CN114965642B - 一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器 - Google Patents

一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器 Download PDF

Info

Publication number
CN114965642B
CN114965642B CN202210567840.0A CN202210567840A CN114965642B CN 114965642 B CN114965642 B CN 114965642B CN 202210567840 A CN202210567840 A CN 202210567840A CN 114965642 B CN114965642 B CN 114965642B
Authority
CN
China
Prior art keywords
ito
effect transistor
field effect
layer deposition
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210567840.0A
Other languages
English (en)
Other versions
CN114965642A (zh
Inventor
李调阳
林本慧
王鸣巍
王博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210567840.0A priority Critical patent/CN114965642B/zh
Publication of CN114965642A publication Critical patent/CN114965642A/zh
Priority to US18/173,101 priority patent/US20230384257A1/en
Application granted granted Critical
Publication of CN114965642B publication Critical patent/CN114965642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/165Coronaviridae, e.g. avian infectious bronchitis virus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器。利用原子层沉积技术优异台阶覆盖性和原子级膜厚精确控制的特点,在三维凹槽结构上依次沉积高k介质和氧化铟锡半导体,制备出三维凹槽结构场效应晶体管生物传感器。三维凹槽结构器件可克服德拜屏蔽效应的影响,实现比平面结构更大的德拜长度,可以在高离子强度溶液中检测出低浓度的疾病标志物,具有高灵敏度和快速检测的优势,在即时检测、体外诊断、生化分析等领域展现出广阔的应用前景。

Description

一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物 传感器
技术领域
本发明属于生物传感器技术领域。具体是提出了一种基于原子层沉积氧化物半导体沟道的凹槽型场效应晶体管生物传感器。
背景技术
场效应晶体管生物传感器(FET biosensor)由于其免标记、高灵敏度、易集成等优点,已成为最有前景的生物检测技术之一。目前,一维半导体材料,如碳纳米管、硅纳米线等,二维半导体材料石墨烯、二硫化钼等被广泛用于构建场效应晶体管生物传感器,但是存在材料制备及器件制造工艺难度大的难题,极大限制了场效应晶体管生物传感器的实际应用。近年来的研究表明,氧化铟锡(ITO)由于具有高载流子浓度,当大幅减小其薄膜厚度时,载流子输运性能不受影响。此外,ITO的材料制备工艺完全与现有主流的薄膜生长工艺兼容,ITO FET的器件制备工艺与CMOS工艺亦完全兼容,因此与纳米线、纳米管、纳米片等材料相比,ITO将是大规模量产FET biosensor的最具潜力的半导体沟道材料。
虽然FET biosensor是最有前景的生物检测技术之一,但是由于德拜屏蔽的存在,在检测血液、血清、尿液、汗液等高离子强度的生物样本时,会导致FET biosensor灵敏度大幅度变差或者完全检测不出靶标分子。目前克服德拜屏蔽的方法有:(1)稀释法。将高离子强度的生物样本用低离子强度的缓冲溶液或去离子水稀释,此方法简单便利,但过度稀释会导致蛋白质产生严重的盐溶效应,使特异性结合的效果变差,影响检测结果。(2)脱盐法。从高离子强度的生物样本纯化靶标分子,去除无关生物分子和离子,此方法工艺复杂且耗时较长,无法满足即时检测的要求。(3)在传感表面修饰聚乙二醇(PEG)渗透高分子层。PEG被广泛应用于生物传感器防污以增加特异性,也被用来修饰在FET biosensor的传感表面,在一定程度上克服德拜屏蔽。但是PEG容易氧化,且PEG渗透高分子层并不能渗透所有的生物分子,有可能将靶标分子阻挡在外。(4)优化器件结构。如将平整的石墨烯沟道变形为褶皱石墨烯,从而在凹处形成 “电热点” ,扩展了德拜长度。但是褶皱石墨烯相较于平整石墨烯,其制备工艺难度更大。除了列举的4种主要方法外,还有裁剪抗体法、破坏双电层法等。
发明内容
针对现有技术的不足,本发明提供了一种凹槽型沟道的氧化铟锡场效应晶体管生物传感器。此器件结构克服了德拜屏蔽的影响,可以在高离子强度溶液中检测出较低浓度的疾病标志物。
为实现上述目的,本发明采用如下技术方案:
一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器,所述传感器包括衬底,所述衬底的表面间隔设有若干凹槽,所述衬底上设有高κ介质层,所述高κ介质层上设有ITO沟道层,所述ITO沟道层的两端设有源电极和漏电极,所述源电极和漏电极上有绝缘层。
优选地,所述衬底为硅片,凹槽的深度为10-200nm,凸出宽度为40-200nm,凹槽的宽度为40-200nm。
优选地,所述衬底经过旋涂光刻胶、烘烤、曝光、显影、定影、干法刻蚀、去胶工艺或者旋涂光刻胶、烘烤、纳米压印、干法刻蚀、去胶工艺,将平整的硅片制备成为表面间隔设有若干凹槽的硅片衬底。
优选地,所述高κ介质层为HfO2、Al2O3、SiO2或SiNx,采用原子层沉积法制备,厚度为5-10 nm。
优选地,ITO沟道层采用原子层沉积法制备,厚度为10-20nm,所述ITO沟道层为凹凸型,凹槽深度为10-200nm,凹槽宽度为20-300nm,凸出ITO的宽度为:10-100nm。
优选地,所述源电极、漏电极为Au、Ni/Au、Ni/Au/Ni中的一种,通过旋涂光刻胶、烘烤、曝光、显影、定影、氧等离子体去残胶、蒸镀金属、剥离等一系列微纳加工工艺或shuttermask蒸镀工艺,在ITO的两端形成。所述绝缘为SU-8、PMMA、SiO2或SiNx
优选地,在凹凸型ITO沟道层表面修饰生物探针,用以特异性捕获靶标生物分子。具体的,先用氧等离子体处理ITO沟道层表面,使ITO沟道层表面形成羟基,再修饰上氨基,将DAN、抗体等生物探针固定在ITO沟道层表面,滴加在修饰氨基的ITO沟道层表面,使DNA、抗体中的化学活性基团与氨基发生化学反应,即将DNA、抗体等生物探针固定在了ITO表面。
本发明的有益效果:(1)ITO的生长和器件制备工艺完全与现有的硅基CMOS工艺兼容,量产潜力巨大。(2)凹槽型ITO的制备工艺与硅基CMOS工艺兼容。(3)当检测血液、尿液、汗液等高离子强度的样本时,虽然生物分子超出了德拜长度,但是生物分子在凹槽型ITO侧壁的德拜长度内,可以有效克服德拜长度的影响。凹槽型ITO可以有效克服德拜长度的影响,进一步增加了场效应晶体管应用于临床样本检测的潜力。
附图说明
图1为基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器的结构示意图;
图2为ITO沟道层的结构示意图;H为凹槽的深度,W为凹槽的宽度,L为凸出ITO的宽度;
图3为基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器检测抗原的原理示意图,34为生物探针抗体和靶标抗原的复合物,抗体特异性捕获抗原。当检测血液、尿液、汗液等高离子强度的样本时,虽然抗体或者抗体-抗原复合物的长度超出了德拜长度,但是抗体或者抗体-抗原复合物在凹槽型ITO侧壁的德拜长度内,可以有效克服德拜长度的影响;
图4为基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器检测DNA的原理示意图,44为生物探针DNA和靶标DNA的特异结合形成的双链DNA;当检测血液、尿液、汗液等高离子强度的样本时,虽然双链DNA的长度超出了德拜长度,但是双链DNA在凹槽型ITO侧壁的德拜长度内,可以有效克服德拜长度的影响;
图5为凹槽型和平面型沟道的氧化铟锡场效应晶体管生物传感器对靶标DNA的信号响应;
图6为凹槽型和平面型沟道的氧化铟锡场效应晶体管生物传感器对IgG的信号响应;
图中:1为硅衬底,2为高κ介质层,3为ITO,4为源漏电极,5为绝缘层,6为生物探针抗体和靶标抗原的复合物,7为生物探针DNA和靶标DNA的特异结合形成的双链DNA。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明。
实施方式一:检测DNA
DNA探针序列:
COOH-5’-TTTTTTCCATAACCTTTCCACATACCGCAGACGG-3’;
DNA靶标序列:
5’ –CCGTCTGCGGTATGTGGAAAGGTTATGG-3’;
所述的DNA探针及DNA靶标由上海生工生物工程有限公司合成。
一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器,所述传感器包括衬底1,所述衬底1的表面间隔设有若干凹槽,所述衬底1上设有高κ介质层2,所述高κ介质层2上设有ITO沟道层3,所述ITO沟道层3的两端设有源电极和漏电极4,所述源电极和漏电极4上有绝缘层5;以下为传感器的制备方法:
1. 清洗衬底硅。硅片为P型掺硼(B),电阻小于0.005欧姆。采用标准的RCA1清洗工艺去除衬底上的颗粒及有机物等。清洗完后高纯氮气吹干待用。
2. 包括匀胶、烘烤、曝光、显影、定影、去胶等工艺步骤定义出凹凸型硅表面。(1)首先在第1步的基础上,旋涂ZEP 520A电子束光刻胶,旋涂参数500 RPM/5 s,4000 RPM/60s,然后180 ℃烘烤3 min。(2)采用电子束曝光系统定义出凹槽区域。(3)显影:显影液为二甲苯,显影70 s,然后IPA定影30 s,氮气吹干。
3. 干法刻蚀硅。(1) 刻蚀工艺参数为:卡盘温度(chuck temperature) 10 ℃,压力19 mtorr,射频功率300W,偏置电压300V,六氟化硫/八氟化四碳/氩气流量比=20/50/30sccm,刻蚀2 min。(2) 去胶:NMP 10 min(同时超声),然后IPA 10 min;(3) 凹槽型硅片的凹槽深度为100 nm,凸出宽度为70 nm,凹槽宽度为100 nm。
4. 用原子层淀积系统在凹槽型硅表面生长厚度为5 nm的高κ介质HfO2作为栅介质。生长时采用TEMAHf和O3作为前驱体,通过载气(N2)将气相前驱体脉冲交替通入反应腔体进行生长,生长温度为250 ℃。
5. 用原子层淀积系统在高κ介质HfO2上生长厚度为10 nm的ITO。采用的铟前驱体为三甲基铟(TMIn),锡前驱体为四(二甲胺基)锡(TDMASn),氧源为等离子体O2,生长温度为200 ℃,氧化铟InOx与氧化锡SnOx的成分比例约为9:1。凹槽型ITO的凹槽深度为100 nm,凸出宽度100 nm,凹槽宽度为70 nm。
6. 通过光匀胶、曝光、显影、电子束蒸发和剥离工艺制备源电极和漏电极,金属采用15 nm Ni和20 nm Au。源电极和漏电极为5-10nm Cr和30-50nmAu构成,ITO沟道长为20μm,宽为50μm。
7. 匀胶、烘烤、曝光、显影、定影、去胶等工艺步骤,在源电极和漏电极上制作绝缘层,以隔绝源电极和漏电极与测试样本的接触。(1)旋涂SU-8,旋涂参数为800 rpm/ 3s,3000rpm/ 30s,旋涂后110 ℃烘烤3min。(2)曝光6s,110 ℃烘烤2min。(3)PGMEA显影60s,IPA显影 30s。用去离子水清洗干净,氮气吹干。
8. 固定DNA探针。(1)用氧等离子体处理器件,是ITO表面带有羟基,氩气与氧气的比例为4:1,功率15W,处理5min。(2)将氧等离子体处理过的器件浸泡在APTES溶液中,APTES的浓度为2%,溶剂为无水乙醇和水的混合液,水的含量为5%。室温下反应3小时,反应结束后,用无水乙醇、去离子水清洗干净器件,氮气吹干待用。(3)用pH=7 .4的1× PBS缓冲溶液配制2μmol/mL的DNA探针,采用EDC/NHS法将其固定在ITO上。EDC的浓度为2mmol/L,NHS的浓度为10 mmol/L。室温避光反应0.5小时。反应结束后,用pH=7.4的1× PBS缓冲溶液清洗干净器件,氮气吹干待用。
9. 用pH=7.4的1× PBS缓冲溶液配置不同浓度10 pmol/L、100 pmol/L、1 nmol/L的靶标DNA。在1× PBS缓冲溶液中,ITO界面的德拜长度约为1nm,远小于DNA探针和靶标DNA的长度。首先滴加100 μL 1× PBS缓冲溶液在器件上,静置2h。然后依次滴加10 μL靶标DNA溶液,开始测试。测试参数为:背栅电压Vg= -0.1V,源漏电压Vd= 50 mV,测试沟道电流Id-t曲线。从图5可以看出,在高离子强度的1×PBS缓冲溶液中,平面型ITO FET biosensor对靶标DNA几乎没有响应,由于凹槽型ITO FET biosensor能有效克服德拜屏蔽的影响,对10pmol/L 靶标DNA依然有信号响应。
实施方式二:检测新冠COVID-19 IgG(COVID-19-IgG)
以新冠COVID-19 的N蛋白(COVID-19-N)为探针,特异性捕获新冠COVID-19 IgG。所述的COVID-19-N及COVID-19-IgG购自近岸蛋白质科技有限公司。
一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器,所述传感器包括衬底1,所述衬底1的表面间隔设有若干凹槽,所述衬底1上设有高κ介质层2,所述高κ介质层2上设有ITO沟道层3,所述ITO沟道层3的两端设有源电极和漏电极4,所述源电极和漏电极4上有绝缘层5;以下为传感器的制备方法:
1. 清洗衬底硅。硅片为P型掺B,电阻小于0.005欧姆。采用标准的RCA1清洗工艺去除衬底上的颗粒及有机物等。清洗完后高纯氮气吹干待用。
2. 包括匀胶、烘烤、曝光、显影、定影、去胶等工艺步骤定义出凹凸型硅表面。(1)首先在第1步的基础上,旋涂ZEP 520A电子束光刻胶,旋涂参数500 RPM/5 s,4000 RPM/60s,然后180 ℃烘烤3 min。(2)采用电子束曝光系统定义出凹槽区域。(3)显影:显影液为二甲苯,显影70 s,然后IPA定影30 s,氮气吹干。
3. 干法刻蚀硅。(1) 刻蚀工艺参数为:卡盘温度(chuck temperature) 10 ℃,压力19 mtorr,射频功率300W,偏置电压300V,六氟化硫/八氟化四碳/氩气流量比=20/50/30sccm,刻蚀2 min。(2) 去胶:NMP 10 min(同时超声),然后IPA 10 min;(3) 凹槽型硅片的凹槽深度为100nm,凸出宽度为70nm,凹槽宽度为50nm。
4. 用原子层淀积系统在凹槽型硅表面生长厚度为5 nm的高κ介质HfO2作为栅介质。生长时采用TEMAHf和O3作为前驱体,通过载气(N2)将气相前驱体脉冲交替通入反应腔体进行生长,生长温度为250 ℃。
5. 用原子层淀积系统在高κ介质HfO2上生长厚度为10 nm的ITO。采用的铟前驱体为三甲基铟(TMIn),锡前驱体为四(二甲胺基)锡(TDMASn),氧源为等离子体O2,生长温度为200 ℃,氧化铟InOx与氧化锡SnOx的成分比例约为9:1。凹槽型ITO的凹槽深度为100 nm,凸出宽度100 nm,凹槽宽度为20 nm。
6. 通过光匀胶、曝光、显影、电子束蒸发和剥离工艺制备源电极和漏电极,金属采用15 nm Ni和20 nm Au。源电极和漏电极为5-10nm Cr和30-50nmAu构成,ITO沟道长为20μm,宽为50μm。
7. 匀胶、烘烤、曝光、显影、定影、去胶等工艺步骤,在源电极和漏电极上制作绝缘层,以隔绝源电极和漏电极与测试样本的接触。(1)旋涂SU-8,旋涂参数为800 rpm/ 3s,3000rpm/ 30s,旋涂后110 ℃烘烤3min。(2)曝光6s,110 ℃烘烤2min。(3)PGMEA显影60s,IPA显影 30s。用去离子水清洗干净,氮气吹干。
8. 固定COVID-19-N探针。(1)用氧等离子体处理器件,是ITO表面带有羟基,氩气与氧气的比例为4:1,功率15W,处理5min。(2)将氧等离子体处理过的器件浸泡在APTES溶液中,APTES的浓度为2%,溶剂为无水乙醇和水的混合液,水的含量为5%。室温下反应3小时,反应结束后,用无水乙醇、去离子水清洗干净器件,氮气吹干待用。(3)用pH=7 .4的1× PBS缓冲溶液配制20 μg/mL的COVID-19-N探针,采用EDC/NHS法将其固定在ITO上。EDC的浓度为2mmol/L,NHS的浓度为10 mmol/L。室温避光反应0.5小时。反应结束后,用pH=7.4的1× PBS缓冲溶液清洗干净器件,氮气吹干待用。将100 μL 2%BSA滴加在ITO表面,室温孵育30min,1× PBS缓冲溶液清洗干净,氮气吹干待用。
9. 用pH=7.4的1× PBS缓冲溶液配置不同浓度1 pg/mL、10 pg/mL、1 ng/mL的COVID-19-IgG。首先滴加100 μL 1× PBS缓冲溶液在器件上,静置2h。然后依次滴加10 μLCOVID-19-IgG溶液,开始测试。测试参数为:背栅电压Vg= -0.1V,源漏电压Vd= 50 mV,测试沟道电流Id-t曲线。从图5可以看出,在高离子强度的1×PBS缓冲溶液中,平面型ITO FETbiosensor对靶标COVID-19-IgG几乎没有响应,这是由于德拜屏蔽导致的。由于凹槽型ITOFET biosensor能有效克服德拜屏蔽的影响,对1 pg/mL COVID-19-IgG依然有信号响应。
申请人声明,本发明通过上述实施例来说明本发明的详细组成和方法,但本发明并不局限于上述详细组成方法,即不意味着本发明必须依赖上述详细组成和方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (4)

1.一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器,其特征在于:所述传感器包括衬底,所述衬底的表面间隔设有若干凹槽,所述衬底上设有高κ介质层,所述高κ介质层上设有ITO沟道层,所述ITO沟道层的两端设有源电极和漏电极,所述源电极和漏电极上有绝缘层;
所述衬底为硅片,凹槽的深度为100nm,凸出宽度为70nm,凹槽的宽度为100nm;ITO沟道层采用原子层沉积法制备,厚度为10nm,所述ITO沟道层为凹凸型,凹槽深度为100nm,凹槽宽度为70nm,凸出ITO的宽度为:100nm;在凹凸型ITO沟道层表面修饰生物探针,用以特异性捕获靶标生物分子;
所述衬底经过旋涂光刻胶、烘烤、曝光、显影、定影、干法刻蚀、去胶工艺或者旋涂光刻胶、烘烤、纳米压印、干法刻蚀、去胶工艺,将平整的硅片制备成为表面间隔设有若干凹槽的硅片衬底。
2.如权利要求1所述的基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器,其特征在于:所述高κ介质层为HfO2、Al2O3、SiO2或SiNx,采用原子层沉积法制备,厚度为5nm。
3.如权利要求1所述的基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器,其特征在于:所述源电极、漏电极为Au、Ni/Au、Ni/Au/Ni中的一种。
4.如权利要求1所述的基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器,其特征在于:所述绝缘层为SU-8、PMMA、SiO2或SiNx
CN202210567840.0A 2022-05-24 2022-05-24 一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器 Active CN114965642B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210567840.0A CN114965642B (zh) 2022-05-24 2022-05-24 一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器
US18/173,101 US20230384257A1 (en) 2022-05-24 2023-02-23 Groove-type field effect transistor biosensor based on atomic layer deposited semiconductor channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210567840.0A CN114965642B (zh) 2022-05-24 2022-05-24 一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器

Publications (2)

Publication Number Publication Date
CN114965642A CN114965642A (zh) 2022-08-30
CN114965642B true CN114965642B (zh) 2023-08-01

Family

ID=82985873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210567840.0A Active CN114965642B (zh) 2022-05-24 2022-05-24 一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器

Country Status (2)

Country Link
US (1) US20230384257A1 (zh)
CN (1) CN114965642B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932015A (zh) * 2023-01-09 2023-04-07 福州大学 一种基于原子层沉积半导体沟道的t型栅fet生物传感器
CN116254521B (zh) * 2023-01-09 2024-06-04 福州大学 一种基于多孔aao制备垂直环绕沟道fet生物传感器的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984036A (en) * 1988-06-20 1991-01-08 Mitsubishi Denki Kabushiki Kaishi Field effect transistor with multiple grooves

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711177A (zh) * 2016-12-28 2017-05-24 Tcl集团股份有限公司 一种增强光提取率的qled场效应晶体管及其制备方法
US11428690B2 (en) * 2017-01-30 2022-08-30 University Of Miami Portable plasmonic system for disease detection
WO2020093376A1 (en) * 2018-11-09 2020-05-14 Jiangsu Jitri Micro-Nano Automation Institute Co., Ltd. A field-effect transistor biosensor with a tubular semiconductor channel structure
WO2021174068A1 (en) * 2020-02-28 2021-09-02 The Board Of Trustees Of The University Of Illinois Ultrasensitive biosensor using bent and curved field effect transistor by debye length modulation
CN111509047B (zh) * 2020-03-18 2022-07-05 天津师范大学 石墨烯场效应晶体管及其制备方法
CN113984695B (zh) * 2021-10-28 2023-12-29 福州大学 一种检测尿液外观的传感器
CN114216947B (zh) * 2021-12-16 2023-11-10 福州大学 一种基于dna纳米四合体的氧化铟锡场效应晶体管生物传感器及其应用
CN114242785A (zh) * 2021-12-20 2022-03-25 北京超弦存储器研究院 一种基于氧化铟锡的全透明薄膜晶体管及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984036A (en) * 1988-06-20 1991-01-08 Mitsubishi Denki Kabushiki Kaishi Field effect transistor with multiple grooves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Monolayer crumpled graphene-based mechanically and electrically tunable infrared absorbers for high-sensitivity sensing;Zhonglei Shen et al.;《Optics and Laser Technology 》(第153期);第1-10 *

Also Published As

Publication number Publication date
CN114965642A (zh) 2022-08-30
US20230384257A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
CN114965642B (zh) 一种基于原子层沉积半导体沟道的凹槽型场效应晶体管生物传感器
Lee et al. A novel biosensor based on hafnium oxide: Application for early stage detection of human interleukin-10
CN107807239B (zh) 一种基于硅纳米带的高敏感性生物传感器制备及使用方法
CN106198674B (zh) 一种介孔石墨烯制备工艺及基于介孔石墨烯场效应晶体管生物传感器
Puppo et al. Femto-molar sensitive field effect transistor biosensors based on silicon nanowires and antibodies
KR20150117945A (ko) 환원 그래핀 산화물 기반 바이오 센서 및 이를 이용한 바이오 물질 검출 방법
Zhang et al. O2 plasma treated biosensor for enhancing detection sensitivity of sulfadiazine in a high-к HfO2 coated silicon nanowire array
JP2014227304A (ja) グラフェン薄膜の製造方法、並びにグラフェン薄膜を備えた電子素子、センサー、アレイ素子およびセンシング方法
CN113130656A (zh) 一种场效应晶体管生物传感器及其制备方法和应用
Ren et al. Low-temperature supercritical activation enables high-performance detection of cell-free DNA by all-carbon-nanotube transistor
CN113960128B (zh) 基于钾离子适配体修饰的硅纳米线场效应管生物传感器
CN110006975B (zh) 一种基于afp的生物传感器及其制备方法
KR101161371B1 (ko) 전계효과 트랜지스터 기반 바이오센서 및 그 제작방법
Xing et al. ReS2-MoS2 heterojunction nanotube FET with superlattice structures for ultrasensitive detection of miRNA
Singh et al. Bio-functionalization of ZnO water gated thin-film transistors
KR20100087426A (ko) 실리콘 나노 와이어를 이용한 바이오 센서, 실리콘 나노 와이어를 이용한 바이오 센서의 제조방법 및 상기 바이오 센서를 이용한 특정 세포 검지 방법
Canton-Vitoria et al. Field-effect transistor antigen/antibody-TMDs sensors for the detection of COVID-19 samples
CN115561295B (zh) 一种硅纳米线场效应葡萄糖传感器及其制备方法
CN115932015A (zh) 一种基于原子层沉积半导体沟道的t型栅fet生物传感器
WO2020093376A1 (en) A field-effect transistor biosensor with a tubular semiconductor channel structure
CN110389227A (zh) 顶栅底接触结构器件及其制备方法
Deng et al. Uniform DNA biosensors based on threshold voltage of carbon nanotube thin-film transistors
CN110389224A (zh) 底栅底接触结构器件及其制备方法
CN117191912A (zh) 一种银离子传感器及其制备方法和应用
CN114778616B (zh) 一种石墨烯传感器及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant