CN115012325A - Concrete box girder bridge reinforcing scheme based on FRP (fiber reinforced plastic) section bars - Google Patents
Concrete box girder bridge reinforcing scheme based on FRP (fiber reinforced plastic) section bars Download PDFInfo
- Publication number
- CN115012325A CN115012325A CN202210487463.XA CN202210487463A CN115012325A CN 115012325 A CN115012325 A CN 115012325A CN 202210487463 A CN202210487463 A CN 202210487463A CN 115012325 A CN115012325 A CN 115012325A
- Authority
- CN
- China
- Prior art keywords
- box girder
- frp
- concrete box
- bridge
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003014 reinforcing effect Effects 0.000 title claims abstract description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 title 2
- 239000011151 fibre-reinforced plastic Substances 0.000 title 2
- 230000002787 reinforcement Effects 0.000 claims abstract description 22
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 4
- 238000010008 shearing Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 239000011208 reinforced composite material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D22/00—Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2/00—Bridges characterised by the cross-section of their bearing spanning structure
- E01D2/04—Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/60—Planning or developing urban green infrastructure
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
Description
技术领域technical field
本发明涉及土木工程中桥梁结构加固领域,特别涉及一种基于FRP型材的混凝土箱梁桥加固方案。The invention relates to the field of bridge structure reinforcement in civil engineering, in particular to a concrete box girder bridge reinforcement scheme based on FRP profiles.
背景技术Background technique
随着城市现代化进程加速,城市用地紧张,交通流量急剧增长,高架桥和立交桥被大量建设以提高车辆通行效率,极大地缓解了交通拥堵。箱型截面梁由于具有箱室,自重较轻,具有良好的空间整体受力性能与优异的截面特性,使之在桥梁结构中得到广泛的应用。With the acceleration of urban modernization, urban land is tight, and traffic flow has increased sharply. A large number of viaducts and overpasses have been constructed to improve the efficiency of vehicle traffic and greatly ease traffic congestion. Box-section beams are widely used in bridge structures due to their box chambers, light weight, good overall mechanical performance in space and excellent section characteristics.
在很多情况下,随着箱梁桥使用年限的增长,多种原因可能造成其结构刚度下降、挠度增大、影响结构安全服役年限;此外,由于结构许用荷载增大、服役性质转变、规范标准更新等原因,亦可能使既有结构难以达到新的要求,故须对这类桥梁进行改造加固,提升公路桥梁安全耐久水平。In many cases, with the increase of service life of box girder bridges, various reasons may cause the decrease of structural rigidity, increase of deflection, and influence on the safe service life of the structure; For reasons such as the update of standards, it may also make it difficult for the existing structures to meet the new requirements. Therefore, it is necessary to reconstruct and strengthen such bridges to improve the safety and durability of highway bridges.
目前在箱梁桥的加固设计中,为改善桥梁局部不利受力状态、降低梁体裂缝数量及宽度,实现结构寿命延长,加固方案包括施加预应力技术和外部增设高强材料等。预应力加固法通过在梁间另加预应力钢筋或复合材料筋,通过预应力张拉释放箱梁受拉区的外力作用实现结构加固。粘贴FRP加固法通过选用高性能纤维增强复合材料布,粘贴在箱梁表层,使之与原构件一同承力,其中以碳纤维增强复合材料(CFRP)居多。但上述方案仅适用于桥梁刚度足够、结构许用荷载不变的情况。At present, in the reinforcement design of box girder bridges, in order to improve the local unfavorable stress state of the bridge, reduce the number and width of cracks in the beam body, and prolong the life of the structure, the reinforcement scheme includes the application of prestressing technology and the addition of external high-strength materials. The prestressed reinforcement method realizes structural reinforcement by adding additional prestressed steel bars or composite material bars between the beams, and releasing the external force in the tension zone of the box girder by prestressing tension. In the pasting FRP reinforcement method, high-performance fiber reinforced composite material cloth is selected and pasted on the surface of the box girder, so that it can bear the force together with the original component, among which carbon fiber reinforced composite material (CFRP) is mostly used. However, the above scheme is only applicable to the case where the bridge stiffness is sufficient and the structural allowable load remains unchanged.
当桥梁结构整体刚度不足或许用承载力需要提高时,目前多采用外粘钢加固或外包混凝土加固的方法来进行。但由于钢材在空气中易锈蚀,后期养护费用大,外包混凝土会大幅提高结构自重,对被加固桥梁的下部结构要求较高。故目前尚缺乏一种有效的加固方案能够在提升桥梁刚度的同时兼顾耐腐蚀、自重轻、后期维护成本低的优点。When the overall stiffness of the bridge structure is insufficient or the bearing capacity needs to be increased, the methods of externally bonded steel reinforcement or outsourced concrete reinforcement are mostly used at present. However, because the steel is easy to corrode in the air, and the maintenance cost is high in the later stage, the outsourcing concrete will greatly increase the dead weight of the structure, and the lower structure of the reinforced bridge has higher requirements. Therefore, there is still a lack of an effective reinforcement scheme that can improve the stiffness of the bridge while taking into account the advantages of corrosion resistance, light weight, and low maintenance costs.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对现有技术的不足,提供一种基于FRP型材的混凝土箱梁桥加固方案,利用FRP型材轻质、高强、耐腐蚀、可设计性好等优点,解决现有问题。The purpose of the present invention is to provide a reinforcement scheme for concrete box girder bridges based on FRP profiles in view of the deficiencies of the prior art.
采用的技术方案为:The technical solutions adopted are:
一种基于FRP型材的混凝土箱梁桥加固方案,结构包括混凝土箱梁、桥面铺装层、混凝土箱梁底部FRP型材和混凝土箱梁侧部FRP型材。所述混凝土箱梁为预制或现浇混凝土空心梁,外截面形式为矩形、梯形、曲边形的一种。所述桥面铺装层位于混凝土箱梁上部;所述混凝土箱梁底部FRP型材布置于箱梁底部跨中位置,所述混凝土箱梁侧部FRP型材布置于箱梁侧部跨边位置,具体布置长度由实际加固需求进行计算,型材与箱梁之间采用膨胀螺栓固定。A concrete box girder bridge reinforcement scheme based on FRP profiles is provided. The concrete box beams are prefabricated or cast-in-place concrete hollow beams, and the outer section forms are one of a rectangle, a trapezoid and a curved edge. The bridge deck pavement layer is located on the upper part of the concrete box girder; the FRP profiles at the bottom of the concrete box girder are arranged at the mid-span position of the bottom of the box girder, and the FRP profiles of the side part of the concrete box girder are arranged at the side span position of the box girder. The layout length is calculated according to the actual reinforcement requirements, and the profiles and the box beams are fixed with expansion bolts.
所述FRP型材包括C形FRP型材、工字形FRP型材、腹板倾斜的工字形FRP型材,型材翼缘端部需预制外榫和外卯,通过胶黏剂可拼接为连续FRP空心面板。The FRP profiles include C-shaped FRP profiles, I-shaped FRP profiles, and I-shaped FRP profiles with inclined webs. The flange ends of the profiles need to be prefabricated with external tenons and external sockets, which can be spliced into continuous FRP hollow panels through adhesives.
在本发明提供的基于FRP型材的混凝土箱梁桥加固方案实施例中,箱梁底部选用C形和工字形FRP型材,拼接为腹板垂直的连续FRP空心面板,主要用以承担弯矩导致的拉伸荷载;箱梁两侧选用C形和腹板倾斜的工字形FRP型材,拼接为腹板倾斜的连续FRP空心面板,主要用以承担剪切荷载。In the embodiment of the reinforcement scheme for concrete box girder bridges based on FRP profiles provided by the present invention, C-shaped and I-shaped FRP profiles are selected at the bottom of the box girder, and spliced into continuous FRP hollow panels with vertical webs, which are mainly used to bear the deformation caused by the bending moment. Tensile load; I-shaped FRP profiles with C-shaped and inclined webs are selected on both sides of the box girder, and spliced into continuous FRP hollow panels with inclined webs, which are mainly used to bear shear loads.
本发明提供的基于FRP型材的混凝土箱梁桥加固方案,通过在箱梁底部和侧部布置FRP型材,利用FRP型材轻质、高强、耐腐蚀、可设计性好等优点,有效地对混凝土箱梁桥进行加固,在不增加桥梁自重的前提下提升桥梁的整体刚度和承载能力,保证桥梁体系的安全可靠。The reinforcement scheme for concrete box girder bridges based on FRP profiles provided by the present invention, by arranging FRP profiles at the bottom and side of the box girder, takes advantage of the advantages of light weight, high strength, corrosion resistance, good designability, etc. The girder bridge is reinforced to improve the overall stiffness and bearing capacity of the bridge without increasing the self-weight of the bridge, so as to ensure the safety and reliability of the bridge system.
附图说明Description of drawings
图1是本发明实施例中FRP型材沿桥梁方向布置位置示意图。FIG. 1 is a schematic diagram of the arrangement position of FRP profiles along the bridge direction in an embodiment of the present invention.
图2是本发明实施例中FRP型材加固混凝土箱梁剖面图。2 is a cross-sectional view of a concrete box girder reinforced with FRP profiles in an embodiment of the present invention.
图3是本发明实施例中FRP型材种类及构造详图。FIG. 3 is a detailed diagram of the types and structures of FRP profiles in an embodiment of the present invention.
具体实施方式Detailed ways
本发明的实施例并非限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围之内。The embodiments of the present invention do not limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description of the present invention, or directly or indirectly applied in other related technical fields, are similarly included in the present invention. within the scope of patent protection.
一种基于FRP型材的混凝土箱梁桥加固方案,结构包括混凝土箱梁1、桥面铺装层2、混凝土箱梁底部FRP型材3和混凝土箱梁侧部FRP型材4。所述混凝土箱梁1为预制或现浇混凝土空心梁,外截面形式为矩形、梯形、曲边形的一种。所述桥面铺装层2位于混凝土箱梁1上部;所述混凝土箱梁底部FRP型材3和混凝土箱梁侧部FRP型材4拼接并分别布置于箱梁1底部和箱梁1侧部,与箱梁1之间采用膨胀螺栓5固定。A concrete box girder bridge reinforcement scheme based on FRP profiles, the structure includes a
在本发明提供的基于FRP型材的混凝土箱梁桥加固方案的实施例中,混凝土箱梁底部FRP型材3包括C形FRP型材6、工字形FRP型材7,主要用以承担弯矩引起的拉伸荷载;混凝土箱梁侧部FRP型材4包括C形FRP型材6、工字形FRP型材8,主要用以承担剪切荷载。在混凝土箱梁底部FRP型材3和混凝土箱梁侧部FRP型材4翼缘端部预制外榫9和外卯10,使之可以通过胶黏剂拼接为连续FRP空心面板。In the embodiment of the concrete box girder bridge reinforcement scheme based on FRP profiles provided by the present invention, the
本发明使用时,参照混凝土箱梁1截面尺寸选取混凝土箱梁底部FRP型材3和混凝土箱梁侧部FRP型材4的数量后,首先将带有外榫9的C形FRP型材6通过膨胀螺栓5固定于箱梁一侧。之后选用工字形FRP型材7或腹板倾斜的工字形FRP型材8,通过胶黏剂将型材外卯10与已固定型材的外榫9拼接,将型材另一侧的翼缘与箱梁1之间采用膨胀螺栓5加固。重复上述工作,并在最后选用带有外卯10的C形FRP型材与已固定型材通过胶黏剂粘接,形成封闭的连续FRP空心面板。When the present invention is used, after selecting the number of the
考虑到混凝土箱梁桥弯矩在跨中位置较大,剪力在跨边位置较大,故对桥梁进行加固时将混凝土箱梁底部FRP型材3布置在混凝土箱梁1跨中位置,将混凝土箱梁侧部FRP型材4布置在混凝土箱梁1跨边位置,具体布置长度由实际加固需求进行计算。Considering that the bending moment of the concrete box girder bridge is larger at the mid-span position and the shear force is larger at the span edge position, the
相较于现有加固结构,本发明所述的基于FRP型材的混凝土箱梁桥加固方案,充分利用FRP材料轻质、高强、耐腐蚀、可设计性好等优点,通过将FRP型材利用膨胀螺栓5固定于混凝土箱梁1的底部和侧部,有效地对混凝土箱梁1进行加固,在不增加桥梁自重的前提下提升桥梁的整体刚度和承载能力。Compared with the existing reinforcement structure, the reinforcement scheme of the concrete box girder bridge based on the FRP profile of the present invention makes full use of the advantages of the FRP material, such as light weight, high strength, corrosion resistance, and good designability. 5. Fixed on the bottom and side of the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210487463.XA CN115012325A (en) | 2022-05-06 | 2022-05-06 | Concrete box girder bridge reinforcing scheme based on FRP (fiber reinforced plastic) section bars |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210487463.XA CN115012325A (en) | 2022-05-06 | 2022-05-06 | Concrete box girder bridge reinforcing scheme based on FRP (fiber reinforced plastic) section bars |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115012325A true CN115012325A (en) | 2022-09-06 |
Family
ID=83068732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210487463.XA Pending CN115012325A (en) | 2022-05-06 | 2022-05-06 | Concrete box girder bridge reinforcing scheme based on FRP (fiber reinforced plastic) section bars |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115012325A (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009281018A (en) * | 2008-05-21 | 2009-12-03 | Taisei Corp | Reinforcing method for existing concrete structure |
CN203270434U (en) * | 2013-05-08 | 2013-11-06 | 重庆交通大学 | Prestressed concrete box girder bridge with variable cross section |
CN104452570A (en) * | 2014-12-05 | 2015-03-25 | 郑州大学 | A combined FRP box profile for structure |
FR3011864A1 (en) * | 2013-10-10 | 2015-04-17 | Jacques Sarrat | HARDWOOD MATRIX COMPOSITE BEAM IN ALUMINUM EXTRUDE ARMORED WITH FULLY COATED CARBON FIBER PROFILES |
CN204715227U (en) * | 2015-06-03 | 2015-10-21 | 大连市市政设计研究院有限责任公司 | Case beam ruggedized construction |
CN106337361A (en) * | 2016-08-29 | 2017-01-18 | 东南大学 | Separated fiber reinforced plastic (FRP)-concrete-steel composite girder bridge structure and construction method thereof |
CN209276976U (en) * | 2018-12-24 | 2019-08-20 | 河南郑大建筑材料有限公司 | A kind of high shear profile based on FRP |
CN209989712U (en) * | 2019-05-20 | 2020-01-24 | 苏州中恒通路桥股份有限公司 | A bridge coupling reinforcement structure in marine environment |
CN110904864A (en) * | 2019-12-10 | 2020-03-24 | 中铁大桥(南京)桥隧诊治有限公司 | Steel-concrete combined system for improving bearing capacity of concrete box girder bridge |
JP2020100976A (en) * | 2018-12-20 | 2020-07-02 | 東日本高速道路株式会社 | Shear reinforcement construction method for pc box girder bridge |
CN212223609U (en) * | 2020-04-07 | 2020-12-25 | 南京林业大学 | A FRP profile reinforced steel bridge deck structure |
JP2021031864A (en) * | 2019-08-19 | 2021-03-01 | 株式会社高速道路総合技術研究所 | Slab reinforcement method of side fastening pc bridge |
AU2020104338A4 (en) * | 2020-12-24 | 2021-03-18 | Changsha University Of Science And Technology | Steel box girder reinforcement structure and reinforcement method thereof |
KR20210093112A (en) * | 2020-01-17 | 2021-07-27 | 주식회사 파인씨엔이 | Compound FRP reinforced panel and method forconstructing the bottom slab using the panel |
CN114215382A (en) * | 2022-01-08 | 2022-03-22 | 西安交通大学 | FRP buckling restrained reinforcement system for circular steel tube and construction method thereof |
CN217556726U (en) * | 2022-05-06 | 2022-10-11 | 西安交通大学 | A Concrete Box Girder Bridge Reinforcement Structure Based on FRP Profiles |
-
2022
- 2022-05-06 CN CN202210487463.XA patent/CN115012325A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009281018A (en) * | 2008-05-21 | 2009-12-03 | Taisei Corp | Reinforcing method for existing concrete structure |
CN203270434U (en) * | 2013-05-08 | 2013-11-06 | 重庆交通大学 | Prestressed concrete box girder bridge with variable cross section |
FR3011864A1 (en) * | 2013-10-10 | 2015-04-17 | Jacques Sarrat | HARDWOOD MATRIX COMPOSITE BEAM IN ALUMINUM EXTRUDE ARMORED WITH FULLY COATED CARBON FIBER PROFILES |
CN104452570A (en) * | 2014-12-05 | 2015-03-25 | 郑州大学 | A combined FRP box profile for structure |
CN204715227U (en) * | 2015-06-03 | 2015-10-21 | 大连市市政设计研究院有限责任公司 | Case beam ruggedized construction |
CN106337361A (en) * | 2016-08-29 | 2017-01-18 | 东南大学 | Separated fiber reinforced plastic (FRP)-concrete-steel composite girder bridge structure and construction method thereof |
JP2020100976A (en) * | 2018-12-20 | 2020-07-02 | 東日本高速道路株式会社 | Shear reinforcement construction method for pc box girder bridge |
CN209276976U (en) * | 2018-12-24 | 2019-08-20 | 河南郑大建筑材料有限公司 | A kind of high shear profile based on FRP |
CN209989712U (en) * | 2019-05-20 | 2020-01-24 | 苏州中恒通路桥股份有限公司 | A bridge coupling reinforcement structure in marine environment |
JP2021031864A (en) * | 2019-08-19 | 2021-03-01 | 株式会社高速道路総合技術研究所 | Slab reinforcement method of side fastening pc bridge |
CN110904864A (en) * | 2019-12-10 | 2020-03-24 | 中铁大桥(南京)桥隧诊治有限公司 | Steel-concrete combined system for improving bearing capacity of concrete box girder bridge |
KR20210093112A (en) * | 2020-01-17 | 2021-07-27 | 주식회사 파인씨엔이 | Compound FRP reinforced panel and method forconstructing the bottom slab using the panel |
CN212223609U (en) * | 2020-04-07 | 2020-12-25 | 南京林业大学 | A FRP profile reinforced steel bridge deck structure |
AU2020104338A4 (en) * | 2020-12-24 | 2021-03-18 | Changsha University Of Science And Technology | Steel box girder reinforcement structure and reinforcement method thereof |
CN114215382A (en) * | 2022-01-08 | 2022-03-22 | 西安交通大学 | FRP buckling restrained reinforcement system for circular steel tube and construction method thereof |
CN217556726U (en) * | 2022-05-06 | 2022-10-11 | 西安交通大学 | A Concrete Box Girder Bridge Reinforcement Structure Based on FRP Profiles |
Non-Patent Citations (3)
Title |
---|
周东蕾;曹正喜;焦伟;: "预应力混凝土T形刚构箱梁桥加固方案比选", 隧道建设, no. 05, 20 October 2006 (2006-10-20) * |
杨政, 郭万林, 董蕙茹: "FRP板加固钢筋砼梁正截面强度分析", 玻璃钢/复合材料, no. 05, 28 September 2002 (2002-09-28) * |
王伟力;宣剑裕;: "混凝土箱梁桥加固措施的探讨", 铁道建筑技术, no. 04, 20 August 2007 (2007-08-20) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109024225A (en) | Ultra-high performance concrete truss arch blade unit, truss arch piece bridge and construction method | |
CN113481826A (en) | Prefabricated assembled corrugated steel web combination box girder | |
CN107268889B (en) | Prestressed aluminum-concrete combined truss girder and construction method thereof | |
CN102943434A (en) | Semi-assembly bamboo-concrete composite bridge | |
CN203559329U (en) | Steel-RPC (reactive powder concrete) combined bridge | |
CN217556726U (en) | A Concrete Box Girder Bridge Reinforcement Structure Based on FRP Profiles | |
CN217974005U (en) | Combined box girder structure | |
CN114016370B (en) | Rear-stagnation type narrow steel box composite beam and construction method thereof | |
CN113789711B (en) | NC-UHPC combined assembled prestressed concrete box girder, construction method and bridge thereof | |
CN114482267A (en) | A prefabricated hollow corrugated sandwich concrete-filled steel tubular composite frame structure system | |
CN110777632B (en) | Railway assembled steel diagonal brace composite PC beam and construction method thereof | |
CN203307719U (en) | Large-cantilever steel web carinal box girder section | |
CN103556563A (en) | Steel-RPC (Reactive Powder Concrete) composite bridge | |
CN113279316A (en) | Simply-supported and then-continuous corrugated web steel box-concrete combined beam | |
CN115012325A (en) | Concrete box girder bridge reinforcing scheme based on FRP (fiber reinforced plastic) section bars | |
CN216891948U (en) | Novel simply supported and then continuously connected steel-concrete combined box girder device | |
CN215857137U (en) | Steel-concrete composite beam and cable-stayed bridge | |
CN218951933U (en) | Large-span upper-bearing type perforated web girder arch combined rigid frame bridge | |
CN217352085U (en) | Simply-supported and then-continuous corrugated web steel box-concrete combined beam | |
CN216893067U (en) | Assembled composite floor system | |
CN215051986U (en) | Assembled prestressed corrugated web steel box-concrete combined simply supported beam | |
CN112195751B (en) | Semi-penetrating steel truss bridge | |
CN212688701U (en) | Fulcrum connection structure in steel-concrete combined continuous beam | |
CN114575233A (en) | Top plate transverse stiffening type corrugated steel web plate combined box girder | |
CN115287992A (en) | A composite box girder structure and construction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220906 |