CN114989843A - Method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic - Google Patents

Method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic Download PDF

Info

Publication number
CN114989843A
CN114989843A CN202210648358.XA CN202210648358A CN114989843A CN 114989843 A CN114989843 A CN 114989843A CN 202210648358 A CN202210648358 A CN 202210648358A CN 114989843 A CN114989843 A CN 114989843A
Authority
CN
China
Prior art keywords
biomass
pyrolysis
oil
activated carbon
quality bio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210648358.XA
Other languages
Chinese (zh)
Other versions
CN114989843B (en
Inventor
陈旭
祝振洲
李书艺
王明明
杨海平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Polytechnic University
Original Assignee
Wuhan Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polytechnic University filed Critical Wuhan Polytechnic University
Priority to CN202210648358.XA priority Critical patent/CN114989843B/en
Publication of CN114989843A publication Critical patent/CN114989843A/en
Application granted granted Critical
Publication of CN114989843B publication Critical patent/CN114989843B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The invention discloses a method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic, which specifically comprises the following steps: mixing the crushed biomass with ZnCl 2 After being uniformly dipped and mixed, the raw materials are uniformly and mechanically mixed with polyolefin plastics to obtain pyrolysis raw materials; the pyrolysis raw material and the molecular sieve catalyst are separately placed in a two-section fixed bed reactor, and the fast pyrolysis reaction is carried out in the nitrogen atmosphere; cooling volatile components generated by fast pyrolysis by adopting an ice water mixture, and collecting liquid products to obtain high-quality bio-oil; further heating the pyrolysis raw material to carry out slow pyrolysis to improve the modification degree of the biochar, and then collecting and solidifyingWashing and drying the state product to obtain the active carbon. The method has the advantages of low cost, convenient operation and capability of stably and efficiently co-producing high-quality bio-oil and activated carbon. The invention is beneficial to realizing high-value utilization of biomass waste.

Description

Method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic
Technical Field
The invention belongs to the field of biomass utilization, and particularly relates to a method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic.
Background
As the only renewable energy source containing carbon, the biomass has the advantages of huge reserves, wide distribution, stable sources, low price, easy obtainment and the like. The pyrolysis technology is considered to be one of the most promising biomass utilization technologies due to the characteristics of full-component conversion, high utilization efficiency, strong raw material adaptability, simple device and the like. Pyrolysis gas obtained by biomass pyrolysis can supply heat for biomass pyrolysis, so that energy self-sufficiency is realized; the bio-oil is expected to be used as a substitute fuel of gasoline and diesel, and organic components in the bio-oil can be used for preparing high value-added chemicals after separation and purification; the biochar can be used as a high-grade solid fuel and further processed into an adsorbent, an electrode material and the like. However, the bio-oil obtained by conventional pyrolysis of biomass has the disadvantages of high oxygen content, strong acidity, poor stability and the like, and the porosity of the biochar is low, which seriously hinders the popularization and application of the bio-oil.
Compared with the conventional biomass pyrolysis, the oxygen-enriched biomass and the hydrogen-enriched polyolefin plastic are subjected to co-catalytic pyrolysis under the action of the molecular sieve, so that the biomass pyrolysis volatile component is promoted to be deoxidized through the interaction between the biomass pyrolysis volatile component and the polyolefin plastic pyrolysis volatile component, and the quality of the bio-oil is further improved.
Current co-catalytic pyrolysis technologies typically use zeolitic molecular sieves (e.g., ZSM-5 molecular sieves) as catalysts. Because the biomass pyrolysis volatile component is relatively complex, and the plastic polyolefin plastic pyrolysis volatile component contains a large amount of long-chain hydrocarbon substances, the interaction of the biomass pyrolysis volatile component and the polyolefin plastic pyrolysis volatile component on a molecular sieve interface is weak, and the quality of the bio-oil needs to be further improved. On the other hand, the current co-catalytic pyrolysis technology has less attention to the biochar, and the yield of the biochar in the co-catalytic pyrolysis product of the biomass and the polyolefin plastic is 15% -35%, so that the biochar is low in quality and difficult to apply, and the co-catalytic pyrolysis technology is poor in economy.
Disclosure of Invention
Aiming at the defects or improvement requirements of the prior art, the invention provides a method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics, which improves the added value of products and has the advantages of low cost, simple process and continuous and efficient preparation of biomass-based products.
In order to achieve the above object, according to one aspect of the present invention, a method for co-producing high quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic is provided, which is characterized by comprising the following steps:
s1, crushing the biomass into particles of 60-100 meshes, and mixing the biomass and ZnCl at a mass ratio of 4: 1-19: 1 2 Uniformly mixing by an impregnation mode, evaporating to remove water and drying to obtain ZnCl 2 A modified biomass sample;
s2, crushing polyolefin plastics into particles of 60-100 meshes, drying, and mixing the polyolefin plastics and ZnCl at a mass ratio of 1: 5-1: 1 2 Uniformly mixing the modified biomass samples in a mechanical stirring manner to obtain a pyrolysis raw material;
s3, respectively placing a pyrolysis raw material and a ZSM-5 molecular sieve catalyst in an upper section and a lower section of a two-section fixed bed reactor, performing rapid pyrolysis reaction in a nitrogen atmosphere, and reforming volatile components generated by the pyrolysis raw material reaction through a 600 ℃ molecular sieve bed layer, wherein the temperature of the upper section of the fixed bed reactor is 500-550 ℃, the reaction time is 10min, and the mass ratio of the pyrolysis raw material to the molecular sieve is 1: 8-1: 4;
s4, cooling the volatile components reformed in the step S3 by adopting an ice-water mixture, and collecting liquid products to obtain high-quality bio-oil products;
s5, raising the temperature of the upper section of the reactor in the step S3 to 550-650 ℃ at a low speed of 2 ℃/min, preserving the temperature for 30min to strengthen the modification process of the biochar, pickling the solid product obtained after the reaction is finished, filtering and washing the solid product with excessive deionized water until the filtrate is neutral, and drying the filtrate to obtain the activated carbon.
Further, the biomass in the step S1 is one or more of cotton stalk, wheat straw, chestnut shell and bamboo dust.
Furthermore, the temperature of the water evaporated to dryness in the step S1 is 35-65 ℃, the drying temperature is 35-65 ℃, and the drying time is 12-24 hours.
Further, the polyolefin plastic in the step S2 is one or more of low density polyethylene, high density polyethylene, and polypropylene.
Further, the drying temperature in the step S2 is 35-65 ℃, and the drying time is 12-24 h.
Further, the main components of the high-quality bio-oil in step S4 are benzene, toluene, and p-toluene.
Further, the acid washing in the step S5 is performed by using a hydrochloric acid solution, the concentration of the hydrochloric acid solution is 0.5-1 mol/L, the drying temperature is 105 ℃, and the drying time is 12-24 h.
Further, the activated carbon in the step S5 has a developed microporous structure.
Generally, compared with the prior art, the above technical solution conceived by the present invention mainly has the following technical advantages:
(1) the method of the invention skillfully utilizes ZnCl 2 And ZnO converted in the pyrolysis process respectively reforms the biomass pyrolysis volatile component and the polyolefin plastic pyrolysis volatile component, and through simplifying the composition of the biomass pyrolysis volatile component and promoting the generation of short-chain hydrocarbon, the interaction of the biomass pyrolysis volatile component and the polyolefin plastic pyrolysis volatile component on a ZSM-5 molecular sieve interface is enhanced, the quality of the bio-oil is improved, and the method does not need to additionally introduce other catalysts to simultaneously realize the regulation and control of the biomass pyrolysis volatile component and the polyolefin plastic pyrolysis volatile component, and reduces the cost of the catalysts.
(2) The method of the invention obtains high-quality bio-oil and simultaneously passes through ZnCl 2 The catalytic action of the catalyst and the template action of ZnO ensure that the pore structure of the biochar is obtainedThe method has the advantages of greatly improving the yield, realizing the co-production of high-quality bio-oil and activated carbon in the same reactor and reducing the complexity of operation.
(3) The method combines the low-temperature-stage fast pyrolysis and the high-temperature-stage slow pyrolysis, optimizes reaction parameters, realizes the balance of bio-oil quality improvement and active carbon quality improvement, and greatly improves the economy of the co-catalytic pyrolysis technology.
(4) The catalyst and the pyrolysis raw material are separately placed, so that the coke product and the catalyst are convenient to recycle, the resource waste problem in the traditional catalytic pyrolysis process is avoided, the pyrolysis gas obtained by the method can supply heat for biomass pyrolysis, the self-sufficiency of energy in the pyrolysis process is realized, and the utilization efficiency of the biomass energy is improved.
Drawings
FIG. 1 is a flow chart of a method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics, which is provided by an embodiment of the invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and do not limit the invention.
As shown in fig. 1, the method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic provided by the embodiment of the invention specifically includes the following steps:
(1) crushing biomass into particles of 60-100 meshes, and mixing the biomass and ZnCl at a mass ratio of 4: 1-19: 1 2 Uniformly mixing the materials in an impregnation mode, evaporating the water to dryness and drying to obtain ZnCl 2 A modified biomass sample;
(2) crushing polyolefin plastics into particles of 60-100 meshes, drying, and mixing the polyolefin plastics and ZnCl according to a mass ratio of 1: 5-1: 1 2 Uniformly mixing the modified biomass samples in a mechanical stirring manner to obtain a pyrolysis raw material;
(3) respectively placing a pyrolysis raw material and a ZSM-5 molecular sieve catalyst in an upper section and a lower section of a two-section fixed bed reactor, performing fast pyrolysis reaction in a nitrogen atmosphere, and reforming volatile components generated by the pyrolysis raw material reaction through a 600 ℃ molecular sieve bed layer, wherein the temperature of the upper section of the fixed bed reactor is 500-550 ℃, the reaction time is 10min, and the mass ratio of the pyrolysis raw material to the molecular sieve is 1: 8-1: 4;
(4) cooling the reformed volatile components in the step (3) by adopting an ice-water mixture, and collecting liquid products to obtain high-quality bio-oil products;
(5) and (4) raising the temperature of the upper section of the reactor in the step (3) to 550-650 ℃ at a low speed of 2 ℃/min, preserving the temperature for 30min to strengthen the modification process of the biochar, pickling the solid product obtained after the reaction is finished, filtering and washing the solid product with excessive deionized water until the filtrate is neutral, and drying the filtrate to obtain the activated carbon.
Wherein the biomass in the step (1) is one or more of cotton stalks, wheat straws, chestnut shells and bamboo scraps.
The temperature for evaporating water in the step (1) is 35-65 ℃, the drying temperature is 35-65 ℃, and the drying time is 12-24 h.
The polyolefin plastic in the step (2) is one or more of low-density polyethylene, high-density polyethylene and polypropylene.
The drying temperature in the step (2) is 35-65 ℃, and the drying time is 12-24 h.
The main components of the high-quality bio-oil in the step (4) are benzene, toluene and p-toluene.
And (5) acid washing is carried out by adopting a hydrochloric acid solution, wherein the concentration of the hydrochloric acid solution is 0.5-1 mol/L, the drying temperature is 105 ℃, and the drying time is 12-24 hours.
The activated carbon in step (5) has a developed microporous structure.
The principle of the above inventive concept of the present invention is: (1) the biological oil quality is improved: in the low-temperature pyrolysis stage, ZnCl 2 The catalytic action of the catalyst simplifies the pyrolysis volatile components of the biomass, reduces unstable phenolic substances and high-oxygen-content carbohydrate substances, and partially ZnCl is generated when the temperature is increased 2 In the biomass pyrolysis to obtainTo CO 2 Is converted into ZnO, and at the moment, the polyolefin plastic begins to depolymerize, and long-chain hydrocarbon in pyrolysis volatile component of the polyolefin plastic is converted into short-chain hydrocarbon under the catalytic action of ZnO. The reforming process enhances the interaction of the biomass pyrolysis volatile component and the polyolefin plastic pyrolysis volatile component on the molecular sieve interface, and further improves the quality of the bio-oil. (2) The quality of the biochar is improved: in the low-temperature pyrolysis stage, ZnCl 2 The pores of the biochar are improved through the actions of catalytic dehydration and the like, and ZnCl is formed after the temperature is increased 2 And the ZnO is converted into ZnO, and the template effect of the ZnO can also improve the pores of the biochar. (3) The joint production of the bio-oil and the bio-carbon comprises the following steps: in order to shorten the time interval between the pyrolysis volatile components of the biomass and the pyrolysis volatile components of the polyolefin plastics as much as possible, so that the pyrolysis volatile components of the biomass and the pyrolysis volatile components of the polyolefin plastics pass through the molecular sieve bed layer as much as possible, and the interaction between the two volatile components is strengthened, a fast heating rate and a relatively low temperature need to be adopted. And a slower heating rate and a relatively higher temperature are needed to improve the modification degree of the biochar. Therefore, the method adopts the modes of low-temperature stage fast pyrolysis and high-temperature stage slow pyrolysis to treat the pyrolysis raw materials, and realizes the co-production of high-quality bio-oil and activated carbon.
To illustrate the process of the present invention in more detail, the following preferred examples are given to illustrate the practice of the invention.
Example 1
The embodiment illustrates a method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic, which specifically comprises the following steps:
(1) crushing cotton stalks into particles of 60-100 meshes, and mixing the cotton stalks with ZnCl according to a mass ratio of 5:1 2 Uniformly mixing by dipping, evaporating to dryness at 35 ℃, and drying in a 55 ℃ oven for 24 hours to obtain ZnCl 2 A modified biomass sample;
(2) crushing low-density polyethylene plastic into particles of 60-100 meshes, then placing the particles in a 55 ℃ oven for drying for 24 hours, and mixing the polyolefin plastic and ZnCl according to the mass ratio of 1:1 2 The modified biomass sample is mechanically stirredUniformly mixing to obtain a pyrolysis raw material;
(3) the catalytic cracking is carried out by using a two-section fixed bed reactor, the pyrolysis raw material and the ZSM-5 molecular sieve catalyst are respectively placed at the top end of the upper section of the reactor and in a hanging basket in the middle of the lower section of the reactor before the pyrolysis process begins, and then the upper section and the lower section of the reactor are respectively heated to 550 ℃ and 600 ℃. Then, the hanging basket filled with the pyrolysis raw material is quickly placed in the middle of the upper section of the reactor, and the volatile component generated by depolymerization of the pyrolysis raw material under the action of nitrogen is catalytically reformed through a ZSM-5 molecular sieve catalyst bed layer. Wherein the mass ratio of the pyrolysis raw material to the ZSM-5 molecular sieve catalyst is 1:4, and the reaction time is 10 min;
(4) cooling the reformed volatile components in the step (3) by adopting an ice-water mixture, and collecting liquid products to obtain high-quality bio-oil products;
(5) and (4) slowly raising the temperature of the upper section of the reactor in the step (3) to 600 ℃ at the speed of 2 ℃/min, and preserving the temperature for 30min to strengthen the modification process of the biochar. And (3) carrying out acid washing on the solid product obtained after the reaction is finished by using 0.5mol/L hydrochloric acid solution, filtering and washing by using excessive deionized water until the filtrate is neutral, and then drying the washed solid product in a 105 ℃ oven for 24 hours to obtain the activated carbon.
Comparative example 1
The comparative example illustrates a method for preparing high-quality bio-oil by co-catalytic pyrolysis of traditional biomass and polyolefin plastic, which specifically comprises the following steps:
(1) crushing cotton stalks into particles of 60-100 meshes, and then placing the particles in a 55 ℃ drying oven for drying for 24 hours to obtain a biomass sample;
(2) crushing low-density polyethylene plastics into particles of 60-100 meshes, then placing the particles in a drying oven at 55 ℃ for drying for 24 hours, and uniformly mixing the polyolefin plastics and a biomass sample in a mechanical stirring manner according to the mass ratio of 1:1 to obtain a pyrolysis raw material;
(3) the catalytic cracking is carried out by using a two-section fixed bed reactor, the pyrolysis raw material and the ZSM-5 molecular sieve catalyst are respectively placed at the top end of the upper section of the reactor and in a hanging basket in the middle of the lower section of the reactor before the pyrolysis process begins, and then the upper section and the lower section of the reactor are both heated to 600 ℃. Then, the hanging basket filled with the pyrolysis raw material is quickly placed in the middle of the upper section of the reactor, and the volatile component generated by depolymerization of the pyrolysis raw material under the action of nitrogen is catalytically reformed through a ZSM-5 molecular sieve catalyst bed layer. Wherein the mass ratio of the pyrolysis raw material to the ZSM-5 molecular sieve catalyst is 1:4, and the reaction time is 10 min;
(4) and (4) cooling the volatile components reformed in the step (3) by using an ice-water mixture, collecting liquid products to obtain a bio-oil product, and collecting solid products to obtain a biochar product.
Through gas chromatography-mass spectrometry combined test, the selectivity of monocyclic aromatic hydrocarbons (benzene, toluene and p-toluene) in the high-quality bio-oil in example 1 is 84%, and the yield (peak area) is 1.28E + 9; the selectivity to monocyclic aromatics (benzene, toluene, p-toluene) in the bio-oil of comparative example 1 was 72%, and the yield (peak area) was 1.20E + 9. In addition, the pore characteristic characterization test shows that the activated carbon obtained in example 1 has a developed micropore structure, and the specific surface area reaches 723m 2 (ii)/g; the specific surface area of the biochar in comparative example 1 was 102m 2 (ii) in terms of/g. In conclusion, the method can obviously improve the yield and selectivity of monocyclic aromatic hydrocarbon (benzene, toluene and p-toluene) in the bio-oil, can obviously improve the pore structure of the bio-carbon, and can use the obtained carbon product as the activated carbon.
It will be understood by those skilled in the art that the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the invention, and that any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (8)

1. A method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic is characterized by comprising the following steps:
s1, crushing the biomass into particles of 60-100 meshes, and mixing the biomass and ZnCl at a mass ratio of 4: 1-19: 1 2 Uniformly mixing the materials in an impregnation mode, evaporating the water to dryness and drying to obtain ZnCl 2 A modified biomass sample;
s2 polyolefin plastic is crushed into particles of 60-100 meshes and is driedPolyolefin plastic and ZnCl are mixed according to the mass ratio of 1: 5-1: 1 2 Uniformly mixing the modified biomass samples in a mechanical stirring manner to obtain a pyrolysis raw material;
s3, respectively placing a pyrolysis raw material and a ZSM-5 molecular sieve catalyst in an upper section and a lower section of a two-section fixed bed reactor, performing rapid pyrolysis reaction in a nitrogen atmosphere, and reforming volatile components generated by the pyrolysis raw material reaction through a 600 ℃ molecular sieve bed layer, wherein the temperature of the upper section of the fixed bed reactor is 500-550 ℃, the reaction time is 10min, and the mass ratio of the pyrolysis raw material to the molecular sieve is 1: 8-1: 4;
s4, cooling the volatile matter reformed in the step S3 by adopting an ice water mixture, and collecting a liquid product to obtain a high-quality bio-oil product;
s5, raising the temperature of the upper section of the reactor in the step S3 to 550-650 ℃ at a low speed of 2 ℃/min, preserving the temperature for 30min to strengthen the modification process of the biochar, pickling the solid product obtained after the reaction is finished, filtering and washing the solid product with excessive deionized water until the filtrate is neutral, and drying the filtrate to obtain the activated carbon.
2. The method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics according to claim 1, wherein the biomass in the step S1 is one or more of cotton stalks, wheat straws, chestnut shells and bamboo chips.
3. The method for co-producing the high-quality bio-oil and the activated carbon through catalytic pyrolysis of the biomass and the polyolefin plastic according to claim 1, wherein the temperature of water evaporation in the step S1 is 35-65 ℃, the drying temperature is 35-65 ℃, and the drying time is 12-24 hours.
4. The method for co-producing high-quality bio-oil and activated carbon through catalytic pyrolysis of biomass and polyolefin plastics according to claim 1, wherein the polyolefin plastics in the step S2 are one or more of low density polyethylene, high density polyethylene and polypropylene.
5. The method for co-producing the high-quality bio-oil and the activated carbon through the catalytic pyrolysis of the biomass and the polyolefin plastic according to claim 1, wherein the drying temperature in the step S2 is 35-65 ℃, and the drying time is 12-24 hours.
6. The method for co-producing high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastic according to claim 1, wherein the high-quality bio-oil in step S4 mainly comprises benzene, toluene and p-toluene.
7. The method for co-producing high-quality bio-oil and activated carbon through catalytic pyrolysis of biomass and polyolefin plastic according to claim 1, wherein the acid washing in the step S5 is performed by using a hydrochloric acid solution, the concentration of the hydrochloric acid solution is 0.5-1 mol/L, the drying temperature is 105 ℃, and the drying time is 12-24 hours.
8. The method for co-producing high-quality bio-oil and activated carbon through catalytic pyrolysis of biomass and polyolefin plastics according to claim 1, wherein the activated carbon in the step S5 has a developed microporous structure.
CN202210648358.XA 2022-06-09 2022-06-09 Method for co-production of high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics Active CN114989843B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210648358.XA CN114989843B (en) 2022-06-09 2022-06-09 Method for co-production of high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210648358.XA CN114989843B (en) 2022-06-09 2022-06-09 Method for co-production of high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics

Publications (2)

Publication Number Publication Date
CN114989843A true CN114989843A (en) 2022-09-02
CN114989843B CN114989843B (en) 2023-06-06

Family

ID=83033069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210648358.XA Active CN114989843B (en) 2022-06-09 2022-06-09 Method for co-production of high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics

Country Status (1)

Country Link
CN (1) CN114989843B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484142A (en) * 2013-09-25 2014-01-01 清华大学 Method for preparing aromatic hydrocarbon through co-catalytic pyrolysis of biomass and plastic
CN106010617A (en) * 2016-06-15 2016-10-12 中国科学院过程工程研究所 Method for directionally preparing aromatic hydrocarbons by means of pyrolysis of biomass and plastic waste
CN106256809A (en) * 2015-06-19 2016-12-28 中国石油化工股份有限公司 The compositions that the method for biomass production aromatic hydrocarbons and the method obtain
CN112300824A (en) * 2020-11-03 2021-02-02 中国科学院过程工程研究所 Method for directionally preparing aromatic hydrocarbon by co-pyrolysis of biomass and plastic
US20210130698A1 (en) * 2019-11-01 2021-05-06 Exxonmobil Research And Engineering Company Co-processing of waste plastic with biomass
CN113145068A (en) * 2021-02-20 2021-07-23 农业部沼气科学研究所 Rice straw biochar impregnated with zinc chloride and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484142A (en) * 2013-09-25 2014-01-01 清华大学 Method for preparing aromatic hydrocarbon through co-catalytic pyrolysis of biomass and plastic
CN106256809A (en) * 2015-06-19 2016-12-28 中国石油化工股份有限公司 The compositions that the method for biomass production aromatic hydrocarbons and the method obtain
CN106010617A (en) * 2016-06-15 2016-10-12 中国科学院过程工程研究所 Method for directionally preparing aromatic hydrocarbons by means of pyrolysis of biomass and plastic waste
US20210130698A1 (en) * 2019-11-01 2021-05-06 Exxonmobil Research And Engineering Company Co-processing of waste plastic with biomass
CN112300824A (en) * 2020-11-03 2021-02-02 中国科学院过程工程研究所 Method for directionally preparing aromatic hydrocarbon by co-pyrolysis of biomass and plastic
CN113145068A (en) * 2021-02-20 2021-07-23 农业部沼气科学研究所 Rice straw biochar impregnated with zinc chloride and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙剑平等: "木塑复合材料热解特性", 《化工进展》 *
孙剑平等: "木塑复合材料热解特性", 《化工进展》, vol. 34, 15 September 2015 (2015-09-15), pages 156 - 161 *

Also Published As

Publication number Publication date
CN114989843B (en) 2023-06-06

Similar Documents

Publication Publication Date Title
Wang et al. Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour
Duan et al. Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons
Vichaphund et al. Selective aromatic formation from catalytic fast pyrolysis of Jatropha residues using ZSM-5 prepared by microwave-assisted synthesis
CN112300824B (en) Method for directionally preparing aromatic hydrocarbon by co-pyrolysis of biomass and plastic
CN106928285B (en) Method for preparing levoglucosenone by catalytic pyrolysis of biomass
Rachel-Tang et al. Bio-oil production via catalytic solvolysis of biomass
Chen et al. Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon
CN115029148B (en) Method for co-production of high-quality bio-oil and mesoporous biochar by catalytic pyrolysis of biomass and polyolefin plastics
Wang et al. Catalytic upgrading of lignocellulosic biomass pyrolysis vapors: insights into physicochemical changes in ZSM-5
CN114989844B (en) Method for co-production of high-quality bio-oil and porous graphite carbon by catalytic pyrolysis of biomass and polyolefin plastics
CN114790397B (en) Method for preparing electrode material by polymerizing and modifying biomass pyrolysis oil
Lin et al. The effects of pore structures and functional groups on the catalytic performance of activated carbon catalysts for the co-pyrolysis of biomass and plastic into aromatics and hydrogen-rich syngas
CN111763526A (en) Process method for preparing biomass gas by pyrolyzing organic solid wastes
CN112195036B (en) Method for preparing biodiesel by using seaweed carbon to improve quality of bio-oil
Zhang et al. Pyrolysis of hydrochar from hydrothermal treatment of kitchen waste: Effects of temperature, catalysts, and KOH addition
Hu et al. One-pot cogeneration of phenol-rich bio-oil, hydrogen-rich gas and solid carbon degradation material from reed
Cai et al. Research on the application of catalytic materials in biomass pyrolysis
Liu et al. One-pot synthesis of lignin biochar supported Ni for catalytic pyrolysis of Chlorella vulgaris and its model compounds: The formation mechanism of aromatic hydrocarbons
CN114989843B (en) Method for co-production of high-quality bio-oil and activated carbon by catalytic pyrolysis of biomass and polyolefin plastics
CN114989842A (en) Method for preparing bio-oil rich in monocyclic aromatic hydrocarbon by biomass graded catalytic pyrolysis
CN103666520B (en) Method for producing hydrocarbon fuel oil by utilizing vegetable oil
Shi et al. Investigating the synergistic driving action of microwave and char-based multi-catalysts on biomass catalytic pyrolysis into value-added bio-products
CN111876180A (en) Method for preparing nitrogen-containing chemical product by catalytic pyrolysis of nitrogen-doped deoxygenated biomass
Yu et al. Enhanced aromatic yield from catalytic pyrolysis of pine wood via ultrasonic assisted Mo modified HZSM-5
Qi et al. Catalytic pyrolysis of rice husk to co-produce hydrogen-rich syngas, phenol-rich bio-oil and nanostructured porous carbon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant