CN114984962A - 可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布 - Google Patents

可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布 Download PDF

Info

Publication number
CN114984962A
CN114984962A CN202210658778.6A CN202210658778A CN114984962A CN 114984962 A CN114984962 A CN 114984962A CN 202210658778 A CN202210658778 A CN 202210658778A CN 114984962 A CN114984962 A CN 114984962A
Authority
CN
China
Prior art keywords
carbon fiber
fiber cloth
tio
visible light
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210658778.6A
Other languages
English (en)
Inventor
饶席
徐佳悦
张永平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202210658778.6A priority Critical patent/CN114984962A/zh
Publication of CN114984962A publication Critical patent/CN114984962A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Catalysts (AREA)

Abstract

TiO2是应用最广泛的光催化材料之一,具有无毒、无害、生物相容性良好、成本低等优点。本项目旨在通过负载NiO对TiO2进行改性提升材料在可见光下的光催化性能,并将其制备在柔软碳布上,利用光催化技术分解车内的甲醛等有害气体污染物,同时具备抗菌效果,用于制造汽车内饰替代传统的活性炭吸附车内甲醛。将TiO2材料进行改性制备于柔软碳布上,解决了光催化材料在实际应用中难以固定以及固定后性能降低的问题,同时制备于碳布上拓展了材料的应用场景,满足实际生产需要。

Description

可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布
技术领域
本发明涉及一种可见光触发的兼具除甲醛和抗菌功能的碳纤维布,本发明将光催化材料制备于碳纤维布基底上,解决了粉状材料在降解气态污染物时容易挥发到空气中对人体健康造成安全隐患的问题,同时兼备抗菌性能,在降解气态污染物的同时,可以对空气中的细菌起到清除作用。该碳纤维布可作为室内家具装饰、汽车内部装饰等场景使用,属于环保材料领域。
背景技术
TiO2是一种具有良好的生物相容性,对环境友好,无毒无害,具有高物理、化学稳定性的半导体光催化材料,禁带宽度为3.0-3.2 eV,对紫外区域的光有很强的吸收作用,常用于制作防晒霜、油漆、染料等,还可以应用于净化水中有机染料、还原水中贵金属离子等领域。此外,TiO2在紫外光激发下可以产生具有强氧化性的活性自由基,因此在光催化抗菌领域也具有广泛的应用前景。
TiO2作为一种应用广泛的半导体光催化材料,由于其特殊的能带结构,只对在近紫外区域的光有强烈的吸收作用,且纯的TiO2还存在电子-空穴复合效率高的问题,产生的光生载流子无法及时分离发挥作,难以在可见光区域被激发产生光催化作用,所以在实际应用中大大受限。由于紫外光在自然光中的占比不足5%,所以纯的TiO2对自然光的利用效率低下,能源的利用率低。
NiO是一种宽带隙p型半导体,其禁带宽度为3.4-4.0 eV,只能被紫外区域的光激发,对于可见光波段的额光没有吸收作用。NiO由于其具有宽带隙、高载流子浓度,一直以来被科研人员广泛研究、应用。可用于光解水制氢,光催化还原CO2,传感器,降解污染物,抗菌等。
TiO2作为一种n型半导体,与p型半导体NiO复合,可以增强材料中光生载流子的分离效率,光生电子-空穴对的有效分离使得载流子能够在光催化反应中及时发挥作用,增强材料的光催化性能。此外,通过复合两种不同半导体材料,会产生等离子共振效应,能够增强材料对于可见光的吸收,使得材料对光的利用效率增强,更有利于光催化反应的发生。
NiO/TiO2由于其特殊的二维结构,在材料表面会产生等离子共振效应,使得材料对于可见光的吸收增强,提高了材料对光的利用效率,同时能够产生更多的光生电子-空穴对,用于降解污染物,并进一步催化环境中的氧气及水形成超氧基团和羟基自由基,从而破坏细菌的细胞膜并导致其失活,最终起到光控抗菌的作用。
传统水热法制备的光催化材料通常为粉状材料,在实际使用情况中,会出现粉状材料挥发到空气中的问题,粉状材料会随着人类活动进入呼吸系统,对人体健康存在安全隐患,因此需要将粉状材料固定,以避免其挥发。常规的将粉状材料固定成块状或其他形状后,会出现材料的比表面积降低,光催化反应位点减少的现象,从而导致材料的光催化性能降低的问题。因此本发明将光催化材料直接制备在柔软碳布上,通过测试发现材料对于污染物仍然具有高的降解效率,同时具备一定的抗菌能力,因此解决了粉状材料在实际应用中易挥发以及固定后性能大打折扣的问题。
通过种子辅助水热法在酸性条件下可控性的合成TiO2纳米阵列,并在纳米阵列表面负载NiO对纯TiO2进行改性,以增强其对可见光的吸收,降低光生载流子复合效率,增强光催化性能,用于降解气态污染物甲醛并具备抗菌的功能。传统的水热法制备出的光催化材料均为粉体,在降解气态污染物的过程中很容易挥发到空气中,将光催化材料制备于基体上用于降解气态污染物及抗菌领域的应用研究鲜有报道,基于此,本发明将TiO2光催化材料粉体材料直接制备于柔软碳纤维布上,提供了一种种子辅助水热法在基底上制备TiO2纳米阵列并负载NiO的实验方法,实现了粉体材料的固定,降低使用时的安全隐患。
发明内容
本发明的目的是为了弥补传统粉状光催化材料在降解气态污染物时容易挥发到空气中对人体健康存在安全隐患的不足,提出了一种使用种子辅助水热法在微米级碳纤维布上构建TiO2纳米阵列并负载NiO的实验方法,TiO2纳米阵列在负载NiO纳米颗粒后会产生等离子共振效应,使得材料对于可见光的吸收会增强,提高材料对可见光的利用效率,提升光催化降解甲醛性能以及抗菌性能。
材料的制备主要使用种子辅助水热法在酸性条件下水热合成TiO2纳米阵列。首先,利用四氯化钛溶液在酸性条件下浸泡支撑材料微米碳纤维布生长种子层,再利用马弗炉高温退火,增强种子层与碳纤维布的结合力,使得种子层与基底的结合更为紧密,保证在后期使用过程中材料不易挥发到空气中,同时为后期水热生长TiO2纳米阵列提供生长点位。其次,在构建TiO2纳米阵列阶段,使用钛酸四丁酯溶液进行高温水热,利用钛酸四丁酯高温下分解的特性在碳纤维布种子层上继续生长TiO2纳米阵列。然后,成功构建TiO2纳米阵列后,采用硝酸镍水溶液浸泡样品负载NiO纳米颗粒,利用马弗炉高温退火,增强NiO颗粒与TiO2纳米阵列结合力,保证颗粒与纳米阵列结合的稳定性,确保材料在实际使用中的稳定性。
本发明具体通过以下技术方案实现:
在碳纤维布上生长具有光催化除甲醛抗菌性能的NiO/TiO2纳米阵列制备方法,其特征在于TiO2纳米阵列在负载NiO纳米颗粒后会产生等离子共振效应,使得材料对于可见光的吸收会增强,同时由于两种不同类型的半导体光催化材料的复合,增强了材料的光生载流子的分离效率,减小了材料的禁带宽度,使得材料对于光的利用效率提高。此外,有别于传统光催化的粉状,本发明将材料制备于碳纤维布基底上,解决了粉状材料在降解气态污染物时容易挥发到空气中对人体健康造成安全隐患的问题,同时兼备抗菌性能,在降解气态污染物的同时,可以对空气中的细菌起到清除作用,在实际使用过程中有良好的应用前景。
所述的在碳纤维布上制备具有光催化除甲醛抗菌性能的NiO/TiO2纳米阵列的方法,包括如下步骤:
(1)提供一种碳纤维布作为基材;
(2)提供一种四氯化钛酸性溶液;
(3)提供一种钛酸四丁酯酸性溶液;
(4)提供一种硝酸镍溶液;
(5)将碳纤维布进行预处理,使用体积比为3:1的硫酸与硝酸的混合酸溶液对将碳纤维布浸泡以除去碳纤维布表面的杂质以及增强碳纤维布的亲水性,浸泡完成后将碳纤维布清洗干燥备用;
(6)将步骤(5)中预处理后碳纤维布置于步骤(2)中的浸泡溶液里,室温浸泡提供生长点位,浸泡完成后将碳纤维布置于马弗炉中高温退火0.5小时;
(7)将步骤(6)中退火后的碳纤维布置于步骤(3)中的钛酸四丁酯酸性溶液中,于高压水热反应釜中水热反应,生长TiO2纳米阵列,水热完成后冲洗、干燥;
(8)将步骤(7)中水热之后的碳纤维布置于步骤(4)中提到的硝酸镍溶液中,室温浸泡负载NiO颗粒;
(9)将步骤(8)中负载NiO后的碳纤维布置于马弗炉中高温退火一个小时,得到负载NiO/TiO2纳米阵列的碳纤维布。
进一步的,所述的步骤(2)的四氯化钛酸性浸泡溶液,四氯化钛浓度为0.1-0.5mmol/L,盐酸浓度为2.0-3.0mmol/L。
进一步的,所述的步骤(6)的马弗炉退火温度为400℃,升温速率为5℃/ min,退火时间30min。
进一步的,所述的步骤(7)的钛酸四丁酯酸性浸泡溶液,钛酸四丁酯浓度为0.05-0.1mmol/L,盐酸浓度为5-7mmol/L,水热的温度参数为160℃,5.5小时。
进一步的,所述的步骤(8)的硝酸镍溶液,硝酸镍浓度为0.03-0.1mol/L。
进一步的,所述步骤(9)中马弗炉退火温度为450℃,升温速率为5℃/ min,时间为1小时。
有益效果
(1)本发明在碳纤维布表面生长的纳米阵列,由金红石相负载的TiO2纳米阵列以及NiO颗粒组成,具有光催化除甲醛和杀菌性能,稳定性优异,对环境无毒无害,在净化污染物过程中,无二次污染,净化效果彻底。
(2)表面的纳米阵列与碳纤维布基底结合稳定,具有三维阵列结构,致密的纳米阵列为光催化反应提供了足够的反应位点,使得光生电子-空穴对能够有充足的位点反应生成强氧化性的羟基自由基和超氧自由基,有效提高了光催化反应的速率;表面负载的NiO颗粒,增强了光生载流子的分离效率,两种不同类型的半导体的复合,降低的材料的禁带宽度,增强了材料对于可见光的吸收,提高对光的利用效率,显著提高了光催化效率。
附图说明
图1为实施例1中的碳纤维布上生长金红石相TiO2纳米阵列的表面形态的低倍的扫描电镜(SEM)图片。
图2为实施例1中的碳纤维布上生长金红石相TiO2纳米阵列的表面形态的高倍的扫描电镜(SEM)图片。
图3为实施例2中的碳纤维布上生长NiO/TiO2纳米阵列表面形态的低倍的扫描电镜(SEM)图片。
图4为实施例2中的碳纤维布上生长NiO/TiO2纳米阵列表面形态的高倍的扫描电镜(SEM)图片。
图5为实施例1的X射线光电子能谱。
图6为实施例2的X射线光电子能谱。
图7为实施例1和实施例2的甲醛降解性能图。
图8为实施例1的抗菌效果图,无光照(左),500纳米可见光照(右)。
图9为实施例2的抗菌效果图,无光照(左),500纳米可见光照(右)。
具体实施方式
实施例1
(1)选用微米级碳纤维布。
(2)预处理:将碳纤维布使用混合酸溶液(硫酸与硝酸体积比为3:1)对碳纤维布浸泡,以除去碳纤维布表面的杂质以及增强碳纤维布的亲水性,浸泡完成后使用去离子水充分清洗,将余酸处理干净,碳纤维布清洗后干燥备用。
(3)提供生长点位:配置20ml含有盐酸、四氯化钛的浸泡溶液,体积比H2O:HCl:TiCl4=16:4:0.44,溶液超声混合均匀后,将清洗干燥后的碳纤维布放入浸泡溶液中,室温浸泡12h。浸泡完成后于马弗炉中高温退火半个小时,退火温度为400℃,升温速率为5℃/min,退火时间30min。
(4)水热合成:配置24ml含有盐酸、钛酸四丁酯的水热溶液,体积比H2O:HCl:C16H36O4Ti=12:12:0.6,溶液超声混合均匀后,将退火完成的碳纤维布放入水热溶液中置于高压水热反应釜内衬中水热反应,水热的温度参数为160℃,时间5.5小时。水热完成后,清洗干燥备用。获得在表面生长了金红石相TiO2纳米阵列的碳纤维布,其表面形态如图1和图2的扫描电镜(SEM)图片所示。
图5为实施例1的X射线光电子能谱(XPS)。图7为实施例1的光催化降解甲醛实验结果。图8为实施例1的光催化抗菌(大肠杆菌)实验结果,对比无光照(左)和500纳米可见光照(右),可以发现光照下抗菌效果更佳。
实施例2
(1)选用微米级碳纤维布。
(2)预处理:将碳纤维布使用混合酸溶液(硫酸与硝酸体积比为3:1)对碳纤维布浸泡,以除去碳纤维布表面的杂质以及增强碳纤维布的亲水性,浸泡完成后使用去离子水充分清洗,将余酸处理干净,碳纤维布清洗后干燥备用。
(3)提供生长点位:配置20ml含有盐酸、四氯化钛的浸泡溶液,体积比H2O:HCl:TiCl4=16:4:0.44,溶液超声混合均匀后,将清洗干燥后的碳纤维布放入浸泡溶液中,室温浸泡12h。浸泡完成后于马弗炉中高温退火半个小时,退火温度为400℃,升温速率为5℃/min,退火时间30min。
(4)水热合成:配置24ml含有盐酸、钛酸四丁酯的水热溶液,体积比H2O:HCl:C16H36O4Ti=12:12:0.6,溶液超声混合均匀后,将退火完成的碳纤维布放入水热溶液中置于高压水热反应釜内衬中水热反应,水热的温度参数为160℃,时间5.5小时。水热完成后,清洗干燥备用。获得在表面生长了金红石相TiO2纳米阵列的碳纤维布。
(5)纳米阵列表面负载NiO颗粒:配制20ml浓度为0.05mol/L的硝酸镍浸泡溶液,将水热后的碳纤维布置于浸泡溶液中,在金红石相TiO2纳米阵列表面负载NiO颗粒,浸泡温度为室温,时间为12h,浸泡完成后,于马弗炉中高温退火,温度为450℃,升温速率为5℃/min,时间为1小时。其表面形态如图3和图4的扫描电镜(SEM)图片所示。
图6为实施例2的X射线光电子能谱(XPS)。图7为实施例2的光催化降解甲醛实验结果。图9为实施例2的光催化抗菌(大肠杆菌)实验结果,对比无光照(左)和500纳米可见光照(右),可以发现光照下抗菌效果更佳。
显然,上述实施例仅仅是为了清楚阐明本发明内容所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,还可在上述说明的基础上做出其它不同形式的变化或变动,这里无需也无法对所有实施方式予以穷举,而这些属于本发明的精神所引申出的显而易见的变化或变动仍处于本发明的保护范围内。

Claims (5)

1.可见光触发的兼具除甲醛和抗菌功能的碳纤维布的制备方法,其特征在于,选用微米级碳纤维布作为支撑材料原材料,采用种子辅助水热法在其上可控性制备TiO2纳米阵列,随后通过浸泡离子吸附在TiO2纳米阵列表面负载NiO颗粒,随后通过在马弗炉中高温退火增强TiO2和NiO之间的结合力;碳纤维布上原位生长的TiO2纳米阵列在负载NiO纳米颗粒后会产生等离子共振效应并减小禁带宽度,增强碳纤维布对可见光的吸收能力,提高光生载流子的分离效率,增强材料的光触发降解甲醛及抗菌能力;
所述的可见光触发的兼具除甲醛和抗菌功能的碳纤维布的制备方法,其特征在于,包括如下步骤:
(1)提供一种碳纤维布作为基材;
(2)提供一种四氯化钛酸性溶液;
(3)提供一种钛酸四丁酯酸性溶液;
(4)提供一种硝酸镍溶液;
(5)将碳纤维布进行预处理,使用体积比为3:1的硫酸与硝酸的混合酸溶液对将碳纤维布浸泡以除去碳纤维布表面的杂质以及增强碳布的亲水性,浸泡完成后将碳纤维布清洗干燥备用;
(6)将步骤(5)中预处理后碳纤维布置于步骤(2)中的四氯化钛酸性溶液里,室温浸泡提供生长点位,浸泡完成后将碳纤维布置于马弗炉中高温退火0.5小时;
(7)将步骤(6)中退火后的碳纤维布置于步骤(3)中的钛酸四丁酯酸性溶液中,于高压水热反应釜中水热反应,生长TiO2纳米阵列,水热完成后冲洗、干燥;
(8)将步骤(7)中水热之后的碳纤维布置于步骤(4)中提到的硝酸镍溶液中,室温浸泡负载NiO颗粒;
(9)将步骤(8)中负载NiO后的碳纤维布置于马弗炉中高温退火一个小时,得到负载NiO/TiO2纳米阵列的碳纤维布。
2.根据权利要求1所述可见光触发的兼具除甲醛和抗菌功能的碳纤维布的制备方法,其特征在于,所述的步骤(2)四氯化钛酸性溶液中TiCl4浓度为0.1-0.5mmol/L,四氯化钛酸性溶液中盐酸浓度为2.0-3.0mmol/L。
3.根据权利要求1所述可见光触发的兼具除甲醛和抗菌功能的碳纤维布的制备方法,其特征在于,所述的步骤(6)的马弗炉中高温退火的温度为400℃,升温速率为5℃/ min,退火时间30分钟。
4.根据权利要求1所述可见光触发的兼具除甲醛和抗菌功能的碳纤维布的制备方法,其特征在于,所述的步骤(3)的钛酸四丁酯酸性溶液中钛酸四丁酯浓度为0.05-0.1mmol/L,钛酸四丁酯酸性溶液中盐酸浓度为5-7mmol/L,所述步骤(7)中水热反应的温度为160℃,反应5.5小时。
5.根据权利要求1所述可见光触发的兼具除甲醛和抗菌功能的碳纤维布的制备方法,其特征在于,所述的步骤(4)的硝酸镍溶液的浓度为0.03-0.1mol/L,所述步骤(9)的马弗炉高温中退火的温度为450℃,升温速率为5℃/ min,时间为1小时。
CN202210658778.6A 2022-06-13 2022-06-13 可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布 Pending CN114984962A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210658778.6A CN114984962A (zh) 2022-06-13 2022-06-13 可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210658778.6A CN114984962A (zh) 2022-06-13 2022-06-13 可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布

Publications (1)

Publication Number Publication Date
CN114984962A true CN114984962A (zh) 2022-09-02

Family

ID=83033518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210658778.6A Pending CN114984962A (zh) 2022-06-13 2022-06-13 可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布

Country Status (1)

Country Link
CN (1) CN114984962A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448536A (zh) * 2015-11-26 2016-03-30 合肥工业大学 氧化镍/氧化钛纳米复合材料及其制备方法和储能应用
CN106480470A (zh) * 2016-10-21 2017-03-08 中国石油大学(北京) Al2O3修饰的阵列TiO2纳米线与光电催化分解水制氢的方法
CN107297204A (zh) * 2017-06-28 2017-10-27 浙江茂源环保科技有限公司 一种以活性炭纤维为载体的TiO2纳米棒光催化网的制备方法
KR101862513B1 (ko) * 2017-04-28 2018-05-29 울산대학교 산학협력단 이산화티타늄이 분산된 활성 탄소 섬유를 포함하는 광촉매 및 이를 이용한 수처리 방법
CN108130711A (zh) * 2017-12-26 2018-06-08 中南大学 一种基于纤维衬底的TiO2纳米阵列及其制备方法
CN109046423A (zh) * 2018-07-28 2018-12-21 武汉工程大学 一种三维分级复合材料及其制备方法和应用
CN109731601A (zh) * 2018-12-28 2019-05-10 中国石油大学(北京) CNX/TiO2核壳纳米线阵列及制法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448536A (zh) * 2015-11-26 2016-03-30 合肥工业大学 氧化镍/氧化钛纳米复合材料及其制备方法和储能应用
CN106480470A (zh) * 2016-10-21 2017-03-08 中国石油大学(北京) Al2O3修饰的阵列TiO2纳米线与光电催化分解水制氢的方法
KR101862513B1 (ko) * 2017-04-28 2018-05-29 울산대학교 산학협력단 이산화티타늄이 분산된 활성 탄소 섬유를 포함하는 광촉매 및 이를 이용한 수처리 방법
CN107297204A (zh) * 2017-06-28 2017-10-27 浙江茂源环保科技有限公司 一种以活性炭纤维为载体的TiO2纳米棒光催化网的制备方法
CN108130711A (zh) * 2017-12-26 2018-06-08 中南大学 一种基于纤维衬底的TiO2纳米阵列及其制备方法
CN109046423A (zh) * 2018-07-28 2018-12-21 武汉工程大学 一种三维分级复合材料及其制备方法和应用
CN109731601A (zh) * 2018-12-28 2019-05-10 中国石油大学(北京) CNX/TiO2核壳纳米线阵列及制法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AJIT SHARMA 等: "Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber", CATALYSIS TODAY, vol. 298, pages 158 - 167 *
刁文宇: "TiO2基纳米结构构建及光催化降解甲醛性能研究", 中国优秀硕士学位论文全文数据库, pages 014 - 700 *

Similar Documents

Publication Publication Date Title
CN108772108B (zh) 一种可见光响应的二氧化钛纳米线/金属有机骨架/碳纳米纤维膜及其制备方法及应用
Liu et al. Green synthetic approach for Ti 3+ self-doped TiO 2− x nanoparticles with efficient visible light photocatalytic activity
Zheng et al. MgO nanosheets with N-doped carbon coating for the efficient visible-light photocatalysis
Fu et al. Growth of g‐C 3 N 4 Layer on Commercial TiO 2 for Enhanced Visible Light Photocatalytic Activity
KR20200032537A (ko) 광촉매용 구형 이산화 티타늄/카본 나이트라이드 복합체의 제조방법
CN110944749B (zh) 纳米功能化的支架及其生产方法
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
CN114196241A (zh) 一种光催化自清洁涂料及其制备方法和应用
KR20050067150A (ko) 광촉매 재료와 그 제조방법
Plubphon et al. Rapid preparation of g-C3N4/Bi2O2CO3 composites and their enhanced photocatalytic performance
CN114570348A (zh) 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用
KR102562529B1 (ko) 전이금속이 도핑된 이산화티탄 광촉매 복합체 및 이의 제조방법
Yuan et al. Synthesis of N-TiO2@ NH2-MIL-88 (Fe) core-shell structure for efficient Fenton effect assisted methylene blue degradation under visible light
CN114984962A (zh) 可见光触发的兼具除甲醛和抗菌功能的碳纤维装饰布
KR101943921B1 (ko) 질소도핑된 TiO2/그래핀 복합체의 제조 방법
CN1259128C (zh) 光催化活性氟掺杂二氧化钛纳米材料的制备方法
CN1555913A (zh) 光催化活性氮掺杂二氧化钛纳米材料的制备方法
KR20170059829A (ko) 광촉매용 중형기공 구형 이산화 티타늄/다중벽 탄소나노튜브 복합체의 제조방법
CN1259127C (zh) 光催化活性碘掺杂二氧化钛纳米材料的制备方法
KR102562523B1 (ko) 오염물질 분해용 복합 광촉매 및 이의 제조방법
CN108654673B (zh) 一种新型光催化材料及其制备方法和应用
KR101882436B1 (ko) 무광촉매가 도핑된 복합섬유 및 그 제조방법
CN111617755A (zh) 基于原位裂解技术的纳米光触媒的制备方法
CN117046470A (zh) 热-光催化协同增强降解空气污染物的碳纤维布
CN114797833B (zh) 一种光触媒材料的制备方法及光触媒玻璃

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220902