CN115006598A - 掺锶硅酸钙-丝蛋白复合材料制备方法与应用 - Google Patents

掺锶硅酸钙-丝蛋白复合材料制备方法与应用 Download PDF

Info

Publication number
CN115006598A
CN115006598A CN202110234677.1A CN202110234677A CN115006598A CN 115006598 A CN115006598 A CN 115006598A CN 202110234677 A CN202110234677 A CN 202110234677A CN 115006598 A CN115006598 A CN 115006598A
Authority
CN
China
Prior art keywords
strontium
calcium silicate
doped calcium
composite material
silk protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110234677.1A
Other languages
English (en)
Inventor
徐袁瑾
周宇宁
林开利
胡月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Original Assignee
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine filed Critical Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority to CN202110234677.1A priority Critical patent/CN115006598A/zh
Priority to CN202311531252.2A priority patent/CN117504005A/zh
Publication of CN115006598A publication Critical patent/CN115006598A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Insects & Arthropods (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Composite Materials (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种掺锶硅酸钙‑丝蛋白复合材料制备方法与应用。本发明利用丝蛋白(silkfibroin,SF)材料的机械强度‑韧性方面优势和掺锶硅酸钙的成骨‑成血管双向诱导活性方面优势,制备出一种掺锶硅酸钙‑丝蛋白复合材料,孔径大小分布在400‑600μm,所述掺锶硅酸钙‑丝蛋白复合材料为支架结构,具有良好的表面形态、生物学性能,其中,掺锶硅酸钙质量分数为25wt%的掺锶硅酸钙‑丝蛋白复合材料,具有良好的成骨‑成血管性能,可用于骨缺损功能性修复或作为骨组织工程细胞支架。

Description

掺锶硅酸钙-丝蛋白复合材料制备方法与应用
技术领域
本发明属于生物材料领域,具体涉及一种掺锶硅酸钙-丝蛋白复合材料制备方法与应用。
背景技术
借助组织工程学技术,通过新型生物活性材料负载种子细胞可一定程度上加速新骨形成。但是组织工程骨构建过程中,除了要保证植入细胞具有成骨潜能以外,存在的主要问题是如何在大块组织工程骨中维持细胞活力。而当组织工程骨植入体内后,细胞的存活主要依赖于组织工程骨中血管化程度,依靠缺损周围自身组织血管床的长入只能达到组织工程骨构建体边缘,而在大块组织工程骨构建体中央部位会出现细胞死亡,进而限制新骨形成。此外,研究证实新骨血管化程度也在一定程度上影响新骨与牙种植体骨整合效果。因此,设计出具有多向诱导活性,特别是成骨-成血管诱导活性新型支架结构材料,进而调控成体干细胞成骨-成血管分化,对于血管化组织工程骨构建具有重要意义。
丝蛋白材料作为一类新型天然高分子材料,具有良好的生物相容性、机械强度和韧性,在骨修复生物材料领域获得广泛关注。但由于丝蛋白材料本身缺乏足够的骨诱导活性,因此需要对丝蛋白本体材料进行改性以提升其生物学性能。
近年来的研究证实硅酸钙(calcium silicate,CS)类生物陶瓷具有优良的生物活性、降解性和生物相容性,其生物活性和降解性明显优于磷酸钙类生物陶瓷,且具有一定诱导血管形成作用以及促进成骨细胞增殖作用。锶元素(strontium,Sr)作为人体中重要的微量元素,在骨改建过程中发挥重要作用。研究证实Sr不仅能促进间充质干细胞(mesenchymal stemcells,MSC)、成骨细胞相关基因表达和碱性磷酸酶(alkalinephosphatase,ALP)活性,同时可抑制破骨细胞的生长分化。研究发现在CS生物陶瓷中掺入锶元素在非诱导细胞培养条件下即可显著促进骨髓基质干细胞(bone marrow stromalstem cells,BMSCs)的成骨分化,同时还可以明显促进血管内皮生长因子(vascularendothelial growth factor,VEGF)表达。以上研究证实通过在硅酸钙生物陶瓷材料基础上引入锶元素,可设计出具有成骨-成血管双向诱导活性新型材料。
综上所述,利用丝蛋白(silk fibroin,SF)材料的机械强度-韧性方面优势、和掺锶硅酸钙的成骨-成血管双向诱导活性方面优势,制备出新型掺锶硅酸钙-丝蛋白新型有机无机复合材料,可望为骨缺损快速功能性修复提供更为理想的支架结构材料。
发明内容
本发明的目的在于利用丝蛋白(silk fibroin,SF)材料的机械强度-韧性方面优势和掺锶硅酸钙的成骨-成血管双向诱导活性方面优势,提出一种掺锶硅酸钙-丝蛋白复合材料及其制备方法,及利用该制备方法所制备出的掺锶硅酸钙-丝蛋白复合材料在体内外成骨-成血管方面应用。
为了实现本发明的发明目的,一种掺锶硅酸钙-丝蛋白复合材料的制备方法,所述制备方法包括:
提供掺锶硅酸钙超细陶瓷粉体,
提供掺锶硅酸钙纳米纤维;以及,
将所述掺锶硅酸钙超细粉体、所述掺锶硅酸钙纳米纤维与丝蛋白的水溶液超声混合,并添加NaCl颗粒,混合均匀后于-20℃下冷冻后,冷冻干燥后获得所述掺锶硅酸钙-丝蛋白复合材料。
在一些实施例中,所述提供掺锶硅酸钙超细陶瓷粉体的步骤包括:
制备掺锶硅酸钙陶瓷粉体的步骤,以及,
制备所述掺锶硅酸钙超细陶瓷粉体的步骤;其中,
在所述制备掺锶硅酸钙陶瓷粉体的步骤中,以可溶性钙盐、可溶性锶盐及可溶性硅酸钠为原料制备所述掺锶硅酸钙陶瓷粉体。
在一些实施例中,在所述制备掺锶硅酸钙陶瓷粉体的步骤中,通过化学沉淀法、溶胶-凝胶法或水热反应以制备所述掺锶硅酸钙陶瓷粉体。
在一些实施例中,在所述制备掺锶硅酸钙超细陶瓷粉体的步骤中,通过煅烧和研磨所述掺锶硅酸钙陶瓷粉体以获得所述掺锶硅酸钙超细陶瓷粉体。
在一些实施例中,在氮气气氛下,以800-1100℃对所述掺锶硅酸钙陶瓷粉体煅烧2-6h。
在一些实施例中,在所述提供掺锶硅酸钙纳米纤维的步骤中,以可溶性钙盐、可溶性锶盐及可溶性硅酸钠为原料利用水热方法以制备所述掺锶硅酸钙纳米纤维。
在一些实施例中,所述丝蛋白的制备步骤包括:
将家蚕的茧置于0.02mol/L的碳酸钠溶液中煮沸30分钟两次,随后用去离子水反复洗涤以去除丝胶蛋白,得到蚕丝蛋白;
将所述蚕丝蛋白溶于60℃的LiBr溶液中4小时,以获得溶液;以及
将所得的溶液透析2天,再经37℃烘干后获得所述丝蛋白。
在一些实施例中,所述NaCl颗粒的粒径为400-600μm。
在一些实施例中,所述掺锶硅酸钙超细粉体的粒径为5-10μm。
为了实现本发明的发明目的,本发明还提供一种如上所述制备方法制备出的掺锶硅酸钙-丝蛋白复合材料。
一种掺锶硅酸钙-丝蛋白复合材料,所述掺锶硅酸钙-丝蛋白复合材料为支架结构,孔径大小为400-600μm。
在一些实施例中,所述的掺锶硅酸钙-丝蛋白复合材料在成骨-成血管方面的应用
本发明的有益效果为:
本发明提供一种掺锶硅酸钙-丝蛋白复合材料的制备方法,制备出掺锶硅酸钙-丝蛋白复合材料,复合材料为支架结构,孔径大小分布在400-600μm,其支架结构具有良好的表面形态、生物学性能,本发明所制备的掺锶硅酸钙-丝蛋白复合材料,结合了丝蛋白(silkfibroin,SF)材料的机械强度-韧性方面优势和掺锶硅酸钙的成骨-成血管双向诱导活性方面优势,采用大鼠骨髓间充质干细胞(BMSCs)接种所述复合材料,验证了促细胞成血管分化作用;以及在大鼠颅骨中缝双侧各造成5mm直径全层骨膜骨质缺损,植入所述复合材料验证了体内骨缺损修复性能,结果表明掺锶硅酸钙质量分数为25wt%的掺锶硅酸钙-丝蛋白复合材料,具有良好的成骨-成血管性能,可用于骨缺损功能性修复或作为骨组织工程细胞支架。
附图说明
为了更清楚地阐述本发明专利的具体实施例的特点,下面将对实施例的附图进行简要介绍。显而易见地,下面描述的附图仅为本发明的一些实施例,对于本领域的普通研究或从业人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他类似的图片。
图1A为本发明一实施例的材料SEM照片(SF:单纯SF材料,12.5CS:12.5wt%CS-SF复合材料,25CS:25wt%CS-SF复合材料,12.5SrCS:12.5wt%SrCS-SF复合材料,25SrCS:25wt%SrCS-SF复合材料);
图1B为本发明一实施例的材料XRD图谱(SF:单纯SF材料,12.5CS:12.5wt%CS-SF复合材料,25CS:25wt%CS-SF复合材料,12.5SrCS:12.5wt%SrCS-SF复合材料,25SrCS:25wt%SrCS-SF复合材料);
图2A为本发明一实施例的材料体外细胞学VEGF成血管基因表达检测(SF:单纯SF材料,12.5CS:12.5wt%CS-SF复合材料,25CS:25wt%CS-SF复合材料,12.5SrCS:12.5wt%SrCS-SF复合材料,25SrCS:25wt%SrCS-SF复合材料);
图2B为本发明一实施例的材料体外细胞学Ang-1成血管基因表达检测(SF:单纯SF材料,12.5CS:12.5wt%CS-SF复合材料,25CS:25wt%CS-SF复合材料,12.5SrCS:12.5wt%SrCS-SF复合材料,25SrCS:25wt%SrCS-SF复合材料);
图3A为本发明一实施例的材料体内成骨V-G染色,成骨显微图(SF:单纯SF材料,CS-SF:25wt%CS-SF复合材料,SrCS-SF:25wt%SrCS-SF复合材料);
图3B为本发明一实施例的材料体内成骨V-G染色,新骨成骨面积占截面总面积的百分比。(SF:单纯SF材料,CS-SF:25wt%CS-SF复合材料,SrCS-SF:25wt%SrCS-SF复合材料);
图4A为本发明一实施例的材料体内成骨Micro CT检测(SF:单纯SF材料,CS-SF:25wt%CS-SF复合材料,SrCS-SF:25wt%SrCS-SF复合材料)。
图4B为本发明一实施例的材料体内骨缺损修复(SF:单纯SF材料,CS-SF:25wt%CS-SF复合材料,SrCS-SF:25wt%SrCS-SF复合材料)。
具体实施方式
下面结合具体实施例,进一步阐述本发明。显然,所描述的实施例仅为本发明的一部分应用,而并非全部。应理解,这些实施例仅用于说明本发明的特性而并非用于限制本发明的范围。本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
本实施例提供一种掺锶硅酸钙-丝蛋白复合材料的制备方法,其制备步骤如下:
(1)掺锶硅酸钙生物陶瓷粉体的制备:
以高纯化学试剂可溶性钙盐、可溶性锶盐及可溶性硅酸钠为原料,调控原料比例,采用化学沉淀法、溶胶-凝胶法、水热反应等制备得到锶掺杂浓度为20mol%的掺锶硅酸钙陶瓷粉体,经过滤、洗涤以及氮气气氛下在800-1100℃温度条件下煅烧2-6h,并经研磨后获得掺锶硅酸钙超细陶瓷粉体,所述掺锶硅酸钙超细粉体的粒径为5-10μm。此外,以高纯化学试剂为原料采用水热方法制备掺锶硅酸钙纳米纤维,作为支撑支架。
(2)丝蛋白制备:
将家蚕的茧置于0.02mol/L的碳酸钠溶液中煮沸30分钟两次,随后用去离子水反复洗涤以去除丝胶蛋白,得到蚕丝蛋白,再将所述蚕丝蛋白溶于60℃的LiBr溶液中4小时,以获得溶液,并将得到的溶液透析2天,再经37℃烘干后通过恒重法测量其百分比浓度。将样品置于8℃冰箱中,以防析出。
(3)掺锶硅酸钙-丝蛋白复合材料制备:
将质量比分别为12.5:87.5、25:75的掺锶硅酸钙超细粉体及掺锶硅酸钙纳米纤维与丝蛋白水溶液超声混合,添加适量的400–600μm大小粒状NaCl颗粒,混合均匀后于-20℃冰箱冷冻后置于冷冻干燥机中,冷冻干燥后获得大孔孔径为400–600μm的掺锶硅酸钙-丝蛋白(strontium-substituted calcium silicate-silk fibroin,SrCS-SF)复合材料,所述掺锶硅酸钙-丝蛋白复合材料为支架结构,标记25wt%CS-SF复合材料为25CS,标记12.5wt%
SrCS-SF复合材料为12.5SrCS。同时设置相同质量分数的不掺锶的硅酸钙-丝蛋白复合材料作为对照,标记12.5wt%CS-SF复合材料为12.5CS,标记25wt%CS-SF复合材料为25CS,以及设置单纯SF材料作为对照,标记为SF。
(4)性能评价:
对以上制备方法所制备出的掺锶硅酸钙-丝蛋白复合材料,应用扫描电镜(SEM)观察材料表面形态及孔形态与孔径分布,应用阿基米德法测试材料孔隙率。如图1A所示,为材料的SEM显微照片结果,SrCS-SF材料具有良好的表面粗糙度和孔隙率,包括分布的和相互联系的孔隙率;其大孔尺寸和孔隙率分别在400-600μm和80%-88%之间。此外,由XRD图谱(图1B)显示衍射峰对应的衍射角(表示为▼和●),表明CS及SrCS均含有CaSiO3相,证实所获得的材料是由CS或SrCS与SF材料复合而成。
本实施例还提供利用如上所述掺锶硅酸钙-丝蛋白复合材料的制备方法制备出的掺锶硅酸钙-丝蛋白复合材料在成骨-成血管方面的应用,其应用如下:
将大鼠骨髓间充质干细胞(BMSCs)分别接种在纯SF、不同质量分数CS-SF及SrCS-SF材料上,以SF材料作为对照,分别于接种后1、4、7、10天进行Real-time PCR检测VEGF、Ang-1等成血管基因表达。结果如图2A及图2B所示,较单纯SF及CS-SF复合材料,SrCS-SF材料具有良好的促细胞成血管分化作用,且25wt%SrCS-SF为最佳材料配比。
取8周龄、体重为200-250g、雄性大鼠,无菌条件下在大鼠颅骨中缝双侧各造成5mm直径全层骨膜骨质缺损,分别植入单纯SF、25wt%CS-SF及25wt%SrCS-SF材料。术后8周,动物过量麻醉处死后,Micro CT检测成骨情况并做相关参数定量检测,组织学检测成骨及成血管并作成骨面积定量分析,应用Image-pro图像分析系统,比较新骨成骨面积占截面总面积的百分比。结果如图3-4所示,较单纯SF及CS-SF复合材料,SrCS-SF材料具有良好的体内骨缺损修复性能。
本发明所提供的掺锶硅酸钙-丝蛋白复合材料制备方法,所制备出的掺锶硅酸钙-丝蛋白(SrCS-SF)复合材料,不仅具有丝蛋白(silk fibroin,SF)材料的机械强度-韧性方面优势,同时,也具有掺锶硅酸钙的成骨-成血管双向诱导活性方面优势,所制备出的掺锶硅酸钙-丝蛋白复合材料为支架结构,具有良好的表面形态、生物学性能,25wt%SrCS-SF复合材料,具有良好的成骨-成血管性能,可用于骨缺损功能性修复或作为骨组织工程细胞支架。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

1.一种掺锶硅酸钙-丝蛋白复合材料的制备方法,其特征在于,所述制备方法包括:
提供掺锶硅酸钙超细陶瓷粉体,
提供掺锶硅酸钙纳米纤维;以及,
将所述掺锶硅酸钙超细粉体、所述掺锶硅酸钙纳米纤维与丝蛋白的水溶液超声混合,并添加NaCl颗粒,混合均匀后于-20℃下冷冻后,冷冻干燥后获得所述掺锶硅酸钙-丝蛋白复合材料。
2.如权利要求1所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,所述提供掺锶硅酸钙超细陶瓷粉体的步骤包括:
制备掺锶硅酸钙陶瓷粉体的步骤,以及,
制备所述掺锶硅酸钙超细陶瓷粉体的步骤;其中,
在所述制备掺锶硅酸钙陶瓷粉体的步骤中,以可溶性钙盐、可溶性锶盐及可溶性硅酸钠为原料制备所述掺锶硅酸钙陶瓷粉体。
3.如权利要求2所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,在所述制备掺锶硅酸钙陶瓷粉体的步骤中,通过化学沉淀法、溶胶-凝胶法或水热反应以制备所述掺锶硅酸钙陶瓷粉体。
4.如权利要求2所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,在所述制备掺锶硅酸钙超细陶瓷粉体的步骤中,通过煅烧和研磨所述掺锶硅酸钙陶瓷粉体以获得所述掺锶硅酸钙超细陶瓷粉体。
5.如权利要求4所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,在氮气气氛下,以800-1100℃对所述掺锶硅酸钙陶瓷粉体煅烧2-6h。
6.如权利要求1所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,在所述提供掺锶硅酸钙纳米纤维的步骤中,以可溶性钙盐、可溶性锶盐及可溶性硅酸钠为原料利用水热方法以制备所述掺锶硅酸钙纳米纤维。
7.如权利要求1所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,所述丝蛋白的制备步骤包括:
将家蚕的茧置于0.02mol/L的碳酸钠溶液中煮沸30分钟两次,随后用去离子水反复洗涤以去除丝胶蛋白,得到蚕丝蛋白;
将所述蚕丝蛋白溶于60℃的LiBr溶液中4小时,以获得溶液;以及
将所得的溶液透析2天,再经37℃烘干后获得所述丝蛋白。
8.如权利要求1所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,所述NaCl颗粒的粒径为400-600μm。
9.如权利要求1所述的掺锶硅酸钙-丝蛋白复合材料制备方法,其特征在于,所述掺锶硅酸钙超细粉体的粒径为5-10μm。
10.一种掺锶硅酸钙-丝蛋白复合材料,其特征在于,所述掺锶硅酸钙-丝蛋白复合材料为支架结构,孔径大小为400-600μm。
11.如权利要求9所述的掺锶硅酸钙-丝蛋白复合材料在成骨-成血管方面的应用。
CN202110234677.1A 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用 Pending CN115006598A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110234677.1A CN115006598A (zh) 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用
CN202311531252.2A CN117504005A (zh) 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110234677.1A CN115006598A (zh) 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311531252.2A Division CN117504005A (zh) 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用

Publications (1)

Publication Number Publication Date
CN115006598A true CN115006598A (zh) 2022-09-06

Family

ID=83064806

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110234677.1A Pending CN115006598A (zh) 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用
CN202311531252.2A Pending CN117504005A (zh) 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311531252.2A Pending CN117504005A (zh) 2021-03-03 2021-03-03 掺锶硅酸钙-丝蛋白复合材料制备方法与应用

Country Status (1)

Country Link
CN (2) CN115006598A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100534A2 (en) * 2007-02-12 2008-08-21 Trustees Of Columbia University In The City Of New York Biomimetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement
WO2009019323A2 (en) * 2007-08-03 2009-02-12 Vivoxid Oy Use of bioactive glass
CN101856510A (zh) * 2010-05-14 2010-10-13 浙江理工大学 丝素蛋白和硅酸钙复合纳米纤维支架材料的制备方法
CN103014832A (zh) * 2012-12-11 2013-04-03 昆明理工大学 一种掺锶羟基磷灰石晶须及其制备方法
CN104436295A (zh) * 2013-09-25 2015-03-25 中国科学院上海硅酸盐研究所 含锶硅酸钙生物陶瓷及其制备方法和应用
CN105664247A (zh) * 2014-11-19 2016-06-15 中国科学院上海应用物理研究所 纳米硅酸钙纤维/玉米蛋白复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100534A2 (en) * 2007-02-12 2008-08-21 Trustees Of Columbia University In The City Of New York Biomimetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement
WO2009019323A2 (en) * 2007-08-03 2009-02-12 Vivoxid Oy Use of bioactive glass
CN101856510A (zh) * 2010-05-14 2010-10-13 浙江理工大学 丝素蛋白和硅酸钙复合纳米纤维支架材料的制备方法
CN103014832A (zh) * 2012-12-11 2013-04-03 昆明理工大学 一种掺锶羟基磷灰石晶须及其制备方法
CN104436295A (zh) * 2013-09-25 2015-03-25 中国科学院上海硅酸盐研究所 含锶硅酸钙生物陶瓷及其制备方法和应用
CN105664247A (zh) * 2014-11-19 2016-06-15 中国科学院上海应用物理研究所 纳米硅酸钙纤维/玉米蛋白复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周宇宁等: "掺锶硅酸钙/丝蛋白体内外骨缺损修复作用研究" *
朱海霖: "丝素蛋白/硅酸钙复合多孔支架与纤维膜的研制" *

Also Published As

Publication number Publication date
CN117504005A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
Ribas et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review
Li et al. An overview of graphene-based hydroxyapatite composites for orthopedic applications
Sun et al. Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders
An et al. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction
Cholas et al. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix
Huang et al. Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization
WO2018072679A1 (zh) 一种仿生生物矿化人工骨修复材料及其制备方法与应用
Sun et al. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair
Wang et al. Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering
Zhang et al. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: preparation and application in drug delivery
Yang et al. Bioinspired porous octacalcium phosphate/silk fibroin composite coating materials prepared by electrochemical deposition
KR100791512B1 (ko) 나노구조로 이루어진 하이브리드형 조직재생용 멤브레인과스캐폴드 및 그들의 제조방법
Lett et al. Porous hydroxyapatite scaffolds for orthopedic and dental applications-the role of binders
CN1256153C (zh) 纳米氧化锆强韧化高孔隙率磷酸钙人工骨支架及其制法
Liu et al. Synthesis and characterization of a hydroxyapatite-sodium alginate-chitosan scaffold for bone regeneration
Weng et al. Review of zirconia-based biomimetic scaffolds for bone tissue engineering
CN114452439B (zh) 一种仿生天然骨矿组成的羟基磷灰石/白磷钙石生物活性陶瓷支架及其制备方法
FU et al. Zirconia incorporation in 3D printed β-Ca2SiO4 scaffolds on their physicochemical and biological property
Dai et al. Porous β-Ca2SiO4 ceramic scaffolds for bone tissue engineering: in vitro and in vivo characterization
Guan et al. Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering
Chern et al. 3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration
KR101047897B1 (ko) 단백질 결합형 생체활성유리 나노섬유 및 이의 제조방법
Yuan et al. Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol
Yuan et al. 3D-plotted zinc silicate/β-tricalcium phosphate ceramic scaffolds enable fast osteogenesis by activating the p38 signaling pathway
Hou et al. Calcium-magnesium phosphate biphasic microspheres with nutrient microchannels promote angiogenesis and osteogenic differentiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220906

RJ01 Rejection of invention patent application after publication