CN115007974B - 电弧负压力约束的钨极氩弧焊接方法 - Google Patents

电弧负压力约束的钨极氩弧焊接方法 Download PDF

Info

Publication number
CN115007974B
CN115007974B CN202210408897.6A CN202210408897A CN115007974B CN 115007974 B CN115007974 B CN 115007974B CN 202210408897 A CN202210408897 A CN 202210408897A CN 115007974 B CN115007974 B CN 115007974B
Authority
CN
China
Prior art keywords
arc
welding
magnetic field
argon
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210408897.6A
Other languages
English (en)
Other versions
CN115007974A (zh
Inventor
王颖
罗键
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202210408897.6A priority Critical patent/CN115007974B/zh
Publication of CN115007974A publication Critical patent/CN115007974A/zh
Application granted granted Critical
Publication of CN115007974B publication Critical patent/CN115007974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Abstract

本发明公开了一种电弧负压力约束的钨极氩弧焊接方法,包括:在焊接喷嘴或者焊枪外设置通电线圈以形成纵向磁场,所述纵向磁场的磁场方向与电弧中心轴向平行或重合;调整纵向磁场的磁场强度,使得磁场强度大于临界值,并将大于所述临界值的磁场强度作为目标磁场强度;将磁场强度达到目标磁场强度的纵向磁场作用于焊接电弧,使得电弧力方向与重力方向相反,进而形成电弧负压力,在电弧负压力条件下进行钨极氩弧焊接过程。本发明能够有效控制钨极氩弧焊接过程,提高焊接精度、效率和性能,实现电弧负压力焊接成形成性,建立电弧负压力约束的电弧焊接科学与技术体系,极具工程应用价值,为现代电弧焊接技术提供了新方法。

Description

电弧负压力约束的钨极氩弧焊接方法
技术领域
本发明涉及焊接领域,具体涉及一种电弧负压力约束的钨极氩弧焊接方法。
背景技术
在常规钨极氩弧焊接条件下,焊接电弧是一种等离子体,焊接电弧力,又称焊接电弧等离子流力,焊接电弧力是焊接电弧中高速运动等离子流体所产生的轴向冲击力,在常规钨极氩弧焊接位置和状态下,相对于焊接熔池而言,焊接电弧力始终是一种轴向的正压力,因此,在常规钨极氩弧焊接条件下,由于电弧力为正压力,电弧正压力作用于焊接熔池表面,使焊接熔池产生液面差,焊接熔池发生凹陷等现象,常规钨极氩弧焊接条件下电弧正压力不仅直接影响熔池内熔体运动状况,还对熔滴过渡、熔池截面形状、焊缝凝固组织和接头质量起到支配作用,特别是在高速、高效焊接时导致焊缝不连续、产生驼峰等许多不良现象,影响了常规钨极氩弧焊接技术的效率和接头性能。
因此,为解决以上问题,需要一种能够有效控制钨极氩弧焊接成形成性的电弧负压力约束的钨极氩弧焊接方法。
发明内容
有鉴于此,本发明的目的是克服现有技术中的缺陷,提供电弧负压力约束的钨极氩弧焊接方法,能够有效控制钨极氩弧焊接过程,提高焊接精度、效率和性能,实现电弧负压力焊接成形成性,建立电弧负压力约束的电弧焊接科学与技术体系,极具工程应用价值,为现代电弧焊接技术提供了新方法。
本发明的电弧负压力约束的钨极氩弧焊接方法,包括:
在焊接喷嘴或者焊枪外设置通电线圈以形成纵向磁场,所述纵向磁场的磁场方向与电弧中心轴向平行或重合;
调整纵向磁场的磁场强度,结合常规钨极氩弧焊接工艺参数,使得磁场强度大于电弧负压力约束钨极氩弧焊接工艺条件下所需要的临界值,并将大于所述临界值的磁场强度作为目标磁场强度;
将磁场强度达到目标磁场强度的纵向磁场作用于焊接电弧,使得电弧力方向与重力方向相反,促使电弧力由正压力转变为负压力,进而形成电弧负压力约束的钨极氩弧焊接工艺,在电弧负压力下进行钨极氩弧焊接技术过程。
进一步,所述通电线圈采用空心线圈,空心线圈为螺旋绕线线圈,线圈内置铁芯和冷却结构,冷却结构保证线圈适应在焊接高温环境条件下能正常工作,将空心线圈安装在焊接喷嘴或者焊枪外,或者将空心线圈与焊炬或者焊枪集成为一体,形成紧凑的外加磁场-焊枪或者焊炬一体化整体结构,并在所述空心线圈上施加励磁电流形成纵向磁场,进而构建成外加纵向磁场复合钨极氩弧焊接技术模式。
进一步,所述励磁电流的波形、方向、频率以及幅值可调节或可设定;所述励磁电流包括直流、交流、脉冲以及变极性。
进一步,所述纵向磁场的中心线与电弧中心线平行或重合;所述纵向磁场为间隙交变纵向磁场、恒定纵向磁场、脉冲纵向磁场、正弦波纵向磁场、交变纵向磁场中的一种。
进一步,所述间隙交变纵向磁场的占空比为10~60%,间隙交变纵向磁场的频率为1~30Hz。
进一步,所述钨极氩弧焊接方法的工艺参数为:钨极直径为1.2~3.2mm,焊接电流为60~400A,焊接电弧长度为1~4mm,焊接电压为8~45V,焊接速度为10~400cm/min,保护气体流量为10~60L/min,保护气体为99.99%氩气、99.99%氦气以及99.99%氩气和99.99%氦气的混合气体中的一种。
进一步,当焊接电流为100A以及弧长为3mm时,外加纵向磁场强度的临界值为0.02T,焊接电弧中心的电弧压力为0Pa;
当焊接电流为120A以及弧长为3mm时,外加纵向磁场强度的临界值为0.022T,焊接电弧中心的电弧压力为0Pa;
当焊接电流为150A以及弧长为3mm时,外加纵向磁场强度的临界值为0.026T,焊接电弧中心的电弧压力为0Pa。
进一步,所述焊接电弧的电弧力为吸引力,焊接电弧对焊接熔池具有吸引力作用,用于低碳钢、合金钢、不锈钢、装甲钢、轴承钢、模具钢、铝合金、钛合金、镁合金、铜合金、高温合金、高熵合金、难熔金属以及单晶材料的焊接。
本发明的有益效果是:本发明公开的一种电弧负压力约束的钨极氩弧焊接方法,通过基于电弧负压力,不同于常规的电弧正压力产生的作用,使用外加磁场与焊接电弧和焊接熔池内部分布电流所产生的洛伦兹力,实现电弧负压力有效控制钨极氩弧焊接成形成性,建立电弧负压力约束的电弧焊接科学技术体系,为现代电弧焊接技术提供了新方法,产出从无到有基于电弧负压力约束的钨极氩弧焊接科学技术的原创性成果,极具工程应用价值。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1为本发明的电弧负压力钨极氩弧焊接原理示意图;
图2为本发明的电弧正压力钨极氩弧焊接原理示意图;
其中,1-钨极,2-电弧负压,3-熔池,4-工件,5-熔池表面,6-焊接电弧,7-电弧正压。
具体实施方式
以下结合说明书附图对本发明做出进一步的说明,如图所示:
本发明的电弧负压力约束的钨极氩弧焊接方法,采用外加纵向磁场控制钨极氩弧焊接电弧,促使焊接电弧形成电弧负压力,构成电弧负压力约束的钨极氩弧焊接方法;包括:
在焊接喷嘴或者焊枪外设置通电线圈以形成纵向磁场,所述纵向磁场的磁场方向与电弧中心轴向平行或重合;
调整纵向磁场的磁场强度,结合常规钨极氩弧焊接工艺参数,使得磁场强度大于电弧负压力约束钨极氩弧焊接工艺条件下所需要的临界值,并将大于所述临界值的磁场强度作为目标磁场强度;
将磁场强度达到目标磁场强度的纵向磁场作用于焊接电弧,使得电弧力方向与重力方向相反,促使电弧力由正压力转变为负压力,进而形成电弧负压力约束的钨极氩弧焊接工艺,在电弧负压力下进行钨极氩弧焊接技术过程。
本发明通过采用外加纵向磁场方式诱导钨极氩弧焊接电弧出现电弧负压力现象,通过电磁热力综合手段维持电弧负压力钨极氩弧焊接电弧稳定运行,形成了外加纵向磁场产生电弧负压力特征的钨极氩弧焊接新工艺,有效地解决了电弧正压力作用于焊接熔池表面产生凹陷,影响熔池壁面和内部流体运动行为以及凝固成形状态,导致焊缝成形不良,尤其是高速、高效焊接技术条件下,带来熔池稳定性及其控形控性的难题。
本实施例中,所述通电线圈采用空心线圈,空心线圈为螺旋绕线线圈,线圈内置铁芯和冷却结构,冷却结构保证线圈适应在焊接高温环境条件下能正常工作,将空心线圈安装在焊接喷嘴或者焊枪外,或者将空心线圈与焊炬或者焊枪集成为一体,形成紧凑的外加磁场-焊枪或者焊炬一体化整体结构,并在所述空心线圈上施加励磁电流形成纵向磁场,进而构建成外加纵向磁场复合钨极氩弧焊接技术模式。其中,通过使用数字化多功能多波形励磁电源,在空心线圈的螺旋导线上施加多种励磁电流,形成相应的外加纵向磁场;当然了,外加纵向磁场的实现方式也可以采用现有的其他磁场产生装置,在此不再赘述。
本实施例中,所述励磁电流包括直流、交流、脉冲以及变极性。为了使得所述纵向磁场的磁场方向以及磁场强度能够实现自由调整或设定,所述励磁电流的波形、方向、频率以及幅值可调节或可设定。
本实施例中,所述纵向磁场的中心线与电弧中心线平行或重合;其中,所述焊接钨极中心线可以代替电弧中心线,使得纵向磁场中心线与焊接钨极中心线平行或重合;通过上述设置,可以有效控制钨极氩弧焊接电弧构成电弧负压力状态,充分发挥焊接电弧对熔池反重力的吸附作用。所述纵向磁场为间隙交变纵向磁场、恒定纵向磁场、脉冲纵向磁场、正弦波纵向磁场、交变纵向磁场中的一种。所述间隙交变纵向磁场的占空比为10~60%,间隙交变纵向磁场的频率为1~30Hz。
本实施例中,根据所使用的常规钨极氩弧焊接工艺参数,外加纵向磁场强度需要超过与常规焊接工艺参数相匹配的临界值,进而使得钨极氩弧焊接电弧形成电弧负压力。在电弧负压力状态下,焊接电弧等离子体能够出现规律性、稳定的自旋转运动,以及电弧等离子体呈现从试样到电极的反向运动行为,焊接电弧对焊接熔池表现出与常规钨极氩弧焊接相区别的特征吸引力,从而对金属材料实现了基于电弧负压力为基本区别特征的钨极氩弧焊焊接过程,构成了电弧负压力约束钨极氩弧焊焊接新技术。
所述钨极氩弧焊接方法的工艺参数为:钨极直径为1.2~3.2mm,焊接电流为60~400A,焊接电弧长度为1~4mm,焊接电压为8~45V,焊接速度为10~400cm/min,保护气体流量为10~60L/min,保护气体为99.99%氩气、99.99%氦气以及99.99%氩气和99.99%氦气的混合气体中的一种。
其中,所述临界值可以根据实际工况进行设定,当焊接电流为100A以及弧长为3mm时,外加纵向磁场强度的临界值为0.02T,焊接电弧中心的电弧压力为0Pa,即外加纵向磁场强度超过0.02T后构成稳定的电弧负压力约束钨极氩弧焊接工艺;其他条件不变,当焊接电流为120A以及弧长为3mm时,外加纵向磁场强度的临界值为0.022T,焊接电弧中心的电弧压力为0Pa;其他条件不变,当焊接电流为150A以及弧长为3mm时,外加纵向磁场强度的临界值为0.026T,焊接电弧中心的电弧压力为0Pa。
本实施例中,可以采用焊接机器人和9轴焊接变位焊接平台,配合数字化钨极氩弧焊接电源、送丝机构、气体保护和焊枪系统,构成电弧负压力约束的钨极氩弧焊接设备。电弧负压力约束的钨极氩弧焊接技术与常规外场复合钨极氩弧焊接技术的区别特征是外加纵向磁场必须超过与常规钨极氩弧焊接工艺参数相匹配的临界值,即电弧负压力约束的钨极氩弧焊接技术的外加磁场工艺参数范围不在常规外场复合钨极氩弧焊接技术的外加磁场参数范围内;
本发明的电弧负压力约束的钨极氩弧焊接技术的工艺特征具有与常规钨极氩弧焊接技术(电弧正压力)、常规外场复合钨极氩弧焊接技术(电弧正压力)不具备的电弧吸引作用(电弧负压力作用),电弧负压力约束的钨极氩弧焊接技术具有与常规钨极氩弧焊接技术(电弧正压力)、常规外场复合钨极氩弧焊接技术(电弧正压力)相区别的焊接热效、焊接力效应和焊接动量、质量、热量传递行为,外加纵向磁场的电弧负压力对钨极氩弧焊接过程具有区别性的电磁搅拌细化晶粒,能够提高焊缝质量。
本实施例中,所述焊接电弧的电弧力为吸引力,焊接电弧对焊接熔池具有吸引力作用,用于低碳钢、合金钢、不锈钢、装甲钢、轴承钢、模具钢、铝合金、钛合金、镁合金、铜合金、高温合金、高熵合金、难熔金属以及单晶材料的焊接。
电弧负压力约束的钨极氩弧焊接实施例一为:99.99%氩气保护,氩气流量16~24L/min,焊接电流100A,电弧长度1~3mm,钨极直径2.4mm,电弧电压12.8V,外加纵向磁场强度临界值为0.02T,外加磁场强度最佳范围为0.021~0.024T,磁场频率为8~10Hz,焊接速度12~22cm/min,外加纵向磁场为间隙交变纵向磁场,占空比为20%,焊接板材为铝合金5356,板厚为1.2mm,上述焊接工艺参数构成了电弧负压力约束的钨极氩弧焊接技术。
电弧负压力约束的钨极氩弧焊接实施例二为:99.99%氩气保护,氩气流量12~22L/min,焊接电流120A,电弧长度1~3mm,钨极直径3.2mm,电弧电压14.6V,外加纵向磁场强度临界值为0.022T,外加磁场强度最佳值为0.024T,磁场频率为8Hz,焊接速度16~26cm/min,外加纵向磁场为间隙交变纵向磁场,占空比为20%,焊接板材为钛合金TC4,板厚为1.6mm,上述焊接工艺参数构成了电弧负压力约束的钨极氩弧焊接技术。
电弧负压力约束的钨极氩弧焊接实施例三为:99.99%氩气保护,氩气流量12~22L/min,焊接电流150A,电弧长度1~3mm,钨极直径3.2mm,电弧电压14.6V,外加纵向磁场强度临界值为0.026T,外加磁场强度最佳值为0.028T,磁场频率为12Hz,焊接速度18~24cm/min,外加纵向磁场为间隙交变纵向磁场,占空比为25%,焊接板材为模具钢H13,板厚为1.8mm,上述焊接工艺参数构成了电弧负压力约束的钨极氩弧焊接技术。
本发明的电弧负压力约束的钨极氩弧焊接方法,存在焊接电弧负压效应,当钨极氩弧焊接电弧为负压力条件下,在正常水平焊接位置时,电弧力的方向与重力方向相反,这样就与常规钨极氩弧焊接电弧力与重力方向相同(一致)的情况完全不同。
在本发明的技术条件下研究发现了焊接电弧等离子体呈现反向运动特性,这样焊接电弧对焊接熔池的热流状态也发生改变,焊接电弧对焊接熔池熔体产生吸附作用,而不是常规焊接电弧对熔池熔体施加正压力作用,焊接熔池熔体不是被电弧挖掘或者排斥而是被吸附被支撑,焊接熔池表面自然会发生改变,会避免因熔池表面凹陷、底部塌陷、壁面流通道变窄,避免了常规钨极氩弧焊接时导致的熔体向熔池尾部流动不畅、尾部熔体回流受阻、热流传输不充分等原因而产生的熔池尾部凝固金属堆积、出现驼峰的不良现象;同时,焊接电弧热力特性及其分布特征改变带来了熔池熔体运动状态的变化,进而影响了焊缝凝固行为和成形成性特征,这样就形成了合理的电弧负压力约束的钨极氩弧焊接热效应、电弧负压力效应、熔池稳定机制和成形成性的控制技术。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种电弧负压力约束的钨极氩弧焊接方法,其特征在于:包括:
在焊接喷嘴或者焊枪外设置通电线圈以形成纵向磁场,所述纵向磁场的磁场方向与电弧中心轴向平行或重合;
调整纵向磁场的磁场强度,结合常规钨极氩弧焊接工艺参数,使得磁场强度大于电弧负压力约束钨极氩弧焊接工艺条件下所需要的临界值,并将大于所述临界值的磁场强度作为目标磁场强度;
所述纵向磁场的中心线与电弧中心线平行或重合;所述纵向磁场为间隙交变纵向磁场;
将磁场强度达到目标磁场强度的纵向磁场作用于焊接电弧,使得电弧力方向与重力方向相反,促使电弧力由正压力转变为负压力,进而形成电弧负压力约束的钨极氩弧焊接工艺,在电弧负压力下进行钨极氩弧焊接技术过程;
所述钨极氩弧焊接方法的工艺参数为:99.99%氩气保护,氩气流量16~24L/min,焊接电流100A,电弧长度1~3mm,钨极直径2.4mm,电弧电压12.8V,外加纵向磁场强度临界值为0.02T,磁场频率为8~10Hz,焊接速度12~22cm/min,占空比为20%,焊接板材为铝合金5356,板厚为1.2mm;
或者,
所述钨极氩弧焊接方法的工艺参数为:99.99%氩气保护,氩气流量12~22L/min,焊接电流120A,电弧长度1~3mm,钨极直径3.2mm,电弧电压14.6V,外加纵向磁场强度临界值为0.022T,磁场频率为8Hz,焊接速度16~26cm/min,占空比为20%,焊接板材为钛合金TC4,板厚为1.6mm;
或者,
所述钨极氩弧焊接方法的工艺参数为:99.99%氩气保护,氩气流量12~22L/min,焊接电流150A,电弧长度1~3mm,钨极直径3.2mm,电弧电压14.6V,外加纵向磁场强度临界值为0.026T,磁场频率为12Hz,焊接速度18~24cm/min,占空比为25%,焊接板材为模具钢H13,板厚为1.8mm。
2.根据权利要求1所述的电弧负压力约束的钨极氩弧焊接方法,其特征在于:所述通电线圈采用空心线圈,空心线圈为螺旋绕线线圈,线圈内置铁芯和冷却结构,冷却结构保证线圈适应在焊接高温环境条件下能正常工作,将空心线圈安装在焊接喷嘴或者焊枪外,或者将空心线圈与焊炬或者焊枪集成为一体,形成紧凑的外加磁场-焊枪或者焊炬一体化整体结构,并在所述空心线圈上施加励磁电流形成纵向磁场,进而构建成外加纵向磁场复合钨极氩弧焊接技术模式。
3.根据权利要求2所述的电弧负压力约束的钨极氩弧焊接方法,其特征在于:所述励磁电流的波形、方向、频率以及幅值可调节或可设定。
4.根据权利要求2所述的电弧负压力约束的钨极氩弧焊接方法,其特征在于:所述纵向磁场还可为脉冲纵向磁场、正弦波纵向磁场中的一种。
5.根据权利要求1所述的电弧负压力约束的钨极氩弧焊接方法,其特征在于:所述焊接电弧的电弧力为吸引力,焊接电弧对焊接熔池具有吸引力作用,用于低碳钢、合金钢、不锈钢、装甲钢、轴承钢、模具钢、铝合金、钛合金、镁合金、铜合金、高温合金、高熵合金、难熔金属以及单晶材料的焊接。
CN202210408897.6A 2022-04-19 2022-04-19 电弧负压力约束的钨极氩弧焊接方法 Active CN115007974B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210408897.6A CN115007974B (zh) 2022-04-19 2022-04-19 电弧负压力约束的钨极氩弧焊接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210408897.6A CN115007974B (zh) 2022-04-19 2022-04-19 电弧负压力约束的钨极氩弧焊接方法

Publications (2)

Publication Number Publication Date
CN115007974A CN115007974A (zh) 2022-09-06
CN115007974B true CN115007974B (zh) 2024-03-08

Family

ID=83067368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210408897.6A Active CN115007974B (zh) 2022-04-19 2022-04-19 电弧负压力约束的钨极氩弧焊接方法

Country Status (1)

Country Link
CN (1) CN115007974B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2082602A (en) * 1929-04-26 1937-06-01 Gen Electric Thermionic cathode
DE1565426A1 (de) * 1965-07-21 1970-03-05 Yvon Broyard Verbesserungen am Lichtbogenschweissverfahren mit Schutzgas
JPH04178272A (ja) * 1990-11-09 1992-06-25 Ryoda Sato プラズマアーク発生装置
US6103074A (en) * 1998-02-14 2000-08-15 Phygen, Inc. Cathode arc vapor deposition method and apparatus
CN101462196A (zh) * 2008-12-31 2009-06-24 重庆大学 双相不锈钢厚板电磁复合双面埋弧焊接方法与设备
WO2014137299A1 (en) * 2013-03-05 2014-09-12 Ga Drilling, A. S. Generating electric arc, which directly areally thermally and mechanically acts on material, and device for generating electric arc
CN105478969A (zh) * 2016-01-12 2016-04-13 北京工业大学 双中心负压电弧填丝焊接方法
CN107052523A (zh) * 2017-06-19 2017-08-18 沈阳工业大学 一种磁压缩焊接电弧装置及焊接方法
CN111774700A (zh) * 2020-06-16 2020-10-16 广东省焊接技术研究所(广东省中乌研究院) 一种窄间隙tig焊接装置
JP2021013955A (ja) * 2019-07-16 2021-02-12 大陽日酸株式会社 Tig溶接方法
CN112775551A (zh) * 2021-01-27 2021-05-11 哈尔滨焊接研究院有限公司 基于磁旋控技术的超高功率激光与空心钨极复合焊接方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160067811A1 (en) * 2014-09-10 2016-03-10 Beijing University Of Technology Central negative pressure arc welding apparatus and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2082602A (en) * 1929-04-26 1937-06-01 Gen Electric Thermionic cathode
DE1565426A1 (de) * 1965-07-21 1970-03-05 Yvon Broyard Verbesserungen am Lichtbogenschweissverfahren mit Schutzgas
JPH04178272A (ja) * 1990-11-09 1992-06-25 Ryoda Sato プラズマアーク発生装置
US6103074A (en) * 1998-02-14 2000-08-15 Phygen, Inc. Cathode arc vapor deposition method and apparatus
CN101462196A (zh) * 2008-12-31 2009-06-24 重庆大学 双相不锈钢厚板电磁复合双面埋弧焊接方法与设备
WO2014137299A1 (en) * 2013-03-05 2014-09-12 Ga Drilling, A. S. Generating electric arc, which directly areally thermally and mechanically acts on material, and device for generating electric arc
CN105478969A (zh) * 2016-01-12 2016-04-13 北京工业大学 双中心负压电弧填丝焊接方法
CN107052523A (zh) * 2017-06-19 2017-08-18 沈阳工业大学 一种磁压缩焊接电弧装置及焊接方法
JP2021013955A (ja) * 2019-07-16 2021-02-12 大陽日酸株式会社 Tig溶接方法
CN111774700A (zh) * 2020-06-16 2020-10-16 广东省焊接技术研究所(广东省中乌研究院) 一种窄间隙tig焊接装置
CN112775551A (zh) * 2021-01-27 2021-05-11 哈尔滨焊接研究院有限公司 基于磁旋控技术的超高功率激光与空心钨极复合焊接方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding;Luo, J;《INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY》;20150830;第84卷(第1-4期);647-661 *
Simulation and analysis of heat transfer and fluid flow characteristics of arc plasma in longitudinal magnetic field-tungsten inert gas hybrid welding;Liu, ZJ;《INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY》;20180628;第98卷(第5-8期);2015-2030 *
刘政军.纵向磁场下GTAW电弧传热与流动数值模拟.《焊接学报》.2019,第40卷(第5期),120-126. *
周祥曼 ; 田启华 ; 杜义贤 ; 柏兴旺 ; .外加稳态磁场作用下的焊接电弧数值仿真.机械科学与技术.2018,(07),1068-1075. *
外加纵向磁场GTAW 焊缝成形机理;罗键;《焊接学报》;20010630;第22卷(第3期);17-20 *
陈炜煊.外加磁场对钨极电弧压力分布与焊缝成形的影响.《热加工工艺》.2021,第50卷(第13期),12-16. *
黄勇 ; 刘林 ; 陆肃中 ; 王新鑫 ; .外加纵向磁场对TIG电弧特性影响的数值分析.兰州理工大学学报.2016,(03),31-34. *

Also Published As

Publication number Publication date
CN115007974A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN114713942B (zh) 电弧负压力约束的钨极氩弧增材制造方法
JP4726038B2 (ja) 溶接のためのシステム及びその使用方法
US3194941A (en) High voltage arc plasma generator
US20100193480A1 (en) Deposition of materials with low ductility using solid free-form fabrication
CN1962147A (zh) 脉冲电弧焊方法
KR20010102442A (ko) 소모전극식 아크용접방법 및 장치
CN108247226A (zh) 一种基于洛伦兹力的激光焊接熔池控制方法
Zhang et al. Modified active control of metal transfer and pulsed GMAW of titanium
US7114548B2 (en) Method and apparatus for treating articles during formation
EP3277061A1 (en) Plasma torch with structure capable of reversed polarity/straight polarity operation
CN105328317A (zh) 一种外加磁场装置控制co2焊接飞溅率的系统
EP3530395B1 (en) Ac pulse arc welding control method
CN115007974B (zh) 电弧负压力约束的钨极氩弧焊接方法
CN113102891B (zh) 一种外加磁场抑制铝合金激光-mig复合焊接塌陷的方法及装置
CZ298370B6 (cs) Zpusob tepelného zpracovávání roztaveného kovu, zarízení a elektroda pro generátor plazmového oblouku
CN210281053U (zh) 用于连接真空焊箱的等离子焊枪
Song et al. Study on ac-PMIG welding of AZ31B magnesium alloy
CN112719594A (zh) 一种铝合金表面预置粉末的电磁辅助激光焊接方法
WO1989001281A1 (en) Cathode structure of a plasma torch
CN108453387B (zh) 超高功率激光与多钨极磁控旋动电场同轴复合焊方法
CN113560755B (zh) 磁场相位调控式等离子mag焊接装置及方法
US3294954A (en) Welding method and apparatus
CN113319430A (zh) 一种磁场辅助多级氩弧与激光中心耦合共熔池焊接装置
Agrawal et al. New advancements in electrical discharge machining of metal matrix composite: An overview
JPS59190302A (ja) 超微粒子製造方法および装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant