CN115015830A - 一种基于机器学习的水声信号处理算法 - Google Patents

一种基于机器学习的水声信号处理算法 Download PDF

Info

Publication number
CN115015830A
CN115015830A CN202210615695.9A CN202210615695A CN115015830A CN 115015830 A CN115015830 A CN 115015830A CN 202210615695 A CN202210615695 A CN 202210615695A CN 115015830 A CN115015830 A CN 115015830A
Authority
CN
China
Prior art keywords
gamma
array
signal processing
underwater acoustic
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210615695.9A
Other languages
English (en)
Inventor
陆桦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhongan Intelligent Information Technology Co ltd
Original Assignee
Beijing Zhongan Intelligent Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhongan Intelligent Information Technology Co ltd filed Critical Beijing Zhongan Intelligent Information Technology Co ltd
Priority to CN202210615695.9A priority Critical patent/CN115015830A/zh
Publication of CN115015830A publication Critical patent/CN115015830A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/801Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Computing Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明涉及一种基于机器学习的水声信号处理算法,该算法采用EM准则估计信号和噪声的功率,使水声信号处理算法可得到超分辨的谱估计。与传统方法相比,该算法无需已知信号的数量,可用于低信噪比、快拍数较少情况下的相干信号的处理。

Description

一种基于机器学习的水声信号处理算法
技术领域
本发明涉及雷达、声纳技术领域,尤其涉及一种基于机器学习的水声信号处理算法。
背景技术
信号的波达方向(DOA)估计是水声信号处理中一个十分重要的方向,其主要目的是估计信号的空间位置,这也是雷达、声纳等许多领域的重要任务之一。其实现方法为得到信号在空间各个方向上的能量分布,进而估计出信号的波达方向。常用的方法为常规波束形成法、MVDR、MUSIC等。
现有的DOA估计方法存在的问题主要有以下几个:1)常规波束形成法的分辨力受阵列孔径的限制,不具备很高的分辨能力,无法分辨两个相距较近的目标;2)一些高分辨算法在利用信号协方差矩阵时需要对其进行矩阵分解等操作,必须要求其为满秩,而包含相干信号的接收数据协方差矩阵不再为满秩矩阵,导致算法性能下降甚至失效;3)需要较大的快拍数,而实际工程应用中,快拍数一般十分有限,这将导致算法性能明显下降。
发明内容
本发明的目的在于提供一种基于机器学习的水声信号处理算法,以解决上述背景技术中遇到的问题。
为实现上述目的,本发明的技术方案如下:
一种基于机器学习的水声信号处理算法,包括以下步骤:
步骤一、设定本方案的约束条件;阵列为均匀线列阵,阵元数为N,阵元间距为d;信源信号为远场窄带信号,阵元数要大于信号个数;传播介质是均匀且各向同性的;观测噪声为加性噪声,符合均值为0,方差为σ2的高斯分布,噪声与入射信号相互独立。
步骤二、设定每个波束上的信号方差为γ=[γ12,...γM]T∈RM,令γm=1,m=1,2,...M,设定加性噪声方差初始值σ2=0.1,设定收敛速度阈值εmin=0.001以及迭代次数最大值jmax=500;
步骤三、计算观测矩阵Y的协方差矩阵Σy
Σy=σ2IN+AΓAH
其中,IN为N阶单位矩阵,Γ=diag(γ),A为阵列导向矢量矩阵,且A=[a1,...,aM]∈CN×M
Figure BDA0003674191430000011
c为水中声速,ω为角频率,M为波束数,
Figure BDA0003674191430000012
步骤四、采用EM准则更新γ的第m个元素
Figure BDA0003674191430000021
和噪声方差σ2
Figure BDA0003674191430000022
Figure BDA0003674191430000023
其中,L为快拍数,Y为阵列观测数据矩阵,μX为信源X的均值且
Figure BDA0003674191430000024
步骤五、更新收敛速度ε=||γnewold||1/||γold||1
步骤六、迭代步骤三至步骤五,直到收敛速度大于阈值或者达到最大迭代次数;
步骤七、输出γnew和(σ2)new,根据γnew确定来波方向。
与现有技术相比,本发明的有益效果是:采用EM准则估计信号和噪声的功率,使水声信号处理算法可得到超分辨的谱估计。与传统方法相比,该算法无需已知信号的数量,可用于低信噪比、快拍数较少情况下的相干信号的处理。
附图说明
参照附图来说明本发明的公开内容。应当了解,附图仅仅用于说明目的,而并非意在对本发明的保护范围构成限制。在附图中,相同的附图标记用于指代相同的部件。其中:
图1为本发明基于机器学习的水声信号处理算法的流程图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示本发明有关的构成。
根据本发明的技术方案,在不变更本发明实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
下面结合附图和实施例对本发明的技术方案做进一步的详细说明。
如图1所示,一种基于机器学习的水声信号处理算法,包括以下步骤:
步骤一、设定本方案的约束条件:阵列为均匀线列阵,阵元数为N,阵元间距为d;信源信号为远场窄带信号,阵元数要大于信号个数;传播介质是均匀且各向同性的;观测噪声为加性噪声,符合均值为0,方差为σ2的高斯分布,噪声与入射信号相互独立。
设定波束数为M,快拍数为L,信源信号矩阵可表示为X=[x1,...,xL]∈CM×L。线性回归模型,阵元数为N的阵列观测矩阵Y可表示为:Y=AX+N
其中,A为导向矢量矩阵A=[a1,a2,...,aM]∈CN×M
Figure BDA0003674191430000031
Figure BDA0003674191430000032
N为加性高斯噪声N∈CN×L
步骤二、设定每个波束上的信号方差功率为γ=[γ12,...γM]T∈RM,令γm=1,m=1,2,...M,设定加性噪声方差初始值σ2=0.1,设定收敛速度阈值εmin=0.001以及迭代次数最大值jmax=500;
步骤三、计算观测矩阵Y的协方差矩阵Σy
Σy=σ2IN+AΓAH
其中,IN为N阶单位矩阵,Γ=diag(γ),c为水中声速,ω为角频率,M为波束数,
Figure BDA0003674191430000033
观测矩阵Y服从高斯分布:
Figure BDA0003674191430000034
根据先验信息,信源信号符合零均值的高斯分布,每个波束上的信号的方差(能量)为γm∈γ=[γ1,...γM]T。信源信号的均值和方差为:
Figure BDA0003674191430000035
Figure BDA0003674191430000036
其中Γ=diag(γ),ΣY为观测矩阵Y的协方差矩阵:Σy=σ2IN+AΓAH,IN为N阶单位矩阵。
在本步骤中,本算法中并未对协方差矩阵做矩阵分解等操作,所以协方差矩阵是否满秩并无影响。
步骤四、采用EM准则更新γ的第m个元素
Figure BDA0003674191430000037
和噪声方差σ2
Figure BDA0003674191430000041
Figure BDA0003674191430000042
其中,L为快拍数,Y为阵列观测数据矩阵,μX为信源X的均值且
Figure BDA0003674191430000043
通过上式迭代求解出最终的解。
步骤五、更新收敛速度定义为ε=||γnewold||1/||γold||1
步骤六、迭代步骤三至步骤五,直到收敛速度大于阈值或者达到最大迭代次数;当收敛速度小于设置的阈值,γ会收敛于一个比较稳定的值,此时迭代即可停止。
步骤七、输出信号在各个方向上的功率γnew和(σ2)new,根据γnew确定来波方向。
本发明专利中,叙述了一种基于机器学习的水声信号处理算法,采用EM准则估计信号和噪声的功率,使水声信号处理算法可得到超分辨的谱估计。与传统方法相比,该算法无需已知信号的数量,可用于低信噪比、快拍数较少情况下的相干信号的处理。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式,并不用于限定本发明保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应含在本发明的保护范围之内。

Claims (3)

1.一种基于机器学习的水声信号处理算法,其特征在于,包括以下步骤:
步骤一、设定本方案的约束条件;
步骤二、设定每个波束上的信号方差为γ=[γ12,...γM]T∈RM,令γm=1,m=1,2,...M,设定加性噪声方差初始值σ2=0.1,设定收敛速度阈值εmin=0.001以及迭代次数最大值jmax=500;
步骤三、计算观测矩阵Y的协方差矩阵Σy
Σy=σ2IN+AΓAH
其中,IN为N阶单位矩阵,Γ=diag(γ),A为阵列导向矢量矩阵,且A=[a1,...,aM]∈CN ×M
Figure FDA0003674191420000011
c为水中声速,ω为角频率,M为波束数,
Figure FDA0003674191420000012
步骤四、采用EM准则更新γ的第m个元素
Figure FDA0003674191420000013
和噪声方差σ2
步骤五、更新收敛速度ε=||γnewold||1/||γold||1
步骤六、迭代步骤三至步骤五,直到收敛速度大于阈值或者达到最大迭代次数;
步骤七、输出γnew和(σ2)new,根据γnew确定来波方向。
2.根据权利要求1所述的一种基于机器学习的水声信号处理算法,其特征在于,本方案的约束条件为:阵列为均匀线列阵,阵元数为N,阵元间距为d;信源信号为远场窄带信号,阵元数要大于信号个数;传播介质是均匀且各向同性的;观测噪声为加性噪声,符合均值为0,方差为σ2的高斯分布,噪声与入射信号相互独立。
3.根据权利要求1所述的一种基于机器学习的水声信号处理算法,其特征在于,在步骤三中,γ的第m个元素
Figure FDA0003674191420000014
和噪声方差σ2为:
Figure FDA0003674191420000015
Figure FDA0003674191420000016
其中,L为快拍数,Y为阵列观测数据矩阵,μX为信源X的均值且
Figure FDA0003674191420000017
CN202210615695.9A 2022-06-01 2022-06-01 一种基于机器学习的水声信号处理算法 Pending CN115015830A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210615695.9A CN115015830A (zh) 2022-06-01 2022-06-01 一种基于机器学习的水声信号处理算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210615695.9A CN115015830A (zh) 2022-06-01 2022-06-01 一种基于机器学习的水声信号处理算法

Publications (1)

Publication Number Publication Date
CN115015830A true CN115015830A (zh) 2022-09-06

Family

ID=83070284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210615695.9A Pending CN115015830A (zh) 2022-06-01 2022-06-01 一种基于机器学习的水声信号处理算法

Country Status (1)

Country Link
CN (1) CN115015830A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537249A (zh) * 2015-01-04 2015-04-22 西安电子科技大学 基于稀疏贝叶斯学习的波达方向角估计方法
WO2016100460A1 (en) * 2014-12-18 2016-06-23 Analog Devices, Inc. Systems and methods for source localization and separation
CN109407046A (zh) * 2018-09-10 2019-03-01 西北工业大学 一种基于变分贝叶斯推断的嵌套阵列波达方向角估计方法
US10823837B2 (en) * 2018-01-12 2020-11-03 The Euclide 2012 Investment Trust Method for vehicle location estimation using orthogonal frequency-division multiplexing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100460A1 (en) * 2014-12-18 2016-06-23 Analog Devices, Inc. Systems and methods for source localization and separation
CN104537249A (zh) * 2015-01-04 2015-04-22 西安电子科技大学 基于稀疏贝叶斯学习的波达方向角估计方法
US10823837B2 (en) * 2018-01-12 2020-11-03 The Euclide 2012 Investment Trust Method for vehicle location estimation using orthogonal frequency-division multiplexing
CN109407046A (zh) * 2018-09-10 2019-03-01 西北工业大学 一种基于变分贝叶斯推断的嵌套阵列波达方向角估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P.GERSTOFT等: "Wideband sparse Bayesian learning for DOA estimation from multiple snapshots", 《2016 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP》, 19 September 2016 (2016-09-19), pages 6 *

Similar Documents

Publication Publication Date Title
Wen Computationally efficient DOA estimation algorithm for MIMO radar with imperfect waveforms
CN108845325B (zh) 拖曳线列阵声纳子阵误差失配估计方法
CN109459744B (zh) 一种实现多干扰抑制的稳健自适应波束形成方法
Wu et al. Direction-of-arrival estimation based on Toeplitz covariance matrix reconstruction
Wan et al. High accuracy 2D-DOA estimation for conformal array using PARAFAC
CN111580042B (zh) 一种基于相位优化的深度学习测向方法
He et al. An off-grid STAP algorithm based on local mesh splitting with bistatic radar system
CN115291169A (zh) 一种声源成像方法、系统、设备及存储介质
CN109541526A (zh) 一种利用矩阵变换的圆环阵方位估计方法
Steinwandt et al. Knowledge-aided direction finding based on unitary ESPRIT
Koul et al. Three-dimensional underwater acoustic source localization by sparse signal reconstruction techniques
CN115015830A (zh) 一种基于机器学习的水声信号处理算法
CN109541572B (zh) 一种基于线性环境噪声模型的子空间方位估计方法
Yong-jiang et al. Research on adaptive beamforming algorithm
Iwazaki et al. Sum and difference composite co-array: An extended array configuration toward higher degree of freedom
CN115130504A (zh) 基于稀疏贝叶斯学习的稳健波束形成方法
CN111431575B (zh) 基于常规波束形成的来波方向稀疏重构方法
Ma et al. Computation-efficient 2-D DOA estimation algorithm with array motion strategy
CN114779199A (zh) 端射阵机载雷达自适应互耦补偿与杂波抑制方法
Wirfält et al. Prior knowledge-based direction of arrival estimation
Li et al. DOA Estimation Based on Sparse Reconstruction via Acoustic Vector Sensor Array under Non-uniform Noise
CN116338574B (zh) 一种基于匹配波束的稀疏贝叶斯学习水下声源定位方法
CN113094627B (zh) 加权空域处理拖线阵声纳平台辐射噪声零响应抑制方法
CN115034066B (zh) 一种基于相位补偿的旋转圆阵信源数估计系统及估计方法
Zhou et al. A DOA tracking algorithm for coprime planar array via PAST

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination