CN115029654B - 一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法 - Google Patents

一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法 Download PDF

Info

Publication number
CN115029654B
CN115029654B CN202111666770.6A CN202111666770A CN115029654B CN 115029654 B CN115029654 B CN 115029654B CN 202111666770 A CN202111666770 A CN 202111666770A CN 115029654 B CN115029654 B CN 115029654B
Authority
CN
China
Prior art keywords
layer
alloy
protective sleeve
ceramic
thermocouple protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111666770.6A
Other languages
English (en)
Other versions
CN115029654A (zh
Inventor
冯晶
谷仓
李超
利建雨
汪俊
荣菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111666770.6A priority Critical patent/CN115029654B/zh
Publication of CN115029654A publication Critical patent/CN115029654A/zh
Application granted granted Critical
Publication of CN115029654B publication Critical patent/CN115029654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,属于金属材料防护技术领域;通过将具有合适粗糙度的合金基热电偶保护套表面沉积一层厚度为80μm‑100μm的粘结层;在粘结层表面沉积一层厚度为50‑200μm的抗氧化、抗腐蚀金属层;在金属层表面沉积一层厚度为50‑200μm的低热导率和高热膨胀的陶瓷层;在低热导率和高热膨胀的陶瓷层表面依次重复沉积金属层和陶瓷层一次或多次,即构造成厚度为100‑1000μm的金属层和陶瓷层依次交替分布的2~14层复合涂层。本发明制备的多梯度功能涂层能够有效地提高合金基体的抗腐蚀性能,提高材料在高温下的力学性能、化学稳定性和力学性能,显著延长高温工作时间,极大提高了热电偶保护套的适用性。

Description

一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备 方法
技术领域
本发明涉及金属材料防护技术领域,具体涉及一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法。
背景技术
工业用热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。可以直接测量各种生产中从0℃到1800℃范围的液体蒸汽和气体介质以及固体的表面温度。热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种无源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。
但是在某些高温高腐蚀的环境中,如铜冶炼中,高温SO2,SO3.H2O混合蒸汽能在段时间内腐蚀掉热电偶的感温原件,导致热电偶失效,以及在其他各种高温高腐蚀环境中热电偶无法直接使用。现有的热电偶保护套,如镍基,铬铝合金和钛合金保护套,能够在1300度以上长期工作,但对腐蚀蒸汽耐受性差,容易失效。因此设计一种超高耐腐蚀耐高温的热电偶保护套成为迫切需求。
发明内容
本发明的目的在于提供一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,通过在合金基体上沉积粘结层后,交替喷涂金属层和陶瓷层,制备出多梯度功能涂层;该种保护套具有抗高温氧化,抗高温腐蚀,抗腐蚀烟气的特性,能够在超过1300度,高浓度SO2、SO3、H20混合蒸汽的极限环境中长时间工作,保护热电偶不损坏,同时根据需求可调节镀膜层数,控制成本。
为了实现上述目的,本发明采用如下技术方案:一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,其特征在于,包括以下步骤:
S1:制备合金基热电偶保护套,将干净的合金基热电偶保护套表面进行喷砂或打磨处理,获得表面具有合适粗糙度的合金基热电偶保护套;
S2:在步骤S1中具有合适粗糙度的合金基热电偶保护套表面沉积一层厚度为80μm-100μm的粘结层;
S3:在步骤S2中的粘结层表面沉积一层厚度为50-200μm的抗氧化、抗腐蚀金属层;
S4:在步骤S3中的金属层表面沉积一层厚度为50-200μm的低热导率和高热膨胀的陶瓷层;
S5:在步骤S4中低热导率和高热膨胀的陶瓷层表面依次重复步骤S3和步骤S4一次或多次,即构造成厚度为100-1000μm的金属层和陶瓷层依次交替分布的2~14层复合涂层。
优选地,步骤S1中所述合金基热电偶保护套由Ti合金、Ni合金、Co合金中的一种或两种制成。
优选地,步骤S2中所述粘结层由MCrAlY制成。
优选地,所述粘结层的沉积方法优选为超音速火焰喷涂法或超音速电弧喷涂法。
优选地,步骤S3中所述抗氧化、抗腐蚀金属层由Al、Ni、Cu、Cr、Ti、Ta、W、Au中的一种制成。
优选地,步骤S4中所述低热导率和高热膨胀的陶瓷层由Al2O3、YSZ、SiC、Y3Al5O3、RE2ZrO7、RETaO4、LaMgAlO4中的一种制成。
优选地,所述抗氧化、抗腐蚀金属层及低热导率和高热膨胀的陶瓷层的沉积方法均优选为超音速火焰喷涂法、等离子喷涂-物理气相沉积法或电子束物理气相沉积法。
综上所述,相比于现有技术,本发明的有益效果在于:
1、本发明所制备的合金基体具有较好的硬度、良好的韧性、良好的高温相稳定性和抗腐蚀性等优良性质。
2、本发明在在合金基体上沉积粘结层后制备的多层金属陶瓷复合涂层,可根据实际使用情况调节镀膜层数,根据使用场景,调节金属层和陶瓷层的组成和层数,可以充分平衡生产成本和对抗腐蚀抗高温性能要求的矛盾。
3本发明的陶瓷层不仅具有其本身很强的抗腐蚀性能,还具有很高的氧离子导电率,使得氧原子透过速率快;当陶瓷层内层的金属层被氧化,导致被氧化的金属层和外层陶瓷层一起剥落,第二层陶瓷层露出;继续上述行为,陶瓷层和金属层每两层逐层剥落,都保持陶瓷层在外,金属层在内的结构,极大的延长了涂层的失效时间,同时不同成分陶瓷层可以针对不同的酸碱进行有效的抗腐蚀,提高了在复杂酸碱环境中的适用性。
附图说明:
图1为本发明的实施例4中14层金属陶瓷镀层结构图;
图2为本发明的实施例4中14层金属陶瓷镀层保护的合金基热电偶保护套在浓硫酸中的质量变化图。
具体实施方式
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本具体实施方式提供一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,通过在Ni合金基体上沉积MCrAlY合金粘结层,在MCrAlY合金粘结层上依次沉积Ti金属层和YSZ陶瓷层,获得2层复合涂层。
制备方法包括以下步骤:
S1:制备Ni合金基体热电偶保护套:
将真空熔炼炉经过高纯氩气反复冲洗3次后避免高温过程中杂质元素引入,熔炼前保证真空优于1.0E-4Pa;称取Ni粉末100g,将Ni粉放入坩埚后置于真空熔炼炉中,将真空熔炼炉里面的压强抽到20Pa以下,打开电源,以20KW的功率使真空熔炼炉缓慢加热,30min后将功率增大到50KW,电流为200~220A,在熔炼过程中氩气气流量为0.05MPa,此时,真空炉迅速升温至1750℃,加热过程持续1小时。
待坩埚里面的Ni粉全部熔化成液体,将真空熔炼炉的功率降到10KW;经过0.5h后,关闭电源;待炉温降到50℃以下时,打开真空熔炼炉炉盖,取坩埚中熔炼的合金,即得到本发明所述Ni合金基体。
将Ni合金基体表面的油污和杂质除去,获得干净的基体表面;将干净的Ni合金基体表面采用表面喷砂或砂纸打磨(以便于强化基体表面,获得合适的粗糙度,以便于与涂层进行有效的物理和化学结合,提高涂层与基体的结合强度),获得表面具有合适粗糙度的Ni合金基体。
S2:利用超音速火焰喷涂法在Ni合金基体表面沉积一层MCrAlY合金粘结层,粘结层总厚度为80μm。
S3:利用超音速火焰喷涂法在粘结层面沉积一层厚度为100μm的金属Ti构成具有抗氧化、抗腐蚀的金属层。
S4:利用超音速火焰喷涂法在金属层的表面沉积一层YSZ陶瓷,构成具有低热导率和高热膨胀的陶瓷涂层,陶瓷涂层的厚度为100μm。
实施例2
本具体实施方式提供一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,通过在Ti合金基体上沉积MCrAlY合金粘结层,在MCrAlY合金粘结层上依次沉积Ta金属层和RETaO4陶瓷层,获得2层复合涂层。
S1:制备Ti合金基体热电偶保护套:
将真空熔炼炉经过高纯氩气反复冲洗3次后避免高温过程中杂质元素引入,熔炼前保证真空优于1.0E-4Pa;称取Ti粉末100g,将Ti粉放入坩埚后置于真空熔炼炉中,将真空熔炼炉里面的压强抽到20Pa以下,打开电源,以15KW的功率使真空熔炼炉缓慢加热,40min后将功率增大到50KW,电流为200~220A,在熔炼过程中氩气气流量为0.05MPa,此时,真空炉迅速升温至1700℃,加热过程持续1小时。
待坩埚里面的Ti粉全部熔化成液体,将真空熔炼炉的功率降到10KW;经过0.5h后,关闭电源;待炉温降到50℃以下时,打开真空熔炼炉炉盖,取坩埚中熔炼的合金,即得到本发明所述Ti合金基体。
将Ti合金基体表面的油污和杂质除去,获得干净的基体表面;将干净的Ti合金基体表面采用表面喷砂或砂纸打磨(以便于强化基体表面,获得合适的粗糙度,以便于与涂层进行有效的物理和化学结合,提高涂层与基体的结合强度),获得表面具有合适粗糙度的Ti合金基体。
S2:利用超音速电弧喷涂法在Ti合金基体表面沉积一层MCrAlY合金粘结层,粘结层总厚度为90μm。
S3:利用电子束物理气相沉积法在粘结层面沉积一层厚度为200μm的金属Ta构成具有抗氧化、抗腐蚀的金属层。
S4:利用超音速火焰喷涂法在金属层的表面沉积一层RETaO4陶瓷,构成具有低热导率和高热膨胀的陶瓷涂层,陶瓷涂层的厚度为200μm。
实施例3
本具体实施方式提供一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,通过在镍钴合金基体上沉积MCrAlY合金粘结层,在MCrAlY合金粘结层上依次沉积Ti金属层和YSZ陶瓷层,获得2层复合涂层。
制备方法包括以下步骤:
S1:制备镍钴合金基体热电偶保护套:
将真空熔炼炉经过高纯氩气反复冲洗3次后避免高温过程中杂质元素引入,熔炼前保证真空优于1.0E-4Pa;称取Ni粉末49.88g,Co粉末50.12g,将Ni粉和Co粉放入坩埚后置于真空熔炼炉中,将真空熔炼炉里面的压强抽到20Pa以下,打开电源,以20KW的功率使真空熔炼炉缓慢加热,30min后将功率增大到50KW,电流为200~220A,在熔炼过程中氩气气流量为0.05MPa,此时,真空炉迅速升温至1750℃,加热过程持续1小时。
待坩埚里面的炉料全部熔化成液体,将真空熔炼炉的功率降到10KW;经过0.5h后,关闭电源;待炉温降到50℃以下时,打开真空熔炼炉炉盖,取坩埚中熔炼的合金,即得到本发明所述镍钴合金基体。
将镍钴合金基体表面的油污和杂质除去,获得干净的基体表面;将干净的镍钴合金基体表面采用表面喷砂或砂纸打磨(以便于强化基体表面,获得合适的粗糙度,以便于与涂层进行有效的物理和化学结合,提高涂层与基体的结合强度),获得表面具有合适粗糙度的镍钴合金基体。
S2:利用超音速火焰喷涂法在镍钴合金基体表面沉积一层MCrAlY合金粘结层,粘结层总厚度为80μm。
S3:利用超音速火焰喷涂法在粘结层面沉积一层厚度为50μm的金属Ti构成具有抗氧化、抗腐蚀的金属层。
S4:利用电子束物理气相沉积法在金属层的表面沉积一层YSZ陶瓷,构成具有低热导率和高热膨胀的陶瓷涂层,陶瓷涂层的厚度为50μm。
实施例4
本具体实施方式提供一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,通过在镍钴合金基体上沉积MCrAlY合金粘结层,在MCrAlY合金粘结层上依次沉积Cr金属层、RETaO4陶瓷层、Cu金属层、YSZ陶瓷层、Ni金属层、SiC陶瓷层、Au金属层、Y3Al5O3陶瓷层、Al金属层、RE2ZrO7陶瓷层、Wu金属层、LaMgAlO4陶瓷层、Ti金属层、Al2O3陶瓷层,获得总厚度为700μm的14层复合涂层,其结构如图1所示。
制备方法包括以下步骤:
S1:制备镍钴合金基体热电偶保护套,镍钴合金基体热电偶保护套的制备方法与实施例3中的一致。
S2:利用超音速火焰喷涂法在镍钴合金基体表面沉积一层MCrAlY合金粘结层,粘结层总厚度为80μm。
S3:利用超音速火焰喷涂法在MCrAlY粘结层面沉积一层厚度为50μm的金属Cr构成具有抗氧化、抗腐蚀的Cr金属层。
S4:利用超音速火焰喷涂法在Cr金属层的表面沉积一层RETaO4陶瓷,构成具有低热导率和高热膨胀的RETaO4陶瓷涂层,陶瓷涂层的厚度为50μm。
S5:利用超音速火焰喷涂法在RETaO4陶瓷层的表面沉积一层Cu金属层,Cu金属层的厚度为50μm。
S6:利用超音速火焰喷涂法在Cu金属层表面沉积一层YSZ陶瓷层,YSZ陶瓷层的厚度为50μm。
S7:利用超音速火焰喷涂法在陶瓷层的表面沉积一层Ni金属层,Ni金属层的厚度为50μm。
S8:利用超音速火焰喷涂法在Ni金属层表面沉积一层SiC陶瓷层,SiC陶瓷层的厚度为50μm。
S9:利用超音速火焰喷涂法在SiC陶瓷层的表面沉积一层Au金属层,Au金属层的厚度为50μm。
S10:利用超音速火焰喷涂法在Au金属层表面沉积一层Y3Al5O3陶瓷层,Y3Al5O3,陶瓷层的厚度为50μm。
S11:利用超音速火焰喷涂法在Y3Al5O3陶瓷层的表面沉积一层Al金属层,Al金属层的厚度为50μm。
S12:利用超音速火焰喷涂法在Al金属层表面沉积一层RE2ZrO7陶瓷层,RE2ZrO7陶瓷层的厚度为50μm。
S13:利用超音速火焰喷涂法在RE2ZrO7陶瓷层的表面沉积一层Wu金属层,Wu金属层的厚度为50μm。
S14:利用超音速火焰喷涂法在Wu金属层表面沉积一层LaMgAlO4陶瓷涂层,LaMgAlO4陶瓷涂层的厚度为50μm。
S15:利用超音速火焰喷涂法在LaMgAlO4陶瓷层的表面沉积一层Ti金属层,Ti金属层的厚度为50μm。
S16:利用超音速火焰喷涂法在Ti金属层表面沉积一层Al2O3陶瓷涂层,Al2O3陶瓷涂层的厚度为50μm。
实施例5
S1:以实施例4的方法制备出的14层复合涂层保护的镍钴基热电偶保护套作为1号样。
S2:取实施例4中的步骤S1~步骤S14,制备12层复合涂层保护的镍钴基热电偶保护套作为2号样。
S3:取实施例4中的步骤S1~步骤S12,制备10层复合涂层保护的镍钴基热电偶保护套作为3号样。
S4:取实施例4中的步骤S1~步骤S10,制备8层复合涂层保护的镍钴基热电偶保护套作为4号样。
S5:取实施例4中的步骤S1~步骤S8,制备6层复合涂层保护的镍钴基热电偶保护套作为5号样。
S6:取实施例4中的步骤S1~步骤S6,制备4层复合涂层保护的镍钴基热电偶保护套作为6号样。
S7:取实施例4中的步骤S1~步骤S4,制备2层复合涂层保护的镍钴基热电偶保护套作为7号样。
S8:将步骤S1~S7中制备出的1~7号样品,分别沿着无镀层测切割至3mm厚(基体加镀层),固定在考核平台上,无镀层侧放置一个热电偶,有镀层侧用氢氧枪持续对样品喷焰,用红外测温枪测量样品考核点中心温度,调节氢氧枪喷口与样品之间位置,使得测温枪测得温度保持在1300度左右(±50度),同时读取热电偶读数,应与测温枪读数相差不超过200度,记录热电偶无法工作读数严重偏离,即保护套失效的时间。
不同层金属陶瓷镀层保护的合金基热电偶保护套的高温热考核失效时间和成本对照表如表1所示。
表1
由表1可知,对于金属陶瓷镀层保护的镍钴基热电偶保护套,镀膜层数越多,其至失效时间越长,但镀膜成本相应增加。
实施例6
S1:将实施例4制得的14层复合涂层样品,切下一小块称重为201.2g
S2:将该样品置于浓度为98%的浓硫酸水溶液中每隔5h记录样品重量,并更换浓硫酸水溶液。
14层金属陶瓷镀层保护的合金基热电偶保护套在浓硫酸中的质量变化图如图2所示。
由图2可知该14层金属陶瓷镀层保护的镍钴基热电偶保护套在浓硫酸中能长期稳定存在,抗腐蚀性强,50h质量损失仅为3%左右。
上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (3)

1.一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,其特征在于,包括以下步骤:
S1:制备合金基热电偶保护套,将干净的合金基热电偶保护套表面进行喷砂或打磨处理,获得表面具有合适粗糙度的合金基热电偶保护套;
S2:在步骤S1中具有合适粗糙度的合金基热电偶保护套表面沉积一层厚度为80μm -100μm的粘结层;
S3:在步骤S2中的粘结层表面沉积一层厚度为50-200μm的抗氧化、抗腐蚀金属层;
S4:在步骤S3中的金属层表面沉积一层厚度为50-200μm的低热导率和高热膨胀的陶瓷层;
S5:在步骤S4中低热导率和高热膨胀的陶瓷层表面依次重复步骤S3和步骤S4一次或多次,即构造成厚度为100-1000μm的金属层和陶瓷层依次交替分布的2~14层复合涂层;
步骤S1中所述合金基热电偶保护套由Ni合金、Co合金、Ti合金中的一种或两种制成;
步骤S2中所述粘结层由MCrAlY制成;
步骤S3中所述抗氧化、抗腐蚀金属层由Al、Ni、Cu、Cr、Ti、Ta、W、Au中的一种制成;
步骤S4中所述低热导率和高热膨胀的陶瓷层由Al2O3、YSZ、SiC、Y3Al5O3、RE2ZrO7、RETaO4、LaMgAlO4中的一种制成。
2.根据权利要求1所述的基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,其特征在于,所述粘结层的沉积方法为超音速火焰喷涂法或超音速电弧喷涂法。
3.根据权利要求1所述的基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法,其特征在于,所述抗氧化、抗腐蚀金属层及低热导率和高热膨胀的陶瓷层的沉积方法均为超音速火焰喷涂法或电子束物理气相沉积法。
CN202111666770.6A 2021-12-31 2021-12-31 一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法 Active CN115029654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111666770.6A CN115029654B (zh) 2021-12-31 2021-12-31 一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111666770.6A CN115029654B (zh) 2021-12-31 2021-12-31 一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法

Publications (2)

Publication Number Publication Date
CN115029654A CN115029654A (zh) 2022-09-09
CN115029654B true CN115029654B (zh) 2023-09-22

Family

ID=83118121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111666770.6A Active CN115029654B (zh) 2021-12-31 2021-12-31 一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法

Country Status (1)

Country Link
CN (1) CN115029654B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746534A (en) * 1985-09-12 1988-05-24 System Planning Corporation Method of making a thermocouple
US4904542A (en) * 1988-10-11 1990-02-27 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
US6190038B1 (en) * 1998-01-12 2001-02-20 Isuzu Ceramics Research Institute Co., Ltd. Thermocouple lance with alternating molybdenum layered sheath for measuring temperature in molten metal bath
CN1621556A (zh) * 2004-12-15 2005-06-01 北京航空航天大学 一种具有高热稳定性、抗高温烧结、低热导率的热障涂层
CN1924532A (zh) * 2005-08-30 2007-03-07 宝山钢铁股份有限公司 热电偶复合保护套管及制作方法
JP2008145244A (ja) * 2006-12-08 2008-06-26 Sukegawa Electric Co Ltd 熱電対
CN108048839A (zh) * 2017-12-07 2018-05-18 华中科技大学 一种钨铼热电偶高温抗氧化涂层及其应用
CN111235514A (zh) * 2020-03-24 2020-06-05 江西省科学院应用物理研究所 一种具有复合涂层的热电偶保护套及其制备方法
CN211783944U (zh) * 2020-05-22 2020-10-27 重庆蝶霖环保科技有限公司 一种炉窑高温区专用新型热电偶

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746534A (en) * 1985-09-12 1988-05-24 System Planning Corporation Method of making a thermocouple
US4904542A (en) * 1988-10-11 1990-02-27 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
US6190038B1 (en) * 1998-01-12 2001-02-20 Isuzu Ceramics Research Institute Co., Ltd. Thermocouple lance with alternating molybdenum layered sheath for measuring temperature in molten metal bath
CN1621556A (zh) * 2004-12-15 2005-06-01 北京航空航天大学 一种具有高热稳定性、抗高温烧结、低热导率的热障涂层
CN1924532A (zh) * 2005-08-30 2007-03-07 宝山钢铁股份有限公司 热电偶复合保护套管及制作方法
JP2008145244A (ja) * 2006-12-08 2008-06-26 Sukegawa Electric Co Ltd 熱電対
CN108048839A (zh) * 2017-12-07 2018-05-18 华中科技大学 一种钨铼热电偶高温抗氧化涂层及其应用
CN111235514A (zh) * 2020-03-24 2020-06-05 江西省科学院应用物理研究所 一种具有复合涂层的热电偶保护套及其制备方法
CN211783944U (zh) * 2020-05-22 2020-10-27 重庆蝶霖环保科技有限公司 一种炉窑高温区专用新型热电偶

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Material Problems in Using High-Temperature Thermocouples;Edler, F等;INTERNATIONAL JOURNAL OF THERMOPHYSICS;全文 *
新材料技术在热电偶保护套管中的应用现状;孙宏飞, 万殿茂;中国仪器仪表(第03期);全文 *
高温热障涂层材料研究进展;汪俊等;中国有色金属学报;全文 *
高温耐磨蚀涂层防护技术在热电偶保护套管上的应用;李伟;王灿明;渠智彦;毕继鑫;;中国仪器仪表(第05期);全文 *

Also Published As

Publication number Publication date
CN115029654A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Tang et al. Effect of Al2O3 and enamel coatings on 900° C oxidation and hot corrosion behaviors of gamma-TiAl
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
US5496644A (en) Plasma sprayed mullite coatings on silicon-base ceramics
US6117560A (en) Thermal barrier coating systems and materials
CN101026119B (zh) 耐蚀刻晶片处理装置和其制造方法
US6521356B2 (en) Oxidation resistant coatings for niobium-based silicide composites
JP5667163B2 (ja) モリブデン系ターゲット及び溶射によってターゲットを製造するための方法
US20080216602A1 (en) Coating process for manufacture or reprocessing of sputter targets and x-ray anodes
CN103266320B (zh) 一种抗高温氧化薄膜传感器及其生产方法
CN102534469A (zh) 一种高温抗氧化涂层钼材料及其制备方法
WO2001061421A3 (fr) Materiau resistant a la chaleur 'refsicoat' et rechauffeurs haute temperature utilisant ce materiau
EP3452629B1 (en) Pumps for hot and corrosive fluids
JP2005281865A (ja) 物品を保護する方法及び関連する組成
CN109972100A (zh) 一种管状铬靶材的制备方法
JP5610698B2 (ja) 遮熱コーティング用材料、遮熱コーティング、タービン部材及びガスタービン
CN115029654B (zh) 一种基于金属陶瓷镀层保护的合金基热电偶保护套的制备方法
US6921582B2 (en) Oxidation-resistant coatings bonded to metal substrates, and related articles and processes
CN114956869B (zh) 一种镀膜层数可调的陶瓷基热电偶保护套的制备方法
TWI425103B (zh) Method and product of making zirconium - based metallic glass coating by multi - independent target
US7828913B1 (en) Peritectic, metastable alloys containing tantalum and nickel
US6057011A (en) High temperature and highly corrosive resistant sample containment cartridge and method of fabricating same
EP0066895B1 (en) Method of joining ni-base heat-resisting alloys
US6265080B1 (en) Pest resistant molybdenum disilicide type materials
US20070231595A1 (en) Coatings for molybdenum-based substrates
JP2004190056A (ja) 耐熱性被覆部材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant