CN114966926A - 一种大面积微纳叠层衍射光栅结构的制备方法 - Google Patents

一种大面积微纳叠层衍射光栅结构的制备方法 Download PDF

Info

Publication number
CN114966926A
CN114966926A CN202210539415.0A CN202210539415A CN114966926A CN 114966926 A CN114966926 A CN 114966926A CN 202210539415 A CN202210539415 A CN 202210539415A CN 114966926 A CN114966926 A CN 114966926A
Authority
CN
China
Prior art keywords
mask layer
grating
layer
photoresist mask
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210539415.0A
Other languages
English (en)
Other versions
CN114966926B (zh
Inventor
张勤东
赵恒�
汪云
李耀斌
曾进能
张世超
冯辉
吴艳娟
黄丽书
张益铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Night Vision Technology Co Ltd
Original Assignee
North Night Vision Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Night Vision Technology Co Ltd filed Critical North Night Vision Technology Co Ltd
Priority to CN202210539415.0A priority Critical patent/CN114966926B/zh
Publication of CN114966926A publication Critical patent/CN114966926A/zh
Application granted granted Critical
Publication of CN114966926B publication Critical patent/CN114966926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种大面积微纳叠层衍射光栅结构的制备方法,该方法是在已有的光栅结构基础上,对光栅的栅齿进行微纳结构图形的结构以及材料进行调控,能够在更大的带宽下获更高的衍射效率,对提高光栅的光能的利用率和夜视镜成像的灵敏度以及降低光栅的制备成本具有重要意义;同时,通过光刻胶作为掩膜,在掩膜层上外延光栅层再带胶剥离避开刻蚀的光栅制备方法能够解决现有方法中衍射光栅制备难度大、产量低、无法进行大规模生产的问题。本发明通过改变所制备的衍射光栅的材料、周期,进一步提高了光栅的光能利用率,在实现大面积高效率微纳衍射光栅的同时,保证该结构可以实现高效率、宽光谱的衍射,可以应用于夜视、光通信等领域。

Description

一种大面积微纳叠层衍射光栅结构的制备方法
技术领域
本发明涉及半导体微纳加工领域,尤其涉及一种大面积微纳叠层衍射光栅结构的制备方法,本发明能够有效解决衍射光栅的光学元件的衍射效率会随着波长偏离设计值而下降很快的问题,可以应用于夜视、光通信等领域。
背景技术
目前很多公共场所都安装了监控系统,包括金融、保险、邮电等办公场地的安保系统、道路上的测速抓拍系统以及恶劣工作条件下代替人工监视的侦测系统等等。这些监控系统一般都采用现成的光学成像镜头,而常用的光学成像镜头又都采用可见光成像。在光照充足的情况下,这些镜头的成像质量尚佳;但是在黑暗以及能见度不佳的情况下成像模糊,导致监控摄像机的清晰度存在很大问题,给图像识别带来很大困难,容易造成错误判断。所以人们引入了夜视系统,但传统的折反射式夜视镜又因工作波段较宽而具有比较复杂的光学结构。
近年来,半导体微纳加工方法的飞速发展使得微纳衍射光栅制备难度大大降低,因此,采用含有衍射光栅的光学系统,可以利用其负色散特性替代负透镜,减小了透镜承担的光焦度,减小了表面形状的弯曲,更易实现色差的校正。虽然,应用于目视光学系统的衍射光栅减少了镜片的数量,减轻了系统的重量,缩减了系统的成本;但是,现有的含有单层衍射光栅的光学元件的衍射效率会随着波长偏离设计值而下降很快,同时,目前光栅加工中关键方法之一的刻蚀还存在许多问题,例如:湿法刻蚀可重复性差、成品率低;干法刻蚀效率低、成本高、价格昂贵。
如何进一步提高光栅的宽谱衍射效率和光能的利用率,同时实现高重复性、低成本的光栅制备方法是本领域技术人员所面临的重要问题之一。
发明内容
本发明要解决的方法问题是克服现有方法的不足,提供一种大面积微纳叠层衍射光栅结构的制备方法,该方法是在已有的光栅结构基础上,对光栅的栅齿进行微纳结构图形的结构以及材料进行调控,在更大的带宽下获更高的衍射效率,对提高光栅的光能的利用率和夜视镜成像的灵敏度以及降低光栅的制备成本具有重要意义。同时,通过光刻胶作为掩膜,在掩膜层上外延光栅层再带胶剥离避开刻蚀的光栅制备方法更是解决了现有方法中衍射光栅制备难度大、产量低、无法进行大规模生产的问题。
本发明能够有效解决衍射光栅的光学元件的衍射效率会随着波长偏离设计值而下降很快的问题,可以应用于夜视、光通信等领域,在实现大面积高效率微纳衍射光栅的同时,保证该结构可以实现高效率、宽光谱的衍射。
本发明解决上述问题所采用的方法方案为:
一种大面积微纳叠层衍射光栅结构的制备方法,包括以下步骤:
步骤一,提供一防光晕阴极玻璃衬底;
步骤二,在衬底的表面涂布负性光刻胶掩膜层A,利用紫外纳米压印方法将负性光刻胶掩膜层A图形化,在衬底表面留下等间隔周期排列的圆柱型孔洞;
步骤三,在图形化后的衬底表面和负性光刻胶掩膜层A的表面外延氧化硅光薄膜;外延结束后将衬底浸泡入丙酮溶液中,带胶剥离负性光刻胶掩膜层A表面外延的氧化硅薄膜,留下圆柱型孔洞中的氧化硅圆柱形结构A;
步骤四,在氧化硅圆柱形结构A和衬底的表面涂布正性光刻胶掩膜层,利用紫外纳米压印方法将正性光刻胶掩膜层图形化;在图形化后的表面通过原子层沉积方法多次交替进行外延氧化铝和氧化钛叠层,每层氧化铝薄膜和氧化钛薄膜的厚度均相同且为5nm厚,外延完成之后带胶剥离外延在掩膜层上的氧化铝和氧化钛叠层薄膜,并平坦化留在衬底上的氧化铝和氧化钛叠层的表面,使衬底上的氧化铝和氧化钛叠层厚度与圆柱形孔洞中的氧化硅圆柱形结构A厚度一致;
步骤五,在平坦化后的表面涂布负性光刻胶掩膜层B,利用紫外纳米压印方法将负性光刻胶掩膜层B图形化;
步骤六,在负性光刻胶掩膜层B的表面利用等离子体气相外延方法外延氧化硅光栅层;外延完成之后带胶剥离外延在负性光刻胶掩膜层B上的氧化硅薄膜,在衬底表面上留下等间隔周期排列的圆柱型氧化硅B,至此获得大面积微纳叠层衍射光栅结构;
进一步地,负性光刻胶掩膜层A和负性光刻胶掩膜层B的厚度为1~2um。
进一步地,负性光刻胶掩膜层A、负性光刻胶掩膜层B及正性光刻胶掩膜层在带胶剥离过程中,仅需将衬底片放入丙酮中即可去除掩膜层,且衬底表面以一定间隔周期排列的圆柱型孔洞中的氧化硅圆柱形结构A不脱落。
进一步地,外延氧化硅光薄膜是通过等离子体化学气相沉积(PECVD)方法实现的,氧化硅光薄膜的厚度为200~500nm。
进一步地,圆柱型孔洞中的氧化硅光栅层的直径为100~900nm,圆柱型孔洞的间隔周期为200~1800nm。
进一步地,平坦化是通过化学机械抛光(CMP)方法实现的。
进一步地,图形化是通过紫外纳米压印和带胶剥离方法实现的。
进一步地,利用原子层沉积方法多次交叠外延氧化铝和氧化钛叠层膜填充单层光栅的栅谷,并在已有的单层光栅的栅齿上进行微纳结构图形调控,获得大面积叠层衍射光栅结构。
从实施例可以看出,本发明具有以下有益效果:
本发明在已有的光栅结构基础上,对光栅的栅齿进行微纳结构图形的结构以及材料进行调控,在更大的带宽下获更高的衍射效率,对提高光栅的光能的利用率和夜视镜成像的灵敏度以及降低光栅的制备成本具有重要意义。同时,通过光刻胶作为掩膜,在掩膜层上外延光栅层再带胶剥离避开刻蚀的光栅制备方法,解决了现有方法中衍射光栅制备难度大、产量低、无法进行大规模生产的问题。本发明能够有效解决衍射光栅的光学元件的衍射效率会随着波长偏离设计值而下降很快的问题,可以应用于夜视、光通信等领域,在实现大面积高效率微纳衍射光栅的同时,保证该结构可以实现高效率、宽光谱的衍射。
附图说明
图1是本发明的制备方法的流程图。
图2a~2m是本发明实施例提供的微纳衍射光栅结构的详细制备工艺分步骤得到的光栅结构的示意图;图2a~图2m中的附图标记为:1-防光晕阴极玻璃衬底,2-负性光刻胶掩膜层,3-氧化硅光栅层,4-氧化硅圆柱型结构A,5-正性光刻胶掩膜层,6-氧化铝和氧化钛叠层,7-掩膜层,8-氧化硅薄膜层,9-氧化硅圆柱型结构B。
图3是本发明实施大面积叠层衍射光栅的光谱衍射曲线图。
具体实施方式
为使本发明的目的、方法方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
实施例1
如图1及图2a~图2m所示,一种大面积微纳叠层衍射光栅结构的制备方法,包括以下步骤:
步骤一,提供一防光晕阴极玻璃衬底1。该步骤中防光晕阴极玻璃衬底厚度无限制,使用前用无水乙醇超声清理。
步骤二,在衬底1表面涂布负性光刻胶掩膜层2,利用紫外纳米压印方法并将其图形化,如图2a所示,在衬底1表面留下等间隔排列周期为100~900nm的圆柱型孔洞,其俯视图如图2b所示。该步骤中,负性光刻胶掩膜层2采用负性光刻胶,厚度通常为1~2um,方便后续带胶剥离。
步骤三,在衬底1和负性光刻胶掩膜层2表面外延氧化硅光栅层3,如图2c所示;外延结束后将衬底浸泡入丙酮溶液中,带胶剥离负性光刻胶掩膜层2表面外延氧化硅光栅层3,在排列周期为100~900nm的圆柱型孔洞中留下氧化硅圆柱形结构A,如图2d所示,其俯视图如2e。该步骤中,作为最佳方法方案,负性光刻胶掩膜层1厚度为0.5~3um,在带胶剥离过程中,仅需将衬底片放入丙酮中即可去除负性光刻胶掩膜层2,同时留下外延在等间隔排列周期为100~900nm的圆柱型孔洞中的氧化硅圆柱形结构A。该步骤中,通过等离子体化学气相沉积(PECVD)方法在衬底1和负性光刻胶掩膜层2表面外延氧化硅光栅层3,厚度为200~500nm,氧化硅圆柱形结构A直径为100~900nm,周期为200~1800nm。
步骤四,在氧化硅圆柱形结构A表面和衬底1表面涂布正性光刻胶掩膜层5,如图2f所示,利用紫外纳米压印并将其图形化;在正性光刻胶掩膜层5表面和衬底1表面通过原子层沉积方法多次交替外延总厚度大于200nm的氧化铝和氧化钛叠层6,每层氧化铝薄膜和氧化钛薄膜的厚度均相同且为1~50nm厚,如图2g所示,外延完成之后带胶剥离外延在正性光刻胶掩膜层5上的氧化铝和氧化钛叠层6,并平坦化留在衬底1表面的氧化铝和氧化钛叠层6表面,使氧化铝和氧化钛叠层6厚度与氧化硅圆柱形结构A厚度一致,其剖面结构如图 2h所示;该步骤中,作为最佳方法方案,氧化铝和氧化钛叠层6通过原子层沉积(ALD)方法制备得到,通过化学机械抛光(CMP)方法,使衬底1表面氧化铝和氧化钛叠层6总厚度与氧化硅圆柱形结构A厚度一致。
步骤五,在平坦化后的表面涂布光刻胶作为掩膜层7,利用紫外纳米压印并将其图形化,如图2i所示,在掩膜层7内部留下的等间隔周期排列的孔洞,其俯视图如图2j。该步骤中,掩膜层7采用负性光刻胶,厚度通常为0.5~3um,方便后续带胶剥离。
步骤六,在掩膜层7表面利用等离子体气相外延方法外延氧化硅薄膜层8,厚度为200nm,如图2k所示;外延完成之后带胶剥离外延在掩膜层7上的氧化硅薄膜层8,衬底上留下等间隔排列周期为200~1800nm的氧化硅圆柱型结构B,至此获得大面积微纳叠层衍射光栅结构,其剖面结构如图2l所示。该步骤中,作为最佳方法方案,通过紫外纳米压印和带胶剥离方法实现图形化。该步骤中,等间隔周期排列的氧化硅圆柱型结构B外延在氧化铝和氧化钛叠层6上,氧化硅圆柱型结构B的排列周期和直径与氧化硅圆柱型结构A相同,其俯视图如图2m所示。
实施例1制备得到的大面积叠层衍射光栅的光谱衍射曲线,通过图3可以看出,该结构的大面积叠层衍射光栅可以实现高效率、宽光谱的衍射。
至此,已经结合附图对本发明实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属方法领域中普通方法人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通方法人员可对其进行简单地更改或替换。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图2中的方向,并非用来限制本发明的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本发明的理解造成混淆时,将省略常规结构或构造。

Claims (9)

1.一种大面积微纳叠层衍射光栅结构的制备方法,其特征在于,包括以下步骤:
步骤一,提供一防光晕阴极玻璃衬底;
步骤二,在衬底的表面涂布负性光刻胶掩膜层A,利用紫外纳米压印方法将所述负性光刻胶掩膜层A图形化,在衬底表面留下等间隔周期排列的圆柱型孔洞;
步骤三,在图形化后的衬底表面和负性光刻胶掩膜层A的表面外延氧化硅光薄膜;外延结束后将衬底浸泡入丙酮溶液中,带胶剥离所述负性光刻胶掩膜层A表面外延的氧化硅薄膜,留下圆柱型孔洞中的氧化硅圆柱形结构A;
步骤四,在所述氧化硅圆柱形结构A和衬底的表面涂布正性光刻胶掩膜层,利用紫外纳米压印方法将所述正性光刻胶掩膜层图形化;在图形化后的表面通过原子层沉积方法多次交替进行外延氧化铝和氧化钛叠层,每层氧化铝薄膜和氧化钛薄膜的厚度均相同且为1~50nm厚,外延完成之后带胶剥离外延在掩膜层上的氧化铝和氧化钛叠层薄膜,并平坦化留在衬底上的氧化铝和氧化钛叠层的表面,使衬底上的氧化铝和氧化钛叠层厚度与所述圆柱形孔洞中的氧化硅圆柱形结构A厚度一致;
步骤五,在平坦化后的表面涂布负性光刻胶掩膜层B,利用紫外纳米压印方法将负性光刻胶掩膜层B图形化;
步骤六,在负性光刻胶掩膜层B的表面利用等离子体气相外延方法外延氧化硅光栅层;外延完成之后带胶剥离外延在负性光刻胶掩膜层B上的氧化硅薄膜,在衬底表面上留下等间隔周期排列的圆柱型氧化硅B,获得大面积微纳叠层衍射光栅结构。
2.根据权利要求1所述的制备方法,其特征在于:
所述负性光刻胶掩膜层A和负性光刻胶掩膜层B的厚度为0.5~3um。
3.根据权利要求1所述的制备方法,其特征在于:
所述负性光刻胶掩膜层A、负性光刻胶掩膜层B及正性光刻胶掩膜层在带胶剥离过程中,仅将衬底片放入丙酮中去除掩膜层,所述衬底表面以一定间隔周期排列的圆柱型孔洞中的氧化硅圆柱形结构A不脱落。
4.根据权利要求1所述的制备方法,其特征在于,在步骤3中:
所述外延氧化硅光薄膜是通过等离子体化学气相沉积PECVD方法实现的,氧化硅光薄膜的厚度为200~500nm。
5.根据权利要求1所述的制备方法,其特征在于,在步骤3中:
所述圆柱型孔洞中的氧化硅光栅层的直径为100~900nm。
6.根据权利要求5所述的制备方法,其特征在于,在步骤3中:
所述圆柱型孔洞的间隔周期为200~1800nm。
7.根据权利要求1-6任一项所述的制备方法,其特征在于:
所述平坦化是通过化学机械抛光CMP方法实现的。
8.根据权利要求1-6任一项所述的制备方法,其特征在于:
所述图形化是通过紫外纳米压印和带胶剥离方法实现的。
9.根据权利要求1-6任一项所述的制备方法,其特征在于,在步骤3中:
利用原子层沉积方法多次交叠外延氧化铝和氧化钛叠层膜填充单层光栅的栅谷,并在已有的单层光栅的栅齿上进行微纳结构图形调控,获得所述大面积叠层衍射光栅结构。
CN202210539415.0A 2022-05-17 2022-05-17 一种大面积微纳叠层衍射光栅结构的制备方法 Active CN114966926B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210539415.0A CN114966926B (zh) 2022-05-17 2022-05-17 一种大面积微纳叠层衍射光栅结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210539415.0A CN114966926B (zh) 2022-05-17 2022-05-17 一种大面积微纳叠层衍射光栅结构的制备方法

Publications (2)

Publication Number Publication Date
CN114966926A true CN114966926A (zh) 2022-08-30
CN114966926B CN114966926B (zh) 2023-08-04

Family

ID=82982489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210539415.0A Active CN114966926B (zh) 2022-05-17 2022-05-17 一种大面积微纳叠层衍射光栅结构的制备方法

Country Status (1)

Country Link
CN (1) CN114966926B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177039A1 (en) * 2011-09-20 2014-06-26 Institute of Microelectronics, Chinese Academy of Sciences Sub-wavelength extreme ultraviolet metal transmission grating and manufacturing method thereof
US20160146984A1 (en) * 2014-11-25 2016-05-26 NanoMedia Solutions Inc. Methods for Fabricating Color Image Display Devices Comprising Structural Color Pixels from a Generic Stamp
US20160274282A1 (en) * 2013-12-13 2016-09-22 Zhejiang University An incident angle insensitive color filter and its manufacturing method
US20180081265A1 (en) * 2016-09-21 2018-03-22 Molecular Imprints, Inc. Microlithographic fabrication of structures
CN108802881A (zh) * 2018-05-21 2018-11-13 苏州大学 一种高衍射效率光栅结构和制备方法
CN111913245A (zh) * 2020-08-26 2020-11-10 上海华虹宏力半导体制造有限公司 光栅器件的形成方法
CN112596137A (zh) * 2020-12-07 2021-04-02 同济大学 一种高损伤阈值的多层介质膜矩形衍射光栅制备方法
WO2021073725A1 (en) * 2019-10-15 2021-04-22 Huawei Technologies Co., Ltd. Rotated subwavelength grating for high efficiency thin waveguide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177039A1 (en) * 2011-09-20 2014-06-26 Institute of Microelectronics, Chinese Academy of Sciences Sub-wavelength extreme ultraviolet metal transmission grating and manufacturing method thereof
US20160274282A1 (en) * 2013-12-13 2016-09-22 Zhejiang University An incident angle insensitive color filter and its manufacturing method
US20160146984A1 (en) * 2014-11-25 2016-05-26 NanoMedia Solutions Inc. Methods for Fabricating Color Image Display Devices Comprising Structural Color Pixels from a Generic Stamp
US20180081265A1 (en) * 2016-09-21 2018-03-22 Molecular Imprints, Inc. Microlithographic fabrication of structures
CN108802881A (zh) * 2018-05-21 2018-11-13 苏州大学 一种高衍射效率光栅结构和制备方法
WO2021073725A1 (en) * 2019-10-15 2021-04-22 Huawei Technologies Co., Ltd. Rotated subwavelength grating for high efficiency thin waveguide
CN111913245A (zh) * 2020-08-26 2020-11-10 上海华虹宏力半导体制造有限公司 光栅器件的形成方法
CN112596137A (zh) * 2020-12-07 2021-04-02 同济大学 一种高损伤阈值的多层介质膜矩形衍射光栅制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石磊: "大尺寸衍射光栅的制造——基于潜像的曝光拼接方法", 《中国博士学位论文全文数据库信息科技辑》, pages 1 - 3 *

Also Published As

Publication number Publication date
CN114966926B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
US20220091428A1 (en) Transmissive Metasurface Lens Integration
US11506538B2 (en) Optical filter, optical filter system, spectrometer and method of fabrication thereof
CN110146949B (zh) 一种窄带光谱滤波结构及其制作方法
JP4723860B2 (ja) Cmos画像センサー
US8766385B2 (en) Filtering matrix structure, associated image sensor and 3D mapping device
US7029944B1 (en) Methods of forming a microlens array over a substrate employing a CMP stop
CN103733340A (zh) 固体摄像元件和摄像系统
CN102870018A (zh) 具有等离子体彩色滤光器和光伏性能的显示设备
CN108469645B (zh) 一种偏振滤光元件及其制备方法
CN110146948B (zh) 一种硅基底长波通红外滤光片及其制备方法
WO2022051971A1 (en) Imaging optical system, imaging device and electronic device
CN115421295A (zh) 超透镜的设计方法、超透镜及加工工艺
Nam et al. Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement
CN111913243A (zh) 用于制造一个或多个纳米滤光超表面元件或系统的方法
CN114966926A (zh) 一种大面积微纳叠层衍射光栅结构的制备方法
CN1875490A (zh) 用于在光学集成电路上制造抗反射表面的方法
CN101403805A (zh) 一种光谱阶跃式集成滤光片的制作方法
US20200386911A1 (en) Apertures for flat optical devices
CN103713341A (zh) 一种非周期高对比度光栅及其制备方法
US10700221B2 (en) Microlens having a carrier-free optical interference filter
CN113359220A (zh) 一种基于三维环状结构的光谱滤光片及应用
US20180351007A1 (en) Solar cell
CN110383484B (zh) 显示面板及其制造方法、显示设备
CN114675360B (zh) 一种导模共振窄带滤波单元结构及多光谱芯片
CN102570313A (zh) 基于硅衬底氮化物材料的集成光子器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant