接地金属板包括第一矩形金属块、第二矩形金属块和第三矩形金属块,所述第一矩形金属块、第二矩形金属块和第三矩形金属块依次连接构成共面波导接地金属板。
在本发明的一个实施例中,所述电感连接柱的直径为24-28um;所述电感上层金属部和电感下层金属部的长度为150-250um,其宽度为20-30um;电感上层金属部两两之间或电感下层金属部两两之间平行设置,且间距为10-20um。
在本发明的一个实施例中,3D电感主体的数量为至少两个,至少两个电感上层金属部两两之间或至少两个电感下层金属部两两之间平行设置。
在本发明的一个实施例中,4.5匝*1行的3D电感器设置有9个电感连接柱,4.5匝*3行、4.5匝*5行、8.5匝*1行、8.5匝*3行、8.5匝*5行、16.5匝*1行、16.5匝*3行、16.5匝*5行、28.5匝*1行、28.5匝*3行、28.5匝*5行的3D电感器分别设置有29、49、17、53、89、33、101、169、57、173、289个电感连接柱。
在本发明的一个实施例中,第一金属层和第二金属层之间设置有空气层。
此外,本发明还提供一种如上述所述的基于IPD具有超高自谐振频率的3D电感器在射频电路中的应用。
本发明的上述技术方案相比现有技术具有以下优点:
1、本发明提出了基于IPD技术通过第一金属层和第二金属层呈上下交错的结构排列在至少两个测量Pad点之间形成3D电感器结构,实现了电感器的超高自谐振频率,使得电感值在信号带宽内尽可能的稳定,并且在提高器件品质因数的同时,极大的减小了器件所占的芯片尺寸;
2、本发明为高频电感在射频电路中的应用提供了一种有效的解决方案,有助于推进3D电感器在射频电路中的探索与应用。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。
图1为本发明以4.5匝*1行为例的3D电感结构示意图。
图2为本发明的3D电感截面图。
图3为本发明4.5匝*1行的3D电感器的参数结果图。
图4为本发明不同匝数与相同行数(1行)的3D电感器的参数结果图,(a)——(d)分别为4.5匝*1行、8.5匝*1行、16.5匝*1行、28.5匝*1行3D电感器的电感值与品质因数结果图。
图5为本发明不同匝数与相同行数(3行)的3D电感器的参数结果图,(a)——(d)分别为4.5匝*3行、8.5匝*3行、16.5匝*3行、28.5匝*3行3D电感器的电感值与品质因数结果图。
图6为本发明不同匝数与相同行数(5行)的3D电感器的参数结果图,(a)——(d)分别为4.5匝*5行、8.5匝*5行、16.5匝*5行、28.5匝*5s行3D电感器的电感值与品质因数结果图。
其中,附图标记说明如下:1、晶元;2、测量Pad点;3、共面波导接地金属板;31、第一矩形金属块;32、第二矩形金属块;33、第三矩形金属块;4、电感连接柱;5、电感上层金属部;6、电感下层金属部;7、第一金属层;8、symbol层;9、空气层;10、第二金属层;11、基板。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
请参阅图1所示,本发明实施例提供一种基于IPD具有超高自谐振频率的3D电感器,包括基板11以及由上至下依次设置于所述基板11上的第一金属层7和第二金属层10,还包括:
晶元1;
测量Pad点2,其数量至少为两个,至少两个测量Pad点2以所述晶元1的中心点对称设置,且晶元1在至少两个测量Pad点2之间设置有预留区域;
共面波导接地金属板3,其数量至少为两个,至少两个共面波导接地金属板3以所述晶元1的中心点对称设置;
3D电感主体,其设置于所述晶元1的预留区域,所述3D电感主体包括电感连接柱4、电感上层金属部5和电感下层金属部6,所述电感上层金属部5和电感下层金属部6的两端均设置有电感连接柱4,且电感上层金属部5和电感下层金属部6通过电感连接柱4连接,所述电感上层金属部5通过测量Pad点2连接所述第一金属层7,所述第一金属层7通过电感连接柱4连接电感下层金属部6,所述电感下层金属部6连接第二金属层10,以使第一金属层7和第二金属层10呈上下交错的结构排列在至少两个测量Pad点2之间。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,本发明提出了基于IPD技术通过第一金属层7和第二金属层10呈上下交错的结构排列在至少两个测量Pad点2之间形成3D电感器结构,实现了电感器的超高自谐振频率,使得电感值在信号带宽内尽可能的稳定,并且在提高器件品质因数的同时,极大的减小了器件所占的芯片尺寸。
图1为本发明以4.5匝*1行为例的3D电感结构示意图,其结构包括GaAs晶元1、测量Pad点2、共面波导接地金属板3与3D电感主体,其中,3D电感主体部分包括电感连接柱4、电感上层金属部5和电感下层金属部6。图2为本发明3D电感的横截面图,其由上至下依次包括第一金属层7、symbol层8、空气层9、第二金属层10和基板11。作为优选的一个方案,GaAs基板11在最下层,其厚度为200um,该厚度减薄能够减小寄生效应,有利于后续芯片的封装,并且200um的厚度最优,小于200um的厚度.芯片容易发生碎裂现象;层叠在GaAs基板之上的是bond金属层10,其厚度为4.1um,该厚度能够有效减少微波信号在金属中传播的损耗,有效的避免微波的趋肤效应;最上层为第一金属层7,其厚度为4.1um,该厚度能够有效减少微波信号在金属中传播的损耗,有效的避免微波的趋肤效应;在bond金属层10和第一金属层7之间的为symbol层8和空气层9,其厚度均为1.8um,该厚度能够保证上层金属和下层金属在空气桥区域不互连,以免发生短路现象,并且能够保证空气桥结构的高度稳定,不发生坍塌现象。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,本发明还包括金属连接部,其用于连接测量pad点2与电感连接柱4,所述金属连接部包括相连接的矩形连接块和半圆连接块,其中,矩形连接块的尺寸在40um×20um到50um×30um之间变化,半圆连接块的直径在20um-30um之间变化。作为优选地,矩形连接块的尺寸被设计为47.5um×30um,半圆连接块的直径被设计为30um,该尺寸能够减小微波信号在非均一宽度传输线中传输时发生宽度阶跃而引入的电容效应。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,作为一个优选的实施方案,测量Pad点2的数量为两个,两个测量Pad点2以所述晶元1的中心点对称设置,即两个测量Pad点2以晶元1的中心为对称基准,在晶元1中心点两侧对称设置,两个测量Pad点2之间预留区域,在预留的区域中设置3D电感主体;同时,在晶元1上设置两条共面波导接地金属板3,且这两条共面波导接地金属板3以晶元1的中心为对称基准,在晶元1中心点两侧对称设置。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,进一步地,所述测量pad点2的宽长比为1:1,作为优选地,测量pad点2的宽度被设计为100um,长度被设计为100um,1:1的尺寸50欧姆匹配效果好,同时减小器件尺寸,能够给电感预留足够的空间,便于GSG探针实现片上测量;测量pad点2到共面波导接地金属板3的间距优选为50um,优选50um实现的欧姆匹配效果最优。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,进一步地,共面波导接地金属板3包括第一矩形金属块31、第二矩形金属块32和第三矩形金属块33,所述第一矩形金属块31、第二矩形金属块32和第三矩形金属块33依次连接构成共面波导接地金属板3,其尺寸分别为175um×100um、50um×490um、175um×100um,该尺寸能够减小片上测量型电感芯片的尺寸,为更好的满足50欧姆输入阻抗匹配。在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,进一步地,电感连接柱4的直径被设计为26um;所述电感上层金属部5和电感下层金属部6的长度为200um,其宽度为25um;电感上层金属部5两两之间或电感下层金属部6两两之间平行设置,且间距为15um,优选26um、200um可以使得3D电感的自谐振频率更高;优选25um、15um可以使得3D电感的品质因数更高。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,本发明4.5匝*1行的电感器共设有9个电感连接柱4,其他的4.5匝*3行、4.5匝*5行、8.5匝*1行、8.5匝*3行、8.5匝*5行、16.5匝*1行、16.5匝*3行、16.5匝*5行、28.5匝*1行、28.5匝*3行、28.5匝*5行分别设有29、49、17、53、89、33、101、169、57、173、289个电感连接柱4。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,进一步地,4.5匝*1行的电感器的整体面积为550um×530um,而4.5匝*3行、4.5匝*5行、8.5匝*1行、8.5匝*3行、8.5匝*5行、16.5匝*1行、16.5匝*3行、16.5匝*5行、28.5匝*1行、28.5匝*3行、28.5匝*5行电感器的整体面积分别为1050um×530um、1550um×530um、550um×690um、1050um×690um、1550um×690um、550um×1010um、1050um×1010um、1550um×1010um、550um×1490um、1050um×1490um、1550um×1490um。其中,4.5匝*1行,16.5匝*3行和28.5匝*5行3D电感器的长宽比近似接近于1:1。
参见图3所示,图3是4.5匝*1行的3D电感器的参数结果图。从图中可以得到,4.5匝*1行的3D电感器电感值为0.448nH,品质因数为5.019。并且,其自谐振频率高达37.44GHz,实现了超高自谐振频率。3D电感器的电感值在>30GHz的宽频带范围内实现了稳定,可以应用于超高频需求的电路中。
在本发明实施例公开的一种基于IPD具有超高自谐振频率的3D电感器中,本发明提出的3D电感器具有优异的超高自谐振频率特性,该特性能够保证电感的工作频率远低于其自谐振频率,始终呈现电感特性而不发生电容翻转特性变化,同时能够保证电感实现良好的电感值和Q值。
相应于上述基于IPD具有超高自谐振频率的3D电感器的实施例,本发明实施例还提供一种基于IPD具有超高自谐振频率的3D电感器在射频电路中的应用。
在混合式微波集成电路(MICs)中,键合线(wire-boding)用于连接有源和无源电路组件,在单片微波集成电路(MMIC)中,wire-boding用于将MMIC芯片连接到其他电路。在电路中,特定长度的wire-boding所形成的电感与本发明中3D电感器所形成的电感相类似。因此,3D电感器的电感值可由下式计算得到:
Figure BDA0003682314000000071
其中,L为电感感值,d为电感直径,l为电感长度,而频率相关修正系数C是电感直径d及其材料表面深度δ的函数,如下所示:
Figure BDA0003682314000000072
Figure BDA0003682314000000081
其中,σ是金属丝材料的导电性,f为频率。对于金线来说,δ=2.486f-0.5(此处的f用千兆赫兹表示)。当δ与d的比值很小的时候,C=δ/d。当电感长度远远大于电感直径时,公式(1)可由下式表示:
Figure BDA0003682314000000082
因此在设计时,可以在计算机上利用Advanced Design System 2020软件,设计并仿真得到一组参数不同的3D电感器;使用时,通过射频电路的实际需要,选用合适的3D高频电感器来满足电路功能。在电路仿真时,3D电感的电感值及品质因数可由下式算出:
Figure BDA0003682314000000083
Figure BDA0003682314000000084
其中inductance为电感值,Q-factor为品质因数,Z11为用Advanced DesignSystem 2020软件仿真得到的Z参数。
参见图4-图6所示,图4-图6是不同匝数与行数的3D电感器的参数结果图。其中,4.5匝*1行、4.5匝*3行、4.5匝*5行、8.5匝*1行、8.5匝*3行、8.5匝*5行、16.5匝*1行、16.5匝*3行、16.5匝*5行、28.5匝*1行、28.5匝*3行、28.5匝*5行3D电感器在1GHz频段的电感值分别为:0.448nH、1.007nH、1.576nH、0.656nH、1.536nH、2.444nH、1.078nH、2.637nH、4.257nH、1.718nH、4.342nH、7.172nH;品质因数分别为:5.019、4.111、4.113、4.311、3.592、3.362、3.915、3.130、2.941、3.589、2.891、2.666;自谐振频率分别为:37.44GHz、18.42GHz、12.14GHz、27.77GHz、13.09GHz、8.61GHz、18.43GHz、8.32GHz、5.520GHz、12.19GHz、5.39GHz、3.62GHz。
本发明提出的一种基于IPD具有超高自谐振频率的3D电感器在应用于射频电路时,3D电感器的电感值可从0.448nH变化到7.712nH,实现了电感值的可控调节,具有较好的灵活性。
本发明提出的一种基于IPD具有超高自谐振频率的3D电感器在应用于射频电路时,其为高频电感在射频电路中的应用提供了一种有效的解决方案,有助于推进3D电感器在射频电路中的探索与应用。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种基于IPD具有超高自谐振频率的3D电感器,包括基板以及由上至下依次设置于所述基板上的第一金属层和第二金属层,其特征在于,还包括:
晶元;
测量Pad点,其数量至少为两个,至少两个测量Pad点以所述晶元的中心点对称设置在所述晶元上,且晶元在至少两个测量Pad点之间设置有预留区域;
共面波导接地金属板,其数量至少为两个,至少两个共面波导接地金属板以所述晶元的中心点对称设置在所述晶元上;
3D电感主体,其设置于所述晶元的预留区域,所述3D电感主体包括电感连接柱、电感上层金属部和电感下层金属部,所述电感上层金属部和电感下层金属部的两端均设置有电感连接柱,且电感上层金属部和电感下层金属部通过电感连接柱连接,所述电感上层金属部通过测量Pad点连接所述第一金属层,所述第一金属层通过电感连接柱连接电感下层金属部,所述电感下层金属部连接第二金属层,以使第一金属层和第二金属层呈上下交错的结构排列在至少两个测量Pad点之间。
2.根据权利要求1所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:还包括金属连接部,其用于连接测量pad点与电感连接柱,所述金属连接部包括相连接的矩形连接块和半圆连接块。
3.根据权利要求1或2所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:测量Pad点的数量为两个,两个测量Pad点以所述晶元的中心点对称设置。
4.根据权利要求1所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:所述测量pad点的宽长比为1:1。
5.根据权利要求4所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:测量pad点到共面波导接地金属板的间距为44-110um。
6.根据权利要求1所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:共面波导接地金属板包括第一矩形金属块、第二矩形金属块和第三矩形金属块,所述第一矩形金属块、第二矩形金属块和第三矩形金属块依次连接构成共面波导接地金属板。
7.根据权利要求1或2所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:所述电感连接柱的直径为24-28um;所述电感上层金属部和电感下层金属部的长度为150-250um,其宽度为20-30um;电感上层金属部两两之间或电感下层金属部两两之间平行设置,且间距为10-20um。
8.根据权利要求1所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:3D电感主体的数量为至少两个,至少两个电感上层金属部两两之间或至少两个电感下层金属部两两之间平行设置。
9.根据权利要求1或8所述的基于IPD具有超高自谐振频率的3D电感器,其特征在于:4.5匝*1行的3D电感器设置有9个电感连接柱,4.5匝*3行、4.5匝*5行、8.5匝*1行、8.5匝*3行、8.5匝*5行、16.5匝*1行、16.5匝*3行、16.5匝*5行、28.5匝*1行、28.5匝*3行、28.5匝*5行的3D电感器分别设置有29、49、17、53、89、33、101、169、57、173、289个电感连接柱。
10.一种如权利要求1至9任一项所述的基于IPD具有超高自谐振频率的3D电感器在射频电路中的应用。
CN202210636523.XA 2022-06-07 2022-06-07 基于ipd具有超高自谐振频率的3d电感器及其应用 Pending CN115050539A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210636523.XA CN115050539A (zh) 2022-06-07 2022-06-07 基于ipd具有超高自谐振频率的3d电感器及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210636523.XA CN115050539A (zh) 2022-06-07 2022-06-07 基于ipd具有超高自谐振频率的3d电感器及其应用

Publications (1)

Publication Number Publication Date
CN115050539A true CN115050539A (zh) 2022-09-13

Family

ID=83161715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210636523.XA Pending CN115050539A (zh) 2022-06-07 2022-06-07 基于ipd具有超高自谐振频率的3d电感器及其应用

Country Status (1)

Country Link
CN (1) CN115050539A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116832887A (zh) * 2023-08-16 2023-10-03 江南大学 基于细胞分选与检测集成的微流控生物传感芯片及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200832804A (en) * 2007-01-19 2008-08-01 Univ Nat Changhua Education Coplanar-waveguide defected ground structure
CN102576657A (zh) * 2009-10-08 2012-07-11 高通股份有限公司 三维电感器与变换器
CN102791075A (zh) * 2011-05-16 2012-11-21 颀邦科技股份有限公司 具有立体电感的承载器制作方法及其结构
CN104979333A (zh) * 2015-07-15 2015-10-14 宜确半导体(苏州)有限公司 一种半导体集成电感
US20150310980A1 (en) * 2014-04-23 2015-10-29 Realtek Semiconductor Corp. Integrated stacked transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200832804A (en) * 2007-01-19 2008-08-01 Univ Nat Changhua Education Coplanar-waveguide defected ground structure
CN102576657A (zh) * 2009-10-08 2012-07-11 高通股份有限公司 三维电感器与变换器
CN102791075A (zh) * 2011-05-16 2012-11-21 颀邦科技股份有限公司 具有立体电感的承载器制作方法及其结构
US20150310980A1 (en) * 2014-04-23 2015-10-29 Realtek Semiconductor Corp. Integrated stacked transformer
CN104979333A (zh) * 2015-07-15 2015-10-14 宜确半导体(苏州)有限公司 一种半导体集成电感

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116832887A (zh) * 2023-08-16 2023-10-03 江南大学 基于细胞分选与检测集成的微流控生物传感芯片及其应用

Similar Documents

Publication Publication Date Title
US7023315B2 (en) High performance RF inductors and transformers using bonding technique
EP1573813B1 (en) Rf power transistor with internal bias feed
US6775901B1 (en) Bonding wire inductor
US6075427A (en) MCM with high Q overlapping resonator
US6424223B1 (en) MMIC power amplifier with wirebond output matching circuit
US10050597B2 (en) Time delay filters
TWI517350B (zh) 用於無線應用之高功率半導體裝置及用以形成高功率半導體裝置之方法
US20030043010A1 (en) Integrated helix coil inductor on silicon
CN106532212A (zh) 一种基于陶瓷微带线的射频垂直过渡结构
EP2991085B1 (en) Transformer
CN115050539A (zh) 基于ipd具有超高自谐振频率的3d电感器及其应用
US20030122219A1 (en) Inductor for radio communication module
CN100511640C (zh) 具有多重导线结构的螺旋电感元件
EP1652198B1 (en) Compact impedance transformation circuit
Hartung Integrated passive components in MCM-Si technology and their applications in RF-systems
JPH10284694A (ja) 無線周波数以上で動作する電子回路をサポートするシリコン製基板を有する物品
US9577022B2 (en) Inductor
EP0963607B1 (en) An integrated circuit having a planar inductor
KR102213561B1 (ko) 반도체 장치
CN115882790B (zh) 一种放大器芯片输出电路、供电方法、芯片及电子设备
US20240237316A9 (en) On-chip shielded device
JPH11243306A (ja) 高周波モジュールおよびそれを用いた通信装置
Liu et al. Compact balanced band pass filter for 3.3 GHz–3.9 GHz WiMAX applications
CN116544640A (zh) 用于高频电流隔离器的电容耦合谐振器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220913