CN115044605A - Lrrk1基因调控水稻抗坏血酸含量和耐盐性的应用 - Google Patents

Lrrk1基因调控水稻抗坏血酸含量和耐盐性的应用 Download PDF

Info

Publication number
CN115044605A
CN115044605A CN202210622121.4A CN202210622121A CN115044605A CN 115044605 A CN115044605 A CN 115044605A CN 202210622121 A CN202210622121 A CN 202210622121A CN 115044605 A CN115044605 A CN 115044605A
Authority
CN
China
Prior art keywords
lrrk1
gene
rice
salt
asa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210622121.4A
Other languages
English (en)
Other versions
CN115044605B (zh
Inventor
林建中
刘选明
燕璐
唐冬英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202210622121.4A priority Critical patent/CN115044605B/zh
Publication of CN115044605A publication Critical patent/CN115044605A/zh
Application granted granted Critical
Publication of CN115044605B publication Critical patent/CN115044605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/1103Receptor protein serine/threonine kinase (2.7.11.30)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于植物基因工程领域,公开培育高抗坏血酸(AsA)含量和/或耐盐水稻品种的方法,其特征在于,通过基因工程方法将植物中的LRRK1基因进行敲除、沉默或基因过表达,以获得不同AsA含量和/或盐胁迫响应的植株。本发明中LRRK1基因编码类受体胞质激酶LRRK1蛋白,负调控水稻体内AsA的合成,影响盐胁迫条件下活性氧(ROS)的清除能力,从而负调控水稻的耐盐性;当敲除LRRK1时,敲除突变体lrrk1的AsA含量升高,ROS清除能力增强,提高了水稻的耐盐性。因此,LRRK1基因及其敲除突变体在水稻耐盐品种选育及水稻品质改善等方面具有重要的应用价值。

Description

LRRK1基因调控水稻抗坏血酸含量和耐盐性的应用
技术领域
本发明属于植物基因工程领域。具体的说,本发明涉及水稻抗坏血酸(AsA)合成和盐胁迫耐受性负调控基因LRRK1及其应用。
背景技术
盐碱地是重要的土地后备资源,如我国现有内陆盐碱地近15亿亩,沿海滩涂地3500多万亩,其综合利用潜力巨大。同时,我国土地已面临严重盐荒化和土壤盐渍化的威胁。因此,合理开发利用我国大面积的盐碱地,实现盐碱地耐盐水稻品种的种植,可大幅提高水稻产量,保障我国农业的可持续发展。近年来,尽管水稻耐盐碱研究已取得一些进展,但是在耐盐水稻新基因挖掘和品种培育方面仍然存在可供育种利用的耐盐基因不多、耐盐程度低,以及水稻耐盐机理有待进一步研究等问题(王才林, 张亚东, 赵凌, 朱镇, 陈涛,赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题及建议. 中国稻米, 2019, 25, 1-6)。因此,开展水稻耐盐碱新基因挖掘和新种质资源创制,并研究其相关作用机制具有十分重要的理论和现实意义。
盐对植物组织的伤害主要表现在渗透胁迫伤害和离子特异性毒害。当水稻受到盐胁迫后,叶片中的Na+慢慢积累,引起K+/Na+的比例改变和Na+、Cl浓度的改变,最终导致叶片衰老死亡。目前,水稻的耐盐机理研究方面主要集中在渗透胁迫信号途径及相关基因、依赖ABA的信号转导路径及相关基因和离子胁迫信号路径及相关基因等3个方面。其中最典型的是,在水稻中鉴定了与拟南芥的SOS(salt-overly-sensitivity)途径高度同源的SOS1、SOS2和SOS3,通过响应Ca2+和磷酸化修饰来调控K+和Na+的转运(Martinez-Atienza. J.,Jiang, X. Y., Garciadeblas, B., Mendoza, I., Zhu, J., Pardo, J. M., Quintero,F. J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 2007, 143, 1001–1012)。
耐盐种质资源的筛选于1939年始于斯里兰卡,而我国的水稻耐盐碱性研究则始于上世纪50年代,并取得了一定的进展。尽管有许多耐盐碱水稻品种育成,但其主要适应0.3%左右盐分的盐碱地,而耐受更高盐分(如0.6-1.0%)的水稻品种几乎没有。同时,多个水稻耐盐(碱)相关基因相继被克隆和鉴定。尽管水稻耐盐(碱)基因的挖掘和机制研究取得了较大进展,但是可供育种利用的耐盐基因不多。目前在育种上利用的耐盐 QTL 主要是位于水稻第1染色体上的qSKC-1Salto1的2个位点(王才林, 张亚东, 赵凌, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题及建议. 中国稻米, 2019, 25, 1-6)。因此,可供育种利用耐盐基因不多的事实仍困扰着水稻耐盐育种工作者。
广义的类受体激酶包括类受体激酶(receptor-like kinases,RLKs)和类受体胞质激酶(receptor-like cytoplasmic kinases,RLCKs),均由大基因家族构成。其中RLKs在拟南芥和水稻中分别有610和1131个家族成员,而RLCKs在拟南芥和水稻中分别含有200和379个家族成员。RLKs/RLCKs主要负责细胞内信号的转导,在植物生长发育和逆境响应的信号转导及调控通路中起着关键作用。例如,水稻抗稻瘟病基因Pi-d2就是编码一种包含有甘露糖特异的凝集素RLK蛋白(Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G,Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptorkinase gene conferring rice blast resistance. Plant J. 2006, 46: 794-804.)。在RLKs/RLCKs介导的信号转导中,尤其典型的是油菜素内酯(BR)和免疫信号起始的信号通路,通过级联磷酸化进行信号传递,引起相应的BR响应或免疫等生理效应。尽管RLKs/RLCKs在植物的逆境响应中起着重要作用,然而仅有很少一部分的RLKs/RLCKs被发现参与了植物的耐盐性调控。例如,在拟南芥中过表达的OsRLCK253与OsSAP1/11互作,显著提高了转基因植株的抗旱及耐盐性(Giri, J., Vij, S., Dansana, P. K., Tyagi, A. K. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and areceptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger andconfer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol.2011, 191, 721–732)。大豆GsRLCK能改善拟南芥的抗旱和耐盐性(Sun, X., Sun, M.,Luo, X., Ding, X., Ji, W., Cai, H., Bai, X., Liu, X., Zhu, Y. A Glycine sojaABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controlsplant tolerance to salt and drought stresses. Planta, 2013, 237, 1527–1545)。水稻RLCK蛋白GUDK通过磷酸化OsAP37而介导干旱胁迫的信号转导,显著增强了转基因植株的抗旱性(Ramegowda, V., Basu, S., Krishnan, A., Pereira, A. Rice GROWTH UNDERDROUGHT KINASE is required for drought tolerance and grain yield under normaland drought stress conditions. Plant Physiol. 2014, 166, 1634–1645)。相反,水稻RLK蛋白SIT1通过磷酸化MPK3/6来调控乙烯的内稳态而负调控水稻的耐盐性(Li, C.H.,Wang, G., Zhao, J.L., Zhang, L.Q., Ai, L.F., Han, Y.F., Sun, D.Y., Zhang,S.W. , Sun, Y. The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity byActivating MAPK3/6 and Regulating Ethylene Homeostasis in Rice. Plant Cell,2014, 26(6), 2538–2553)。水稻LRR-RLK蛋白LP2受转录因子DST调控,能与水通道蛋白互作,负调控水稻的干旱和盐胁迫耐受性(Wu, F., Sheng, P., Tan, J., Chen, X., Lu,G., Ma, W., Heng, Y., Lin, Q., Zhu, S., Wang J., Wang J., Guo, X., Zhang, X.,Lei, C., Wan, J. Plasma membrane receptor-like kinase leaf panicle 2 actsdownstream of the drought and salt tolerance transcription factor to regulatedrought sensitivity in rice. J. Exp. Bot., 2015, 66(1), 271-281)。
抗坏血酸(AsA)又称维生素C,是一种多羟基化合物,化学式为C6H8O6,具有抗氧化、抗自由基,抑制酪氨酸酶的形成,从而达到美白,淡斑的功效。在人体内,AsA是高效抗氧化剂,用来减轻抗坏血酸过氧化物酶的氧化应激。由于人类、灵长类、土拨鼠等少数动物不能自身合成AsA,必须通过食物、药物等摄取。因此,培育高AsA含量的作物显得非常有价值。另外,高盐胁迫下植物细胞内会产生大量的活性氧(Reactive Oxygen Species;ROS),如过氧化氢(H2O2)等,引起严重的氧化胁迫。过量积累的H2O2可以由过氧化氢酶(CAT)直接分解,或者以AsA作为电子供体,经由抗坏血酸过氧化物酶(APX)还原降解。最近,我们鉴定到的RLCK蛋白STRK1能磷酸化CatC的Tyr210,激活CatC的活性,降解过量的H2O2,提高水稻耐盐性(可耐受1.0% NaCl)(Zhou, Y., Liu, C., Tang, D., Yan, L., Wang, D., Yang, Y., Gui,J., Zhao, X., Li, L., Tang, X., Yu, F., Li, J., Liu, L., Zhu, Y., Lin, J.,Liu, X. Receptor-like cytoplasmic kinase STRK1 phosphorylates and activatesCatC to regulate H2O2 homeostasis and improve salt tolerance in rice. PlantCell, 2018, 30, 1100-1118)。拟南芥的COP9亚基CSN5B能够和AsA合成关键酶VTC1互作,促进VTC1降解,减少AsA合成,提高了植物对盐胁迫的敏感性(Wang, J., Yu, Y., Zhang,Z., Quan, R., Zhang, H., Ma, L., Deng, X.W., Huang, R. Arabidopsis CSN5Binteracts with VTC1 and modulates ascorbic acid synthesis. Plant Cell, 2013,25(2), 625-636)。因此,RLKs/RLCKs可以参与细胞内ROS的内稳态调控,在植物的耐盐性调控中起着重要作用。
尽管RLKs/RLCKs在植物的耐盐性调控中起着关键作用,但是已被鉴定的参与耐盐性调控的RLKs/RLCKs却很少。由此说明,RLKs/RLCKs是水稻耐盐基因挖掘的富矿区,其耐盐性基因的挖掘和鉴定对于耐盐水稻育种具有重要的理论指导和实际应用价值。在前期研究中,我们发现RLCK蛋白LRRK1((leaf rolling receptor-like cytoplasmic kinase1))能够调控水稻叶片泡状细胞的发育,从而调控叶片的卷曲度(Zhou, Y., Wang, D., Wu, T.,Yang, Y., Liu, C., Yan, L., Tang, D., Zhao, X., Zhu, Y., Lin, J., Liu, X.LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling throughmodulating bulliform cell development in rice. Mol. Breeding, 2018, 38, 48)。但该基因的其他功能和用途尚不清楚。
发明内容
本发明进一步研究发现,LRRK1也参与了负调控AsA的合成,负调控水稻的耐盐性。因此,通过生物技术利用LRRK1培育AsA含量和/或耐盐性改良的水稻材料中可能有用,因此通过深入研究和实验最终完成本发明。
本发明提供一种水稻AsA合成和耐盐性的负调控蛋白编码基因LRRK1,该基因通过参与调控AsA的合成而负调控水稻的耐盐性。在NaCl处理条件下,种子萌发期LRRK1过表达植株苗长、根长均低于野生型,幼苗期的存活率、叶绿素和AsA含量均低于野生型。利用CRISPR/Cas9基因编辑系统构建LRRK1敲除株系,经农杆菌介导转化,测序鉴定得到纯合的敲除株系lrrk1。在NaCl处理条件下,敲除株系lrrk1在种子萌发期的苗长、根长均显著高于野生型,幼苗期的存活率、叶绿素和AsA含量也显著高于野生型,说明敲除LRRK1能显著提高水稻的AsA含量和耐盐性,在高AsA含量和耐盐水稻品种培育中具有重要的应用价值。本发明中负调控水稻耐盐性的基因LRRK1为培育耐盐水稻及改善水稻品质方面具有重要的利用价值。
本发明提供一种培育高抗坏血酸含量和/或耐盐水稻品种的方法,其通过基因工程方法将植物中的LRRK1基因进行敲除、沉默或基因过表达,以获得不同AsA含量和/或盐胁迫响应的植株。
具体实施方式中,所述LRRK1基因是编码的氨基酸序列如SEQ ID NO:3所示蛋白的基因,或其来源于水稻的同源基因;优选地,所述LRRK1基因的核苷酸序列如SEQ ID NO:1或SEQ ID NO:2所示,或其同一性95%以上、98%以上或99%以上的来源于水稻的同源基因。
具体地,所述转基因水稻为耐盐性提高。更具体地,所述基因工程方法是基因敲除或RNAi干扰方法使基因沉默,使转基因水稻的AsA含量和/或耐盐性提高。
另外实施方式中,所述转基因水稻对盐胁迫敏感。更具体地,所述基因工程方法是通过转基因方法使得所述LRRK1基因过表达,使转基因水稻AsA含量降低,且对盐胁迫敏感。
本发明还提供一种LRRK1基因在制备AsA含量和耐盐性改良的植株中的应用。
具体实施方式中,所述LRRK1基因编码的氨基酸序列如SEQ ID NO:3所示,或其来源于水稻的同源基因;优选地,所述LRRK1基因的核苷酸序列如SEQ ID NO:1或SEQ ID NO:2所示,或其同一性95%以上、98%以上或99%以上的来源于水稻的同源基因。
优选地,其是通过基因敲除或RNAi 干扰方法使基因沉默,使转基因水稻的AsA含量和/或耐盐性提高,或者通过转基因方法使所述基因过表达,得到AsA含量降低和/或对盐胁迫敏感的转基因水稻。
本发明具有以下有益效果:
LRRK1在水稻AsA合成和盐胁迫响应中发挥重要的作用,负调控水稻AsA合成和耐盐性。通过转基因技术创建LRRK1基因敲除或沉默,以及基因过表达的转基因水稻,转基因植株的AsA含量和耐盐性发生改变,进而培育高AsA含量和耐盐性的转基因植物品种。实验表明,通过CRISPR/Cas9的方法将本发明所述的LRRK1基因敲除,能够显著提高基因敲除水稻株系的AsA含量和耐盐性;LRRK1过表达水稻株系则显著降低AsA含量,并且对盐胁迫敏感。表明通过基因敲除或基因沉默的转基因技术,利用LRRK1基因可以对水稻的营养品质和耐盐性进行遗传改良,在农业应用领域具有广阔的应用前景。
附图说明
图1 LRRK1的基因结构分析。
图2 LRRK1的转录受盐胁迫诱导。
图3 LRRK1的CRISPR/Cas9敲除载体构建及纯合敲除株系鉴定。其中,A.CRISPR/Cas9的pYLCRISPR/Cas9双元载体的结构。B. LRRK1基因的CRISPR/Cas9敲除株系靶点引物设计。C. LRRK1基因的CRISPR/Cas9敲除株编辑区域测序。D. LRRK1基因敲除株与野生型序列比对。
图4 LRRK1过表达株系及敲除株系的盐胁迫表型鉴定。其中,A.140 mM NaCl处理LRRK1过表达株系(LRRK1-21、LRRK1-27)及敲除株系lrrk1-1和野生型(WT)苗期表型。B.140mM NaCl处理LRRK1过表达株系及 WT苗期存活率。 C.140 mM NaCl处理LRRK1过表达株系及WT苗期存活率。D.250 mM NaCl处理LRRK1过表达株系LRRK1-27及WT, 敲除突变株系lrrk1- 1及WT幼苗期表型。 E.250 mM NaCl处理LRRK1过表达株系LRRK1-27及WT, 敲除株系lrrk1- 1及WT苗长。
图5 LRRK1过表达植株及敲除株系的盐胁迫下生理指标分析。A.LRRK1过表达株系(LRRK1-21、LRRK1-27)、敲除株系lrrk1-1及野生型(WT)140 mM NaCl处理0 d及3 d后的叶绿素含量。B. LRRK1过表达株系(LRRK1-21、LRRK1-27)、敲除株系lrrk1-1及野生型(WT)140mM NaCl处理0 d及3 d后的丙二醛(MDA)含量。 C. LRRK1过表达株系(LRRK1-21、LRRK1-27)、敲除株系lrrk1-1及野生型(WT)140 mM NaCl处理0 d及3 d后的抗坏血酸(AsA)含量。数据为3次独立实验获得类似结果,统计学差异利用t-test分析。
图6盐胁迫对LRRK1过表达和敲除株系中ROS和AsA含量的影响。其中,A.活性氧荧光探针DCFH-DA检测野生型、LRRK1过表达及敲除株系根中ROS积累。B-D. 盐处理与正常状况下野生型、LRRK1过表达及敲除株系中H2O2(B)、O2 -(C)及AsA(D)含量测定。
具体实施方式
下面结合具体实施例对本发明做进一步说明,下述实施例中提到的实验方法如无特别说明均为常规方法。
1. LRRK1基因结构及盐胁迫响应分析
从水稻数据库(http://rice.plantbiology.msu.edu)中下载LRRK1(LOC_Os06g07070)的编码序列,通过比较日本晴的LRRK1的cDNA及其基因组DNA序列,发现LRRK1共有4个外显子(SEQ ID No:1的 5’端起:183-253,987-1131,1626-1888,2011-2635),3个内含子(SEQ ID No:1的 5’端起:254-986,1132-1625,1889-2010);其基因组全长为3000bp(SEQ ID No:1),cDNA全长为1104 bp(SEQ ID No:2),其开放阅读框架为SEQ ID No:2自5’端第1至1104位点共有1104个碱基;该基因编码蛋白长度为367个氨基酸(图1)。
将日本晴幼苗以140mM NaCl分别处理0、1、2、4、6、8、10、12、24、36和48h,然后提取RNA,并逆转录为cDNA。以cDNA为模板进行荧光定量RT-PCR(qRT-PCR)分析LRRK1的转录水平变化。qRT-PCR引物为F:5’-CCTCCTTCCAAAGATTCCTTCT-3’;R:5’-CAATGAAAACACCCACCTCAAC-3’。 qRT-PCR结果发现,LRRK1的mRNA表达量随NaCl处理时间延长而升高(图2),说明LRRK1的转录受盐胁迫的诱导。
2. LRRK1过表达株系的构建
采用引物设计软件Primer Premier 5设计扩增LRRK1全长的特异性正向引物LRRK1-F: 5’- ATGCACCCGAAGCTGTCG- 3’和反向引物:5’-TGCCGCTGCCAATTCTTG-3’。以日本晴(Oryza sativa L. japonica cv. Nipponbare)的cDNA为模板,PCR方法克隆得到全长LRRK1基因。通过同源重组的方法将LRRK1基因克隆到GATEWAY入门载体PGWC中并测序。测序正确后将其通过LR反应重组到改造后的pCAMBIA1301GW载体中。改造后的pCAMBIA1301GW载体含有潮霉素抗性筛选基因HPT和红色荧光蛋白筛选标记基因AsRed,目标基因LRRK1由玉米的泛素基因Ubiquitin启动子(pUbi)驱动过表达,且LRRK1的N端融合有标签蛋白Flag。通过农杆菌介导转化,侵染Kitaake(Oryza sativa L. japonica cv. Kitaake)愈伤组织,经筛选、分化、生根和炼苗后得到再生植株,再经鉴定后得到阳性LRRK1过表达株系Ubi::LRRK1-21和 Ubi::LRRK1-27
3.通过CRISPR/Cas9技术构建LRRK1敲除株系
构建LRRK1基因敲除株系CRISPR/Cas9载体分为两步,即sgRNA表达盒的构建及通过边切边连,将sgRNA表达盒克隆到pYLCRISPR/Cas9载体上。经靶点双链接头的制备,靶点接头连接扩增,两轮PCR反应后构建sgRNA表达盒,再通过边切边连,将sgRNA表达盒克隆到pYLCRISPR/Cas9载体上。CRISPR/Cas9载体骨架及编辑位点设计引物如图3A和B。利用pYLCRISPR/Cas9双元载体构建LRRK1的CRISPR/Cas9敲除株系。对LRRK1在可读框(openreading frame, ORF)5′区设计CRISPR/Cas9编辑靶点利用pYLCRISPR/Cas9双元载体(图3A)构建LRRK1的CRISPR/Cas9敲除株系。对LRRK1在ORF 5′区设计CRISPR/Cas9编辑靶点(图3B),CRISPR/Cas9系统靶点引物在CRISPR-GE网页进行靶点设计,根据靶点位置、GC含量、潜在脱靶位置以及估值等,选择GC碱基含量较低(45%-70%之间脱靶效率较低)且符合要求的靶点引物。将构建成功的表达盒子连入pYLCRISPR/Cas9双元载体,并转入农杆菌EHA105中,经农杆菌介导侵染转化水稻Kitaake愈伤组织,获得敲除株系的T0代幼苗。提取各敲除株系叶片的DNA,对包含编辑位点的一段区域进行PCR扩增,通过与野生型的序列比鉴定LRRK1编辑靶位点的编辑情况。在T1代鉴定到1种编辑方式为缺失碱基GCGC的纯合LRRK1敲除株系,并命名为lrrk1-1(图3C和D)。
4. LRRK1过表达植株及CRISPR/Cas9敲除株系的盐胁迫表型鉴定
LRRK1过表达株系、CRISPR/Cas9敲除株系和野生型(Kitaake)的15 d幼苗经140mM NaCl分别处理4 d和6 d,发现与野生型(WT)相比,LRRK1过表达株系LRRK1-21LRRK1- 27表现出对盐胁迫敏感的表型,而敲除株系lrrk1-1表现出明显的对盐胁迫的耐受性(图4A)。再经正常水培恢复5 d后统计存活率可知,过表达株系LRRK1-21LRRK1-27的存活率显著低于野生型(图4A和B),而敲除株系lrrk1-1的存活率显著高于野生型,表现出较高的耐盐性(图4A和C)。以250 mM NaCl处理刚萌发露白的水稻种子5 d,然后观察幼苗材料在盐胁迫条件下的表型。在正常生长条件下,野生型与所有转基因材料的幼苗生长没有明显差异;250 mM NaCl处理条件下,与野生型相比,过表达株系LRRK1-21LRRK1-27的生长被显著抑制,苗长显著降低,而敲除株系lrrk1-1的苗长显著升高,表现出对盐胁迫较高的耐受性(图4D和E)。因此,在苗期的盐胁迫条件下,LRRK1过表达株系表现为盐敏感的表型,而敲除株系则表现为较高的耐盐性,说明LRRK1负调控水稻的耐盐性。
5.LRRK1过表达植株及CRISPR/Cas9敲除株系在盐胁迫下的生理指标分析
为了进一步验证LRRK1负调控水稻耐盐性,将LRRK1过表达株系、CRISPR/Cas9敲除株系和野生型(WT)幼苗用140 mM NaCl处理0和3 d,然后测定其叶绿素(chlorophyll)、丙二醛(MDA)和相对离子渗透率。叶绿素的测定采用紫外分光光度法,其检测结果发现未处理组(0 d),LRRK1过表达株系、敲除株系和野生型(WT)间的叶绿素含量的差异不明显;盐处理3 d后,LRRK1过表达株系LRRK1-21LRRK1-27的叶绿素含量显著低于WT,而敲除株系lrrk1-1的叶绿素含量则显著高于WT(图5A)。MDA是细胞膜脂质过氧化的产物之一,MDA 的积累能进一步加剧膜的损伤,影响质膜的完整性及正常的生理功能。因此,MDA含量经常被用作评价植物在逆境胁迫下受到损伤的程度。MDA检测结果发现,盐胁迫条件下,LRRK1过表达株系LRRK1-21LRRK1-27的MDA含量显著高于野生型,而敲除株系lrrk1-1则显著低于野生型;未经盐处理时(0 d),各基因型间的MDA含量没有明显差异(图5B)。相对离子渗漏率可直接反应植物细胞膜的完整性,其结果发现,盐胁迫条件下,LRRK1过表达株系LRRK1-21LRRK1-27的相对离子渗漏率显著高于野生型,而敲除株系lrrk1-1则显著低于野生型;未经盐处理时(0 d),各基因型间的相对离子渗漏率没有明显差异(图5C)。这些生理指标的检测结果表明,过表达LRRK1显著降低了盐胁迫条件下水稻的活力,更易受盐胁迫损伤,而敲除LRRK1则能显著改善水稻的耐盐性,降低水稻受盐胁迫的损伤。该结果也进一步证明,LRRK1负调控水稻的耐盐性。
6. 盐胁迫下LRRK1促进水稻体内活性氧(ROS)积累和抗坏血酸(AsA)含量下降
植物受到非生物胁迫后,ROS的爆发是一个标志事件。采用ROS荧光探针DCFH-DA检测发现,正常条件下,野生型及LRRK1转基因株系中的ROS荧光信号强度没有显著差别;盐胁迫处理后,LRRK1过量表达株系中ROS荧光信号强度显著高于野生型,而其敲除株系lrrk1-1的ROS荧光信号强度则显著低于野生型(图6A)。对ROS中最稳定的H2O2进行测定发现,正常条件下,野生型及LRRK1转基因株系中的H2O2含量没有显著差别;盐胁迫处理后,LRRK1过量表达株系中H2O2的含量高于野生型,而其敲除株系lrrk1-1则低于野生型(图6B)。对于超氧阴离子(O2·-)含量的测定结果与H2O2含量测定结果的趋势一致(图6C)。AsA是植物体内清除ROS的重要的抗氧化剂之一,在ROS 的清除机制中发挥着重要的作用。为了探究LRRK1对水稻体内AsA的影响,我们对LRRK1转基因株系在盐胁迫下的AsA含量进行测定。结果发现,在正常生长条件下,LRRK1过表达株系和敲除株系lrrk1-1的AsA含量与野生型的无显著差异;经过盐胁迫处理之后,lrrk1-1的AsA含量显著高于野生型,而过表达株系显著低于野生型(图6D)。该结果说明,LRRK1通过负调控AsA的生物合成,影响体内ROS的清楚能力,从而参与水稻的盐胁迫响应。
<110>湖南大学
<120>LRRK1基因调控水稻抗坏血酸含量和耐盐性的应用
<130>
<160> 3
<210> 1
<211> 3000
<212> DNA
<213>水稻属水稻(Oryza sativa L.)
<400> 1
aagctgcgag gctgttctcc gctgtgacgt ctcgtctctt cctcctcctc aggaagtcca 60
gcgagtccac ctccctctcc tgctccacca ccaccacctc ctccttccaa agattccttc 120
tcttcttctt cgtttcaggc gctgcgcgtc tgcgggattt ggggagggga gcggcggcgg 180
agatgcaccc gaagctgtcg cggttcgcgc acagggtgct ctgctgcggg aggaaaggct 240
ccggggagga tttgtaagga tttcttcttc tttctttttg ttttttactc ttgactgctt 300
gttcttgtgt tcttggggct tgttgggttc gtggttgtgg gagcgcgggg ggtttggcgt 360
gattcgtggt ggaggatttg ggaattctcc ccgattttgt gcgctggtct atcgattctt 420
atcctgggtg ggtttggttt agtttggtta gatgagacgg gatgaaacct agaggctaga 480
gatgatgtgc agtctggttg ctccagtgat tgggtactgg aagttgtctg tttggtactg 540
aatttgatag gaaaaacgat aaatcttggt ttagttttgg aacaattctg taaaggtagt 600
ggttttatag cagtgtaact agtggaattt ttggggaaac agagacagtc tactgtttta 660
gactgtcgaa atgtgtgatg ttcagtatgg aattcctttt gtagctctca tatatgctgt 720
tttcgaatcc ttttgtgtga ataatcgatt ttacaaagtg aatgaaaatg aaatatgctc 780
cgataatact gtaggattaa atgctatggt aatttggcat ggtagttttc tttttgatgc 840
atcatcagga tgtgtcagtc aattcgagtg ggtaccatat cagttgaagg gaaagaaata 900
gtttgaattg ttactttacc taaccgtggt gctaaaacgt ggtagactgg tatctcatat 960
tctgtttcat ggcttcgatt taacaggagt gatgagggga gcggatcgtt gaggtgggtg 1020
ttttcattgc gggagcttcg gtcagctaca aatagcttca actatgataa caagattgga 1080
gaaggaccat tcggaagtgt ctattgggga caagtttggg atggttctca ggtttctatt 1140
cttgacatct cagtcgattt gatctacatg tcatgtcaag aaatagaatt tcaactgtct 1200
cctttagata tcttgctttg tagttggccc agccaggaat catcattaat ttgcagcgtt 1260
ggaaaatctt attgatagct gtctcactaa gtaaccaaac aactatcagc tagaattttt 1320
tattcggttg cagagcattg atctttgatt gcattatcat taagtaggta ggatatgttg 1380
tcataggcag gtcaacttag acaaaatttg gaagatggac tggctacagg tttgcagatc 1440
tgtatcttgt acaataaaag aaggctcaac atattccctg tcatggctgc aactaagttg 1500
tatgtctttt aaaaggactg ttaaccgtaa cctaccacaa ttttgtagca gtttgcccgt 1560
ctgaagattc ttcttctata acaaggtttc ttgattattt caattgctaa tgttttttta 1620
tacagattgc tgttaagaag ttgaagtgcg caaagaatgg gacagaaaca gaatttgctt 1680
cagatgttga aattctggga agagtgaggc acaaaaacct cttgagtttc cgtggatatt 1740
gtgctgatgg acctgaacgc gttctggtgt atgacttcat gccaaattca agtctttatg 1800
cacatctgca cggaacacat tctacagagt gccttcttga ctggcggagg agaacattta 1860
ttgcaattgg tgctgctcga gctctagcgt tagtaaaaga aacctcatct ttgttcatta 1920
ctgcacagca tacataatct ctgcttctca gtttctctcc ttctggtaag ctgtcacaga 1980
agaaactcac tcatatgagc ttctccacag gtatcttcac caccacgcaa caccccagat 2040
aatccatggg agcgtcaagg ctactaatgt gctactcgat tcaaatttcc aggcacatct 2100
tggtgacttt ggtctgataa ggttcatccc agatggggtg gatcatgata agataatcag 2160
tgaaaaccaa cgtggctatc ttgctcctga gtacattatg tttggcaaac ctacaatagg 2220
ttgtgatgtc tacagctttg gcataatact gttggagcta tctagtggga gaagaccagt 2280
ggaaaggtcg ggctctgcca aaatgtgtgg ggttcgaaac tgggtgctcc ctttggcaaa 2340
agatggcaga tacgatgaaa ttgtggactc caaactcaat gataagtatt ctgaatctga 2400
actaaaaaga gtagtgttgg ttggtctggc ttgcacacac agagaacctg aaaagagacc 2460
gacaatgctc gaagttgtat cgatgctgaa aggtgaatct aaagagatgc tttccaggct 2520
tgaaaatgat gaattgttca ggccagactc gacggtgagt tcccatggaa tgtcaacacc 2580
agaggggagc tcggactgtg tgcccaagaa tgatcaagaa ttggcagcgg catgatggat 2640
tagtacccta ggaaatgtag agtcgcattt tttttgtggg attggtgctt ggtctgcttg 2700
gtttggcatg attcaaatgt acaggcattg tcatttgtga aggtttctcc tctttttgga 2760
gagaggaaat tagatgaatg atgagttagc agttatacat ggtgcttttt ttggcaaaga 2820
attattatac atggtgcttt ttgtgtgcac tggatagaag atccatatac ttggcctgat 2880
gtttgggtat gattggtcat gttgtcatat aaattattct ttaatgctga tatctggatg 2940
attgaattgt gtttgtatct tatgattgaa acttctgcac aacacaggag taaatactgc 3000
<210> 2
<211> 1104
<212>DNA
<213>水稻属水稻(Oryza sativa L.)
<400> 2
atgcacccga agctgtcgcg gttcgcgcac agggtgctct gctgcgggag gaaaggctcc 60
ggggaggatt tgagtgatga ggggagcgga tcgttgaggt gggtgttttc attgcgggag 120
cttcggtcag ctacaaatag cttcaactat gataacaaga ttggagaagg accattcgga 180
agtgtctatt ggggacaagt ttgggatggt tctcagattg ctgttaagaa gttgaagtgc 240
gcaaagaatg ggacagaaac agaatttgct tcagatgttg aaattctggg aagagtgagg 300
cacaaaaacc tcttgagttt ccgtggatat tgtgctgatg gacctgaacg cgttctggtg 360
tatgacttca tgccaaattc aagtctttat gcacatctgc acggaacaca ttctacagag 420
tgccttcttg actggcggag gagaacattt attgcaattg gtgctgctcg agctctagcg 480
tatcttcacc accacgcaac accccagata atccatggga gcgtcaaggc tactaatgtg 540
ctactcgatt caaatttcca ggcacatctt ggtgactttg gtctgataag gttcatccca 600
gatggggtgg atcatgataa gataatcagt gaaaaccaac gtggctatct tgctcctgag 660
tacattatgt ttggcaaacc tacaataggt tgtgatgtct acagctttgg cataatactg 720
ttggagctat ctagtgggag aagaccagtg gaaaggtcgg gctctgccaa aatgtgtggg 780
gttcgaaact gggtgctccc tttggcaaaa gatggcagat acgatgaaat tgtggactcc 840
aaactcaatg ataagtattc tgaatctgaa ctaaaaagag tagtgttggt tggtctggct 900
tgcacacaca gagaacctga aaagagaccg acaatgctcg aagttgtatc gatgctgaaa 960
ggtgaatcta aagagatgct ttccaggctt gaaaatgatg aattgttcag gccagactcg 1020
acggtgagtt cccatggaat gtcaacacca gaggggagct cggactgtgt gcccaagaat 1080
gatcaagaat tggcagcggc atga 1104
<210> 3
<211> 367
<212> PRT
<213>水稻属水稻(Oryza sativa L.)
<400> 3
Met His Pro Lys Leu Ser Arg Phe Ala His Arg Val Leu Cys Cys Gly
1 5 10 15
Arg Lys Gly Ser Gly Glu Asp Leu Ser Asp Glu Gly Ser Gly Ser Leu
20 25 30
Arg Trp Val Phe Ser Leu Arg Glu Leu Arg Ser Ala Thr Asn Ser Phe
35 40 45
Asn Tyr Asp Asn Lys Ile Gly Glu Gly Pro Phe Gly Ser Val Tyr Trp
50 55 60
Gly Gln Val Trp Asp Gly Ser Gln Ile Ala Val Lys Lys Leu Lys Cys
65 70 75 80
Ala Lys Asn Gly Thr Glu Thr Glu Phe Ala Ser Asp Val Glu Ile Leu
85 90 95
Gly Arg Val Arg His Lys Asn Leu Leu Ser Phe Arg Gly Tyr Cys Ala
100 105 110
Asp Gly Pro Glu Arg Val Leu Val Tyr Asp Phe Met Pro Asn Ser Ser
115 120 125
Leu Tyr Ala His Leu His Gly Thr His Ser Thr Glu Cys Leu Leu Asp
130 135 140
Trp Arg Arg Arg Thr Phe Ile Ala Ile Gly Ala Ala Arg Ala Leu Ala
145 150 155 160
Tyr Leu His His His Ala Thr Pro Gln Ile Ile His Gly Ser Val Lys
165 170 175
Ala Thr Asn Val Leu Leu Asp Ser Asn Phe Gln Ala His Leu Gly Asp
180 185 190
Phe Gly Leu Ile Arg Phe Ile Pro Asp Gly Val Asp His Asp Lys Ile
195 200 205
Ile Ser Glu Asn Gln Arg Gly Tyr Leu Ala Pro Glu Tyr Ile Met Phe
210 215 220
Gly Lys Pro Thr Ile Gly Cys Asp Val Tyr Ser Phe Gly Ile Ile Leu
225 230 235 240
Leu Glu Leu Ser Ser Gly Arg Arg Pro Val Glu Arg Ser Gly Ser Ala
245 250 255
Lys Met Cys Gly Val Arg Asn Trp Val Leu Pro Leu Ala Lys Asp Gly
260 265 270
Arg Tyr Asp Glu Ile Val Asp Ser Lys Leu Asn Asp Lys Tyr Ser Glu
275 280 285
Ser Glu Leu Lys Arg Val Val Leu Val Gly Leu Ala Cys Thr His Arg
290 295 300
Glu Pro Glu Lys Arg Pro Thr Met Leu Glu Val Val Ser Met Leu Lys
305 310 315 320
Gly Glu Ser Lys Glu Met Leu Ser Arg Leu Glu Asn Asp Glu Leu Phe
325 330 335
Arg Pro Asp Ser Thr Val Ser Ser His Gly Met Ser Thr Pro Glu Gly
340 345 350
Ser Ser Asp Cys Val Pro Lys Asn Asp Gln Glu Leu Ala Ala Ala
355 360 365

Claims (9)

1.一种培育高抗坏血酸含量和/或耐盐水稻品种的方法,其特征在于,通过基因工程方法将植物中的LRRK1基因进行敲除、沉默或基因过表达,以获得不同AsA含量和/或盐胁迫响应的植株。
2.如权利要求1 所述的方法,其特征在于,所述LRRK1基因是编码的氨基酸序列如SEQID NO:3所示蛋白的基因,或其来源于水稻的同源基因;优选地,所述LRRK1基因的核苷酸序列如SEQ ID NO:1或SEQ ID NO:2所示,或其同一性95%以上、98%以上或99%以上的来源于水稻的同源基因。
3.如权利要求1 或2所述的方法,所述转基因水稻为耐盐性提高。
4.如权利要求3所述的方法,其特征在于,所述基因工程方法是基因敲除或RNAi干扰方法使基因沉默,使转基因水稻的AsA含量和/或耐盐性提高。
5.如权利要求1 或2所述的方法,所述转基因水稻对盐胁迫敏感。
6.如权利要求5 所述的方法,其特征在于,所述基因工程方法是通过转基因方法使得所述LRRK1基因过表达,使转基因水稻AsA含量降低,且对盐胁迫敏感。
7.一种LRRK1基因在制备AsA含量和耐盐性改良的植株中的应用。
8.如权利要求7 所述的应用,其特征在于,所述LRRK1基因编码的氨基酸序列如SEQ IDNO:3所示,或其来源于水稻的同源基因;优选地,所述LRRK1基因的核苷酸序列如SEQ IDNO:1或SEQ ID NO:2所示,或其同一性95%以上、98%以上或99%以上的来源于水稻的同源基因。
9.如权利要求8 所述的应用,其是通过基因敲除或RNAi 干扰方法使基因沉默,使转基因水稻的AsA含量和/或耐盐性提高,或者通过转基因方法使所述基因过表达,得到AsA含量降低和/或对盐胁迫敏感的转基因水稻。
CN202210622121.4A 2022-06-01 2022-06-01 Lrrk1基因调控水稻抗坏血酸含量和耐盐性的应用 Active CN115044605B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210622121.4A CN115044605B (zh) 2022-06-01 2022-06-01 Lrrk1基因调控水稻抗坏血酸含量和耐盐性的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210622121.4A CN115044605B (zh) 2022-06-01 2022-06-01 Lrrk1基因调控水稻抗坏血酸含量和耐盐性的应用

Publications (2)

Publication Number Publication Date
CN115044605A true CN115044605A (zh) 2022-09-13
CN115044605B CN115044605B (zh) 2023-09-05

Family

ID=83159117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210622121.4A Active CN115044605B (zh) 2022-06-01 2022-06-01 Lrrk1基因调控水稻抗坏血酸含量和耐盐性的应用

Country Status (1)

Country Link
CN (1) CN115044605B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064587A (zh) * 2022-11-09 2023-05-05 广西大学 一种水稻耐盐相关的OsWRKY18基因及在调控耐盐胁迫中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186108A1 (en) * 2007-03-12 2010-07-22 Huazhong Agricultural University Improving Cold- and Salt-tolerant Performance of Plants with Transcription Factor Gene SNAC2 from Rice
CN107903311A (zh) * 2017-09-22 2018-04-13 湖南大学 水稻卷叶控制基因lrrk1及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096681A (zh) * 2007-06-01 2008-01-02 华中农业大学 利用水稻蛋白激酶基因OsCIPK15提高植物耐盐能力
CN111876394A (zh) * 2020-07-01 2020-11-03 华南农业大学 抗坏血酸氧化酶rip5在调控水稻抗旱性中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186108A1 (en) * 2007-03-12 2010-07-22 Huazhong Agricultural University Improving Cold- and Salt-tolerant Performance of Plants with Transcription Factor Gene SNAC2 from Rice
CN107903311A (zh) * 2017-09-22 2018-04-13 湖南大学 水稻卷叶控制基因lrrk1及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XU WEI等: "NDW, encoding a receptor-like protein kinase, regulates plant growth, cold tolerance and susceptibility to Botrytis cinerea in tomato", PLANT SCIENCE, vol. 301, pages 1 - 11 *
周延彪: "水稻类受体胞质激酶STRK1调节盐胁迫的分子遗传及生化分析", 博士电子期刊库, vol. 02, pages 1 - 115 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064587A (zh) * 2022-11-09 2023-05-05 广西大学 一种水稻耐盐相关的OsWRKY18基因及在调控耐盐胁迫中的应用

Also Published As

Publication number Publication date
CN115044605B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
Yue et al. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio
US8338661B2 (en) Transgenic plants with increased stress tolerance and yield
CN102260703B (zh) 提高植物非生物胁迫耐受性和/或生物量的方法以及因此产生的植物
CN100554406C (zh) 增加植物胁迫耐性的方法
US20100333234A1 (en) Transgenic Plants with Increased Stress Tolerance and Yield
Wijewardene et al. Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA
Wang et al. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots
Ghneim-Herrera et al. Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage
US20130139281A1 (en) Transgenic Plants with Increased Stress Tolerance and Yield
Guo et al. A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.)
CN115433722A (zh) 调控水稻耐盐性的类受体蛋白激酶strk2蛋白、基因及应用
Sun et al. Functional characterization of an Arabidopsis prolyl aminopeptidase AtPAP1 in response to salt and drought stresses
Jin et al. Expression of the rgMT gene, encoding for a rice metallothionein-like protein in Saccharomyces cerevisiae and Arabidopsis thaliana
Li et al. Overexpression of an ABA-inducible homeodomain-leucine zipper I gene MsHB7 confers salt stress sensitivity to alfalfa
Wu et al. Identification and characterisation of monovalent cation/proton antiporters (CPAs) in Phyllostachys edulis and the functional analysis of PheNHX2 in Arabidopsis thaliana
CN115044605B (zh) Lrrk1基因调控水稻抗坏血酸含量和耐盐性的应用
CN110184253B (zh) 中间锦鸡儿CiCPK32基因在调控植物抗逆性的应用
Tamirisa et al. Ectopic expression of pigeonpea cold and drought regulatory protein (CcCDR) in yeast and tobacco affords multiple abiotic stress tolerance
CN114686488A (zh) 水稻耐盐胁迫基因OsAGL16及其编码蛋白的应用
CN114805514B (zh) 二色补血草基因Lb1G04202及其应用
Tiwari et al. DUF4057 containing express-protein negatively regulates the drought responses in rice
US20140230099A1 (en) Transgenic Plants With Increased Stress Tolerance and Yield
Luo et al. A Brachypodium distachyon calcineurin B-like protein-interacting protein kinase, BdCIPK26, enhances plant adaption to drought and high salinity stress.
Zhao et al. Xiaoli Sun, Feifei Wang, Hua Cai
AU2013202535A1 (en) Transgenic plants with increased stress tolerance and yield

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant