CN115007171B - 一种甲醇氧化催化剂的制备方法 - Google Patents

一种甲醇氧化催化剂的制备方法 Download PDF

Info

Publication number
CN115007171B
CN115007171B CN202210865422.XA CN202210865422A CN115007171B CN 115007171 B CN115007171 B CN 115007171B CN 202210865422 A CN202210865422 A CN 202210865422A CN 115007171 B CN115007171 B CN 115007171B
Authority
CN
China
Prior art keywords
hours
niwo
oxidation catalyst
methanol oxidation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210865422.XA
Other languages
English (en)
Other versions
CN115007171A (zh
Inventor
黄海平
孙汉
刘遂军
廖金生
温和瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN202210865422.XA priority Critical patent/CN115007171B/zh
Publication of CN115007171A publication Critical patent/CN115007171A/zh
Application granted granted Critical
Publication of CN115007171B publication Critical patent/CN115007171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种甲醇氧化催化剂的制备方法,具体为:将Na2WO4·2H2O和Ni(NO3)2·6H2O分散在蒸馏水中,超声化学反应后,搅拌均匀,得到黑色的前驱体溶液,黑色溶液在180‑200℃进行液相水热反应;冷却后,将样品过滤,清洗,去除残留的杂质,在70‑80°C的温度下干燥8‑10小时,制得镍钨酸盐;将镍钨酸盐分散在Au胶体中并搅拌均匀,然后收集产品并在超纯水中清洗以去除杂质,在50‑70℃下干燥8‑10小时,即得催化剂。本发明制得的甲醇氧化催化剂具有很高的电化学活性,对MOR具有出色稳定性和抗毒性,不含有Pt,降低了成本,克服了Pt导致的CO吸附中毒问题。

Description

一种甲醇氧化催化剂的制备方法
技术领域
本发明属于氧化催化技术领域,涉及一种甲醇氧化催化剂的制备方法。
背景技术
甲醇氧化催化剂领域,主要是采用铂基材料为催化剂。但是由于铂价格昂贵,且容易发生一氧化碳(CO)中毒,一直是制约铂基催化剂的主要因素。为降低成本、提高催化活性,通常将Pt与其他金属组成双元或者多元纳米复合材料。如Pt-Ru合金中 (Li, L; Xing,YC. Energies, 2009, 2, 789-804),Ru的存在可以弱化CO在Pt上的吸附强度,降低Pt 的中毒程度。与纯Pt相比,复合催化剂虽然能强化催化效果,但因体系中Pt的存在,很难从根本上消除CO的表面吸附。为此,寻求非Pt类的高活性催化剂,既缓解Pt高昂的价格压力,又能从根本上解决CO吸附中毒的问题,变得异常紧迫。
在现有关于甲醇氧化的非铂类催化剂当中,主要使用钯基催化剂。但是 Pd 催化剂在许多反应中的电化学性能无法超越 Pt(Chen, D; He, Z; Pei, S; et al. Journal of Alloys and Compounds, 2019, 785, 781-788),而且Pd对CO中毒也很敏感,因此,探讨基他非铂类甲醇氧化催化剂,仍为当前研究的热点。
另一个提高电催化剂性能的成功策略是在催化剂上负载金属纳米颗粒以形成复合 材料。例如,Mohamed等(Mohamed, MM; Khairy, M; Eid, S. Journal of PowerSources, 2016, 304: 255-265)曾报道将银纳米颗粒掺入钛酸盐纳米管中用于甲醇的氧化,材料展示了良好的催化效果。但是银纳米材料由于在空气中容易被氧化变质,因此其稳定性有待进一步加强。
发明内容
为了解决上述问题,本发明提供一种甲醇氧化催化剂的制备方法,具有很高的电化学活性,对MOR具有出色稳定性和抗毒性,不含有Pt,降低了成本,克服了Pt导致的CO吸附中毒问题。
本发明所采用的技术方案是,一种甲醇氧化催化剂的制备方法,具体按照以下步骤进行:
S1,将19.1-32.9 mg Na2WO4·2H2O和29.1-67.3 mg Ni(NO3)2·6H2O分散在60-80ml蒸馏水中,超声化学反应后,搅拌均匀,得到黑色的前驱体溶液,黑色溶液在180-200 ℃进行液相水热反应,保持8-12小时;
S2,冷却后,将样品过滤,清洗,去除残留的杂质,在70-80 °C的温度下干燥8-10小时,制得镍钨酸盐;
S3,将45-55 mg 镍钨酸盐分散在30-40 mL Au胶体中并搅拌均匀,然后收集产品并在超纯水中清洗以去除杂质,在50-70 ℃下干燥8-10小时,即得催化剂。
进一步的,所述步骤S2中,镍钨酸盐的Ni/W原子比为1:1。
进一步的,所述步骤S2中,镍钨酸盐的Ni/W原子比为2:1。
进一步的,所述步骤S2中,镍钨酸盐的Ni/W原子比为4:1。
进一步的,所述超声化学反应的超声频率36-44 KHz、功率25-52 W。
进一步的,所述超声化学反应时间为30-45min。
进一步的,所述步骤S1中,搅拌时间为2-4小时。
进一步的,所述步骤S2中,用体积比为1:1的水和乙醇水清洗。
进一步的,所述步骤S3中,搅拌时间为3-4小时。
本发明的有益效果是:
本发明实施例制备的金纳米粒子修饰的镍钨酸盐纳米复合物用于电催化氧化甲醇,镍钨酸是主催化剂,是无铂类甲醇电化学氧化催化剂,低成本、活性高,克服了Pt导致的CO吸附中毒问题,提高了材料的催化性能。
本发明实施例通过水热法合成纳米材料,工艺流程简单,将Au纳米粒子沉积在不同比例的镍钨酸盐纳米材料表面,得到Au/NiWO复合催化剂,增加了复合材料的比表面积、孔径和孔体积,从而增加了可用于催化反应的活性位点,促进催化性能。通过XRD测试表明这些材料具有独特的晶体结构,通过TEM和HRTEM测量技术显示,AuNPs装饰到合成的镍钨酸盐材料上。电化学测量表明,所制备的电催化剂具有很高的电化学活性和对MOR的出色稳定性和抗毒性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中Au/NiWO (2:1) (a)、Au/NiWO (1:1) (b)、Au/NiWO (4:1)(c) 在1 M KOH和0.5 M CH3OH溶液中的CV曲线。
图2是本发明实施例2制得的催化剂Au/NiWO(2:1) (a)和对比例1制得的催化剂NiWO(2:1) (b)改性电极的循环伏安图(CV)曲线。
图3是本发明实施例中Au/NiWO (2:1) 在1.0 M KOH中,不同浓度的甲醇(0.3 ~1.0 M)下的CV曲线。
图4是本发明实施例中Au/NiWO (2:1) (a)、Au/NiWO (1:1) (b)、Au/NiWO (4:1)(c)的i-t曲线。
图5是本发明实施例中Au/NiWO (2:1) (a)、Au/NiWO (1:1) (b)、Au/NiWO (4:1)(c)的Tafel图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1,
一种甲醇氧化催化剂的制备方法,具体按照以下步骤进行:
S1,将32.9 mg Na2WO4·2H2O和29.1 mg Ni(NO3)2·6H2O分散在70 ml蒸馏水中,Na2WO4·2H2O和Ni(NO3)2·6H2O的摩尔比为1:1;在超声频率40 KHz、功率40 W的条件下超声化学反应30 min,搅拌2小时得到前驱体溶液,将得到的黑色溶液放入100 mL特氟隆内衬不锈钢水热反应釜中,加热到180 ℃保持12小时;
S2,冷却后,将样品过滤出来,用水和乙醇(体积比为1:1)洗三次,以去除残留的杂质,并转移到真空干燥箱中,在70°C的温度下干燥10小时,制得Ni/W原子数比为1:1的NiWO4
S3,将45mg 镍钨酸盐(NiWO4)分散在40 mL Au胶体中并搅拌3小时,然后收集产品并在超纯水中清洗以去除杂质,在50℃下干燥10小时,即得Au/NiWO(1:1)催化剂。
实施例2,
一种甲醇氧化催化剂的制备方法,具体按照以下步骤进行:
S1,将26.3 mg Na2WO4·2H2O和46.4 mg Ni(NO3)2·6H2O分散在60 ml蒸馏水中,Na2WO4·2H2O和Ni(NO3)2·6H2O的摩尔比为1:2;在超声频率36 KHz、功率28 W的条件下超声化学反应40min,搅拌3小时得到前驱体溶液,将得到的黑色溶液放入100 mL特氟隆内衬不锈钢高压锅中,加热到190 ℃保持8小时;
S2,冷却后,将样品过滤出来,用水和乙醇(体积比为1:1)洗三次,以去除残留的杂质,并转移到真空干燥箱中,在75 °C的温度下干燥9小时,制得Ni/W原子比为2:1的NiWO4
S3,将50 mg 镍钨酸盐(NiWO4)分散在35 mL Au胶体中并搅拌3.5小时,然后收集产品并在超纯水中清洗以去除杂质,在60 ℃下干燥9小时,即得Au/NiWO(2:1)催化剂。
实施例3,
一种甲醇氧化催化剂的制备方法,具体按照以下步骤进行:
S1,将19.1 mg Na2WO4·2H2O和67.3 mg Ni(NO3)2·6H2O分散在80 ml蒸馏水中,Na2WO4·2H2O和Ni(NO3)2·6H2O的摩尔比为1:4;在超声频率44 KHz、功率52 W的条件下超声化学反应45 min,搅拌4小时得到前驱体溶液,将得到的黑色溶液放入100 mL特氟隆内衬不锈钢高压锅中,加热到200 ℃保持10小时;
S2,冷却后,将样品过滤出来,用水和乙醇(体积比为1:1)洗三次,以去除残留的杂质,并转移到真空干燥箱中,在80 °C的温度下干燥8小时,制得Ni/W原子比为4:1的NiWO4
S3,将55 mg 镍钨酸盐(NiWO4)分散在30 mL Au胶体中并搅拌4小时,然后收集产品并在超纯水中清洗以去除杂质,在70 ℃下干燥8小时,即得Au/NiWO(4:1)催化剂。
对实施例1-3三种不同金属比例的纳米材料对甲醇氧化反应(MOR)的电化学催化性能进行了测试。
图1显示了在含有1M KOH和0.5M CH3OH的电解液中,Au/NiWO(2:1)(a)、Au/NiWO(1:1)(b)、Au/NiWO(4:1)(c)改性电极的循环伏安图(CV)曲线。Au/NiWO(2:1)显示出最大的氧化电流密度(32.06 mA/cm2),是Au/NiWO(1:1)(25.44 mA/cm2)和Au/NiWO(4:1)(15.41mA/cm2)的1.26和2.08倍。
图3显示了Au/NiWO (2:1)/GCE在1 M KOH电解质中不同浓度的甲醇中的CV响应。随着甲醇浓度从0.3M到1.0 M的不断增加,Au/NiWO(2:1)的峰值电流密度从20.79 mA/cm2增加到44.47 mA/cm2,甲醇浓度越高,氧化过程中积累的中间产物就越多。
在1M KOH含0.5 M CH3OH溶液中,1.20 V电位下,通过计时电流法对Au/NiWO(1:1)、Au/NiWO(2:1)和Au/NiWO(4:1)进行了7200秒的测试,如图4所示,可以清楚地看到,随着中间物的积累并占据催化剂的活性位点,电流逐渐减小,最后达到稳定状态。7200s后,Au/NiWO(2:1)的电流密度稳定在1.76 mA/cm2,是Au/NiWO(1:1)(0.92 mA/cm2)和Au/NiWO(4:1)(0.18 mA/cm2)的1.92和9.76倍,它意味着Au/NiWO(2:1)具有最好的抗毒性。
图5显示了三种催化剂的Tafel斜率,Au/NiWO(2:1)、Au/NiWO(1:1)和Au/NiWO(4:1)的斜率分别为45.1 mV/ Dec、49.5 mV/ Dec和68.2 mV/ Dec。Au/NiWO (2:1) 纳米复合材料较小的Tafel斜率表明其具有良好的催化活性和对中间体的抗毒性。
镍钨酸盐在甲醇和水溶液中反应,会形成NiWO4–COads 和NiWO4–OHads等中间产物,并最终形成CO2 产物,不同的金属的摩尔配比会导致中间产物形成的快慢,最终影响催化活性。因此在保证了三种不同催化剂所使用的金属总量相同的情况下,比较合成不同金属摩尔比例的纳米材料的催化性能才有意义,如每个实施例中的S1。此外,AuNPs可以作为电子吸收材料,促进金属的氧化,使金属离子达到更高的氧化状态,提高了催化性能。
对比例1,
一种甲醇氧化催化剂的制备方法,没有步骤S3,其他步骤与实施例2相同。
制得的催化剂NiWO(2:1)与实施例2制得的催化剂Au/NiWO(2:1)的性能对比,如图2所示,Au/NiWO(2:1)显示出最大的氧化电流密度(32.06 mA/cm2),是NiWO(2:1)(10.41mA/cm2)的3.08倍。电催化性能的增强是由于AuNPs可以作为电子吸收材料,促进金属的氧化,使金属离子达到更高的氧化状态。较高的氧化状态刺激了电极/电解质界面的快速电荷转移,可以提高催化活性。
对比例2,
称取11.52g 磷钨酸固体(4mmol),溶于20ml水和无水乙醇(体积比1:5)混合溶剂中,磁力搅拌使其溶解。待其全部溶解后,在不断搅拌下缓慢加入NiCl2·6H2O 1.43g(6mmol),继续搅拌1h,使其发生复分解反应。蒸去溶剂后,将固体置于120℃烘箱干燥2.0h。研磨,马弗炉中300℃下焙烧2.0h(1℃/min),即得淡黄色NiPW催化剂10.63g,收率82.1%。制得的NiPW类催化剂只对活性高于苄醇的醇有很强的催化活性,选择性不理想,对仲醇和伯醇几乎没有活性,无法进行甲醇的氧化,不能应用于燃料电池中。此外该反应需要进行300℃高温焙烧的后处理过程,焙烧涉及高温操作,如果将对比例2中焙烧的温度降低为200℃,则不能制得对应催化剂。
对比例3,
一种甲醇氧化催化剂的制备方法,如果步骤S1中,没有进行超声化学反应,其他步骤与实施例2相同。不能得到对应的催化剂。原因是本发明步骤S1中将Na2WO4·2H2O和Ni(NO3)2·6H2O的水溶液在超声频率36-44 KHz(40 KHz±10%)、功率25-52 W(40 W±30%)的条件下超声化学反应30-45min,在超声化学反应中,声压的变化使溶剂受到大量的压缩和稀疏作用,流体的急剧运动会产生气穴,当大量振动能输入微小体积的气穴时,导致那些尺寸不稳定的空化微气泡爆裂,从而产生很大的压力和相当高的温度,在微观尺度上提供一种反应器内的高温高压反应。在制备钨酸镍的过程中,超声化学反应中产生强烈的微射流能将硝酸镍和钨酸钠进行乳化操作,为催化反应提供了非常特殊的化学环境,促进了硝酸镍和钨酸钠之间的反应,得到前驱体溶液,直接水热反应得到产物,无需后继的高温焙烧工艺,制备流程更简单;即使最后省去了将干燥粉末进行高温高压的焙烧操作,依然得到了性能达到要求的催化剂。
本发明实施例中超声频率、功率如果超过该范围,容易使溶剂在短时间内产生高温反应,致使反应不可控,容易超出预反应的处理过程。本发明实施例中各参数的范围值,若超出对应范围,则所制得产物的形貌会有所不同,同时催化剂的催化性能会有所变化。因为各个组分的含量不同时,所形成的材料的导电性、孔径、孔体积和比表面积也大不相同,最终导致催化性能不一样。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (4)

1.一种甲醇氧化催化剂的制备方法,其特征在于,具体按照以下步骤进行:
S1,将19.1-32.9mg Na2WO4·2H2O和29.1-67.3mg Ni(NO3)2·6H2O分散在60-80ml蒸馏水中,超声化学反应后,搅拌均匀,得到黑色的前驱体溶液,黑色溶液在180-200℃进行液相水热反应,保持8-12小时;
S2,冷却后,将样品过滤,清洗,去除残留的杂质,在70-80℃的温度下干燥8-10小时,制得镍钨酸盐;
S3,将45-55mg镍钨酸盐分散在30-40mL Au胶体中并搅拌均匀,然后收集产品并在超纯水中清洗以去除杂质,在50-70℃下干燥8-10小时,即得催化剂;
所述步骤S2中,镍钨酸盐的Ni/W原子比为2:1;
所述超声化学反应的超声频率36-44KHz、功率25-52W;
所述超声化学反应时间为30-45min。
2.根据权利要求1所述一种甲醇氧化催化剂的制备方法,其特征在于,所述步骤S1中,搅拌时间为2-4小时。
3.根据权利要求1所述一种甲醇氧化催化剂的制备方法,其特征在于,所述步骤S2中,用体积比为1:1的水和乙醇水清洗。
4.根据权利要求1所述一种甲醇氧化催化剂的制备方法,其特征在于,所述步骤S3中,搅拌时间为3-4小时。
CN202210865422.XA 2022-07-22 2022-07-22 一种甲醇氧化催化剂的制备方法 Active CN115007171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210865422.XA CN115007171B (zh) 2022-07-22 2022-07-22 一种甲醇氧化催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210865422.XA CN115007171B (zh) 2022-07-22 2022-07-22 一种甲醇氧化催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN115007171A CN115007171A (zh) 2022-09-06
CN115007171B true CN115007171B (zh) 2024-03-19

Family

ID=83082182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210865422.XA Active CN115007171B (zh) 2022-07-22 2022-07-22 一种甲醇氧化催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN115007171B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046604A (ja) * 2008-08-21 2010-03-04 Utsunomiya Univ 光触媒、水素製造方法、及び有機物分解方法
CN105126871A (zh) * 2015-09-02 2015-12-09 厦门大学 一种处理有机小分子的废水催化剂及其制备方法
CN109092326A (zh) * 2018-07-02 2018-12-28 曲阜师范大学 一种核壳状钨酸镍微球负载钯催化剂及其制备方法和应用
CN110227492A (zh) * 2019-04-29 2019-09-13 中国科学院山西煤炭化学研究所 一种纳米半导体光催化剂及其制备方法
CN113751032A (zh) * 2021-10-12 2021-12-07 河南理工大学 一种用于有机污染物光降解催化剂的制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046604A (ja) * 2008-08-21 2010-03-04 Utsunomiya Univ 光触媒、水素製造方法、及び有機物分解方法
CN105126871A (zh) * 2015-09-02 2015-12-09 厦门大学 一种处理有机小分子的废水催化剂及其制备方法
CN109092326A (zh) * 2018-07-02 2018-12-28 曲阜师范大学 一种核壳状钨酸镍微球负载钯催化剂及其制备方法和应用
CN110227492A (zh) * 2019-04-29 2019-09-13 中国科学院山西煤炭化学研究所 一种纳米半导体光催化剂及其制备方法
CN113751032A (zh) * 2021-10-12 2021-12-07 河南理工大学 一种用于有机污染物光降解催化剂的制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Effective charge separation in rGO/NiWO4@Au photocatalyst for efficient CO2 reduction under visible light";Jongmin Shin等;Journal of Industrial and Engineering Chemistry;第81卷;第427-429页 *
"Polyethylene glycol assisted one-pot hydrothermal synthesis of NiWO4/WO3 heterojunction for direct Methanol fuel cells";Mohamed Mokhtar Mohamed等;Electrochimica Acta;第263卷;第286-298页 *
"Sensitive, selective and rapid ammonia-sensing by gold nanoparticle sensitized V2O5/CuWO4 heterojunctions for exhaled breath analysis";H. Naderi等;Applied Surface Science;第501卷;第1-8页 *

Also Published As

Publication number Publication date
CN115007171A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
Wang et al. Novel flower-like PdAu (Cu) anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation
Zhang et al. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd–Co alloy electrocatalysts
Chen et al. Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications
Zhang et al. Ultrafine nanoporous PdFe/Fe 3 O 4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media
KR101541207B1 (ko) 촉매 제조 방법 및 그 촉매의 용도
Tan et al. Pd-around-CeO 2− x hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism
CN105431230A (zh) 在载体上形成贵金属纳米粒子的方法
KR101649384B1 (ko) 촉매의 연속 제조 방법
d'Arbigny et al. Hollow microspheres with a tungsten carbide kernel for PEMFC application
Xiao et al. Oxygen-doped carbonaceous polypyrrole nanotubes-supported Ag nanoparticle as electrocatalyst for oxygen reduction reaction in alkaline solution
CN104607186B (zh) 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
Farsadrooh et al. Fast improved polyol method for synthesis of Pd/C catalyst with high performance toward ethanol electrooxidation
CN105655607A (zh) 碳纳米管高负载铂基纳米催化剂及其制备方法
CN109585865A (zh) 一种超小的单分散PtCu合金催化剂及其制备方法与应用
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
CN110302799A (zh) 电化学还原二氧化碳为一氧化碳的催化剂及其制备方法
Beydaghi et al. Preparation and characterization of electrocatalyst nanoparticles for direct methanol fuel cell applications using β-D-glucose as a protection agent
CN103706375A (zh) 用于质子交换膜燃料电池的PtFe/C催化剂的制备方法
CN102347494A (zh) 电极催化剂和其制法、及含其的膜电极组件和燃料电池
Meng et al. Enhancing electrocatalytic methanol oxidation of Pd-Ir nanoalloy through electron-rich catalytic interface induced by incorporating phosphorus
Han et al. Palladium supported on NiFe layered double hydroxide as an effective electrocatalyst for methanol electro-oxidation
CN115007171B (zh) 一种甲醇氧化催化剂的制备方法
CN108417848A (zh) 一种具备高效电催化氧还原性能的铂镍合金催化剂纳米材料及其制备方法与应用
RU2446009C1 (ru) Способ приготовления платино-рутениевых электрокатализаторов
CN110252290A (zh) 高分散Pt/C催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant