CN115044936B - 一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用 - Google Patents

一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN115044936B
CN115044936B CN202210470637.1A CN202210470637A CN115044936B CN 115044936 B CN115044936 B CN 115044936B CN 202210470637 A CN202210470637 A CN 202210470637A CN 115044936 B CN115044936 B CN 115044936B
Authority
CN
China
Prior art keywords
cds
shell structure
preparation
nano heterojunction
heterojunction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210470637.1A
Other languages
English (en)
Other versions
CN115044936A (zh
Inventor
韩士奎
李婉红
付子雨
许厚明
郑栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210470637.1A priority Critical patent/CN115044936B/zh
Publication of CN115044936A publication Critical patent/CN115044936A/zh
Application granted granted Critical
Publication of CN115044936B publication Critical patent/CN115044936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及功能材料技术领域,具体涉及一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用,将乙酰丙酮镉、油酸、二苯醚、十八烯磁力搅拌混合后,设定温度进行加热,然后加入制备好的Pb4S3Br2‑ODE溶液,继续升温反应,将产物进行洗涤干燥,即可制备得到Pb4S3Br2@CdS纳米异质结催化剂,本发明的制备方法简单,可控性高,所制备的Pb4S3Br2@CdS纳米异质结催化剂的结构稳定,产品性能稳定,且其表现出良好的二氧化碳还原催化活性,催化效率高。

Description

一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其 应用
技术领域
本发明涉及功能材料技术领域,具体涉及一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用。
背景技术
在将二氧化碳转化为有用燃料的过程中,一个相当大的挑战来自于将二氧化碳活化为
Figure BDA0003621783130000011
或其他中间体,这通常需要贵重金属催化剂、高过电位和/或电解质添加剂(如离子液体)。CdS作为一种常见的半导体,经常用于光催化产生H2或者CO2还原等应用中。可以有效地催化CO2电还原为一氧化碳(CO)。但CdS在CO2还原反应的催化剂仍然面临着问题:电流密度小导致的产品形成率低,选择性低导致分离步骤的成本高,在长时间测试后催化剂失活。通过对一些相关文献的研究,发现可以通过在纳米结构上的改性来弥补这一不足。当今采用不同类型的半导体材料对其进行复合,使其形成异质结,利用纳米异质结在导带与价带之间的能级差来提高电子-空穴对的分离效率的方法较为有效。在过去的十年中,铅硫族化合物和铅卤化物钙钛矿成为纳米晶体研究的基础材料,金属硫卤化合物是一类有趣的化合物,迄今为止几乎没有在纳米尺度上进行过探索。与卤化铅钙钛矿不同,更类似于铅硫族化合物的情况。且Pb4S3Br2纳米颗粒在空气中和室温下保持胶体稳定至少2个月内不会发生任何结构、组成或光电方面性能变化。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于解决现有技术中由于CdS在CO2还原中产品选择性较低,电流密度较小限制了它的催化活性和在催化过程中的应用的问题,提供了一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用。
为了实现上述目的,本发明公开了一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,包括以下步骤:
S1:将乙酰丙酮镉、油酸、十八烯混合并加热至反应温度,然后加入用十八烯溶解的Pb4S3Br2纳米晶体,继续反应;
S2:将步骤S1中反应后的溶液冷却至室温,用正己烷和乙醇进行洗涤离心,干燥后得到Pb4S3Br2@CdS核壳结构纳米异质结催化剂。
所述步骤S1中反应温度为130~170℃。
所述步骤S2中加入用十八烯溶解的Pb4S3Br2纳米晶体,继续反应的反应时间为10~30min。
所述步骤S2中Pb4S3Br2纳米晶体的制备步骤如下:
S21:将PbBr2、Pb(SCN)2用十八烯和油胺、油酸溶解并加热,反应;
S22:待步骤S21中的反应停止后,将反应后的溶液冷却至室温,取出;
S23:将步骤S22中的产物先后采用正己烷和乙醇进行洗涤,干燥后得到Pb4S3Br2纳米晶体。
所述步骤S1中乙酰丙酮镉为0.2~0.5mol、油酸为3~5mL、十八烯为5~10mL。
所述步骤S21中的反应温度为150~190℃。
本发明还公开了采用上述制备方法制得的Pb4S3Br2@CdS核壳结构纳米异质结催化剂以及这种Pb4S3Br2@CdS核壳结构纳米异质结催化剂在二氧化碳还原产CO中的应用。
CdS作为一种常见的半导体,经常用于光催化产生H2或者CO2还原等应用中。可以有效地催化CO2电还原为一氧化碳(CO)。但CdS在CO2还原反应的催化剂仍然面临着问题:电流密度小导致的产品形成率低,选择性低导致分离步骤的成本高,在长时间测试后催化剂失活。通过对一些相关文献的研究,发现可以通过在纳米结构上的改性来弥补这一不足。故本发明通过阳离子交换的方法,由Pb4S3Br2纳米颗粒为模板,与镉离子进行阳离子交换,制备得Pb4S3Br2@CdS核壳结构纳米异质结催化剂。该催化剂相较于CdS的CO2还原产品选择性大大提高。
与现有技术比较本发明的有益效果在于:本发明采用Pb4S3Br2纳米晶体进一步通过阳离子交换的方法来制备Pb4S3Br2@CdS核壳结构纳米异质结催化剂,制备方法简单,可控性高,所制备的Pb4S3Br2@CdS核壳结构纳米异质结催化剂的结构稳定,具有很强的可见光吸收特性,产品性能稳定,且相较于Pb4S3Br2、CdS的催化效率,其表现出更高的催化活性,催化效率更高。
附图说明
图1为本发明制备得到的Pb4S3Br2纳米颗粒的TEM表征照片;
图2为本发明制备得到的Pb4S3Br2@CdS异质结的TEM表征照片;
图3为本发明制备得到的完全阳离子交换后的CdS纳米颗粒的TEM表征照片;
图4为本发明制备得到的Pb4S3Br2@CdS异质结与Pb4S3Br2及CdS的XRD图;
图5为本发明制备得到的Pb4S3Br2@CdS异质结的XPS图;
图6为Pb4S3Br2@CdS异质结与Pb4S3Br2及CdS的二氧化碳还原CO法拉第效率图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
1、制备Pb4S3Br2纳米颗粒
S1:将0.2mmol的PbBr2、Pb(SCN)2用5mL的十八烯和适量的油胺、油酸溶解在三颈烧瓶中并加热;
S2:将S1混合物进行加热到150-190℃,进行反应10-15min,溶液迅速加热后由亮黄色变为血红色;
S3:将S2的溶液冷却至室温后取出,并将生成物先后用正己烷和乙醇进行洗涤;
S4:将S3反应物进行干燥,得到Pb4S3Br2纳米晶体;所得到的Pb4S3Br2纳米晶体进行TEM表征,表征结果见图1。从图1可明显看出Pb4S3Br2纳米晶体结构为颗粒状。
2、制备Pb4S3Br2@CdS异质结催化剂
S1:在三颈烧瓶中加入0.5mmol的乙酰丙酮镉、3mL油酸、1mL二苯醚、5mL十八烯并设置温度加热反应;
S2:当S1中的溶液达到120℃加入用十八烯溶解的Pb4S3Br2纳米晶体,并继续反应15-30min;
S3:将S2中的溶液冷却至室温,取出后用正己烷和乙醇进行多次洗涤离心;
S4:将S3中产物干燥后,即可制备得Pb4S3Br2@CdS核壳结构纳米异质结催化剂。
图2为制备得到的Pb4S3Br2@CdS异质结催化剂的TEM的表征照片,从图2中可以看出明显核壳结构。
图3为制备得到的完全阳离子交换后的CdS催化剂的TEM的表征照片,从图中可以明显看出纳米颗粒的中心被刻蚀产生了一个中空的现象。
图4为Pb4S3Br2@CdS异质结与CdS以及Pb4S3Br2的XRD图,由图可知,中间橙色的谱图峰为Pb4S3Br2@CdS异质结,其峰能够很好的对上CdS以及PbS和Pb7S2Br10的标准卡片。位于横坐标最上端为完全交换后CdS的峰,能够准确的对上CdS的标准卡片。靠近横坐标的谱图是根据文献报道合成的Pb4S3Br2的峰,主要对的是PbS和Pb7S2Br10的标准卡片。
图5为Pb4S3Br2@CdS异质结的XPS图,由图可知,图5(a)中Pb 4f谱显示存在一个单重态,主成分中心为138.06eV。该位置是典型的Pb(II)化合物,特别是PbS中的Pb,通常报道其主Pb 4f组分为138.8eV。图5(b)中Cd 3d5/2和Cd 3d3/2的拟合峰集中在405.24eV和412.05eV处,很好地反映了Cd中的Cd2+。图5(c)中的Br 3d光谱显示了单个双峰的存在,主成分中心为69.0eV。这是溴化物的典型位置。图5(d)中S 2p谱显示出两个峰S 2p3/2和S 2p1/2,分裂为1.2eV,分别位于约161.3eV和162.5eV,主要的二重态的位置与文献中报道的硫化物的位置接近。综合上述证明了Pb4S3Br2@CdS异质结中各元素的价态。
3、催化效率对比
分别称取相同化学计量的CdS、Pb4S3Br2、实施例1制备的CdS@Pb4S3Br2异质结,溶解在一定量的异丙醇中,并加入少量的nafion溶液做为粘结剂,超声半个小时使其分散均匀,后用气枪均匀的喷在碳质上,用1M KHCO3作为电解液,在CO2还原流池体系中分别对以上三种催化剂进行了测试,气相产物用气相色谱仪(GC)分析,液体产物用核磁共振(NMR)检测。检测结果见图6(a)显示了不同电位和可逆氢电极(RHE)下主要CO2还原产物的分布。最佳催化剂(CdS@Pb4S3Br2)在电压-1.8V时,CO法拉第效率高达58.17%。如图6(b)显示在此电位下(-1.8V),CdS@Pb4S3Br2的电流密度为-2.6mA-2超过了CdS及Pb4S3Br2的电流密度,可以很明显地看出实施例1制备的CdS@Pb4S3Br2异质结在二氧化碳还原测试中CO法拉第效率明显比完全阳离子交换后的产物CdS以及纯的Pb4S3Br2高,说明本发明制备的CdS@Pb4S3Br2异质结在二氧化碳还原测试中效果最好,催化效率更高。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (9)

1.一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,其特征在于,包括以下步骤:
S1:将乙酰丙酮镉、油酸、十八烯混合并加热至反应温度,然后加入用十八烯溶解的Pb4S3Br2纳米晶体,继续反应;
S2:将步骤S1中反应后的溶液冷却至室温,用正己烷和乙醇进行洗涤离心,干燥后得到Pb4S3Br2@CdS核壳结构纳米异质结催化剂。
2.如权利要求1所述的一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,其特征在于,所述步骤S1中乙酰丙酮镉为0.2~0.5mol、油酸为3~5mL、十八烯为5~10mL。
3.如权利要求1所述的一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,其特征在于,所述步骤S1中反应温度为130~170℃。
4.如权利要求1所述的一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,其特征在于,所述步骤S2中加入用十八烯溶解的Pb4S3Br2纳米晶体,继续反应的反应时间为10~30min。
5.如权利要求1所述的一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,其特征在于,所述步骤S2中Pb4S3Br2纳米晶体的制备步骤如下:
S21:将PbBr2、Pb(SCN)2用十八烯和油胺、油酸溶解并加热,反应;
S22:待步骤S21中的反应停止,将反应后的溶液冷却至室温,取出;
S23:将步骤S22中的产物先后采用正己烷和乙醇进行洗涤,干燥后得到Pb4S3Br2纳米晶体。
6.如权利要求5所述的一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,其特征在于,所述步骤S21中的反应温度为150~190℃。
7.如权利要求5所述的一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂的制备方法,其特征在于,所述步骤S22中的反应时间为10~15min。
8.一种采用如权利要求1~7任一项所述的制备方法制得的Pb4S3Br2@CdS核壳结构纳米异质结催化剂。
9.一种如权利要求8所述的Pb4S3Br2@CdS核壳结构纳米异质结催化剂在二氧化碳还原中的应用。
CN202210470637.1A 2022-04-28 2022-04-28 一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用 Active CN115044936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210470637.1A CN115044936B (zh) 2022-04-28 2022-04-28 一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210470637.1A CN115044936B (zh) 2022-04-28 2022-04-28 一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN115044936A CN115044936A (zh) 2022-09-13
CN115044936B true CN115044936B (zh) 2023-07-07

Family

ID=83157575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210470637.1A Active CN115044936B (zh) 2022-04-28 2022-04-28 一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115044936B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830445A (zh) * 2009-12-15 2010-09-15 河南大学 一种以乙酰丙酮盐为原料合成无机纳米晶的新方法
CN109225263A (zh) * 2018-07-27 2019-01-18 广东工业大学 一种CdS/TiO2纳米异质结光催化材料及其制备方法和应用
WO2019215247A1 (en) * 2018-05-11 2019-11-14 Total S.A. Core/shell-vacancy engineering (csve) of catalysts for electrochemical co2 reduction
EP3868921A1 (en) * 2020-02-21 2021-08-25 Université de Paris Device for solar light driven co2 reduction in water
CN113562760A (zh) * 2021-07-21 2021-10-29 西安近代化学研究所 一种不同相态CdS纳米材料的相态可控制备方法及应用
CN114381747A (zh) * 2022-01-10 2022-04-22 万华化学集团股份有限公司 一种二氧化碳电化学还原制备乙烯的电催化电极制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140213427A1 (en) * 2013-01-31 2014-07-31 Sunpower Technologies Llc Photocatalyst for the Reduction of Carbon Dioxide
US10934176B2 (en) * 2018-09-27 2021-03-02 Imam Abdulrahman Bin Faisal University Methods of degrading organic pollutants and preventing or treating microbe using Bi2S3-CdS particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830445A (zh) * 2009-12-15 2010-09-15 河南大学 一种以乙酰丙酮盐为原料合成无机纳米晶的新方法
WO2019215247A1 (en) * 2018-05-11 2019-11-14 Total S.A. Core/shell-vacancy engineering (csve) of catalysts for electrochemical co2 reduction
CN109225263A (zh) * 2018-07-27 2019-01-18 广东工业大学 一种CdS/TiO2纳米异质结光催化材料及其制备方法和应用
EP3868921A1 (en) * 2020-02-21 2021-08-25 Université de Paris Device for solar light driven co2 reduction in water
CN113562760A (zh) * 2021-07-21 2021-10-29 西安近代化学研究所 一种不同相态CdS纳米材料的相态可控制备方法及应用
CN114381747A (zh) * 2022-01-10 2022-04-22 万华化学集团股份有限公司 一种二氧化碳电化学还原制备乙烯的电催化电极制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures;Stefano Toso et al.;《J. Am. Chem. Soc.》;第142卷;第10198−10211页 *

Also Published As

Publication number Publication date
CN115044936A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Liu et al. MoS2-Stratified CdS-Cu2–x S Core–Shell Nanorods for Highly Efficient Photocatalytic Hydrogen Production
Ma et al. Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum dots/CeO2 nanorods heterojunction
Zhen et al. Fabrication of low adsorption energy Ni–Mo cluster cocatalyst in metal–organic frameworks for visible photocatalytic hydrogen evolution
Attia et al. Metal clusters: New era of hydrogen production
Zeng et al. Phase transformation synthesis of strontium tantalum oxynitride-based heterojunction for improved visible light-driven hydrogen evolution
Hassan et al. Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation
Wang et al. Application of ion beam technology in (photo) electrocatalytic materials for renewable energy
Chava et al. Controllable oxygen doping and sulfur vacancies in one dimensional CdS nanorods for boosted hydrogen evolution reaction
Jin et al. Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution
Tomboc et al. Hollow structured metal sulfides for photocatalytic hydrogen generation
CN107670672B (zh) 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法
CN110013862B (zh) 一种羟基氧化铁/硫化镉纳米带直接Z-scheme光催化剂及其制备方法
Gadiyar et al. Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting
CN104810518B (zh) 一种钴锰系尖晶石纳米材料及其制备方法和应用
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
Yang et al. Ce-doped W18O49 nanowires for tuning N2 activation toward direct nitrate photosynthesis
Li et al. Nanoscale Engineering of P‐Block Metal‐Based Catalysts Toward Industrial‐Scale Electrochemical Reduction of CO2
Chalgin et al. Manipulation of electron transfer between Pd and TiO2 for improved electrocatalytic hydrogen evolution reaction performance
Xiang et al. Co2P/CoP quantum dots surface heterojunction derived from amorphous Co3O4 quantum dots for efficient photocatalytic H2 production
Leiu et al. Atomic-level tailoring ZnxCd1-xS photocatalysts: a paradigm for bridging structure-performance relationship toward solar chemical production
Iqbal et al. Metal organic frameworks: mastery in electroactivity for hydrogen and oxygen evolution reactions
Garg et al. State-of-the-art evolution of g-C3N4 based Z-scheme heterostructures towards energy and environmental applications: a review
CN113044874B (zh) 一种液相法制备小尺寸CuBr纳米颗粒的方法
CN115044936B (zh) 一种Pb4S3Br2@CdS核壳结构纳米异质结催化剂、制备方法及其应用
Charles et al. Photocatalyst engineering for water-based CO2 reduction under visible light irradiation to enhance CO selectivity: A review of recent advances

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant