CN114959511A - 一种700MPa级高韧性防爆钢板的制造方法 - Google Patents

一种700MPa级高韧性防爆钢板的制造方法 Download PDF

Info

Publication number
CN114959511A
CN114959511A CN202210523085.6A CN202210523085A CN114959511A CN 114959511 A CN114959511 A CN 114959511A CN 202210523085 A CN202210523085 A CN 202210523085A CN 114959511 A CN114959511 A CN 114959511A
Authority
CN
China
Prior art keywords
steel plate
explosion
temperature
toughness
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210523085.6A
Other languages
English (en)
Inventor
郑磊
赵洪山
关秀格
郭龙鑫
范建文
任新凯
彭伟
左帅
董瀚
和珍宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Puyang Iron and Steel Co Ltd
Original Assignee
Hebei Puyang Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Puyang Iron and Steel Co Ltd filed Critical Hebei Puyang Iron and Steel Co Ltd
Priority to CN202210523085.6A priority Critical patent/CN114959511A/zh
Publication of CN114959511A publication Critical patent/CN114959511A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供了一种700MPa级高韧性防爆钢板的制造方法,属于钢铁冶炼技术领域。本发明采用双渣法和留渣操作并控制钢水中的元素成分,通过连铸得到铸坯,再对铸坯进行高温缓冷、轧制、轧后缓冷以及热处理等制造工序获得了一种700MPa级高韧性防爆钢板、本发明的钢板具有低温韧性优异的特点,钢板的屈服强度在720‑800MPa之间,抗拉强度780‑870MPa之间,断后延伸率A5≥15%,‑40℃纵向冲击功达到了200J以上,典型值达到了220J以上,达到了防爆钢制造领域国际先进水平。

Description

一种700MPa级高韧性防爆钢板的制造方法
技术领域
本发明涉及钢铁冶炼技术领域,尤其涉及一种700MPa级高韧性防爆钢板的制造方法。
背景技术
金属材料连续性好,强度高,韧性好,尤其是钢铁材料,其韧性远高于其他装甲防护材料,是最主要的防爆材料。目前国际上对防爆钢的研究主要集中在材料研发、防爆机理与优化两大部分。国外防爆钢产品研发持续进步,目前已开发出700-1300MPa系列产品,并应用于装甲车辆且通过了实战验证。我国防爆钢研究起步较晚,但随着我国钢铁行业研发队伍壮大、生产工艺装备发展、武器装备防护性能需求的提高,为更高韧性的高强防爆钢开发与创新提供了基本条件。然而随着装甲车辆高防护、高机动、轻量化的需求,防爆钢需要向更高强韧化发展。更高强度导致的塑韧性降低是高强度防爆钢需要攻克的关键难题,需要开展相关攻关研究。目前国内700MPa级防爆钢板-40℃纵向冲击功最高约130-140J左右,相对于国外相同强度级别低温韧性仍较低,限制了防爆钢的使用环境。
例如中国专利CN105970097A公开了一种稀土处理屈服强度700MPa级防爆高强钢及生产方法,通过合理的化学成分设计,采取冶炼、LF精炼、RH真空脱气、连铸、轧制、热处理等工艺,获得一种显微组织为回火索氏体的稀土处理的防爆高强度钢板,具备抵御8KG TNT炸药的爆炸能力,能够满足防爆使用要求,应用效果较好。但实际上稀土元素在钢中难以分布均匀,造成性能不均匀,且稀土元素收得率极不稳定,造成性能波动大。
高强度防爆钢显微组织和抗爆轰性能研究公开了一种高强防爆钢显微组织为回火索氏体,原马氏体板条形貌明显,板条宽度为0.2~0.5μm,被析出物和位错面拦截,未贯穿整个原晶粒。板条束呈不规则平行排列,周边变形带附近大量位错发生堆积形成位错墙。应变率为4500~18000s-1时,钢材抗压强度逐步增大,展现出良好抗压韧性,满足现有防爆车抗爆轰性能要求。但是其记载了700MPa级高强防爆钢屈服强度为765MPa;抗拉强度为810MPa;伸长率为17%;冲击功(-40℃)为136、147、142J,其韧性较差。
因此,制造一种低温韧性优异的700MPa级防爆钢,是目前所要解决的问题。
发明内容
有鉴于此,本发明提供了一种700MPa级高韧性防爆钢板(BR700)的制造方法,包括以下步骤:
(1)转炉冶炼采用双渣法和留渣操作降低冶炼钢水中的P、S元素含量,具体操作要求为:在转炉吹炼中途倒出1/2~2/3的炉渣,然后加入新渣料重新造渣,脱P效率可达95%以上,去S效率可达60%以上;在出钢过程中将本炉已经造好的高碱度、高温度和较高FeO含量的终渣的1/3~1/2留在炉内,以便下一炉钢初渣的快速形成,加速转炉冶炼前期去P效率;然后经LF精炼、连铸技术得到铸坯,所述铸坯中的化学成分百分比如下:
C:0.09-0.16%,Mn:1.00-1.40%,Cr:0.10-0.60%,Ni:0.07-0.30%,Mo:0.10-0.50%,Nb:0.008-0.030%,B:0.0008-0.0025%,Ti≤0.020%,S≤0.03wt%、P≤0.110wt%、Pb≤0.005wt%、As≤0.005wt%、Sn≤0.005wt%、Sb≤0.005wt%、Bi≤0.005wt%,其余为Fe及不可避免的杂质;
(2)将步骤(1)中的铸坯及时吊入缓冷坑进行缓冷操作;
(3)将步骤(2)缓冷之后的铸坯依次进行加热、轧制成所需尺寸规格的钢板,然后利用超快冷设备进行快速冷却至650±10℃;
(4)将步骤(3)快速冷却后的钢板进一步空气冷却至250-400℃后,将钢板吊入缓冷坑进行缓冷;
(5)将步骤(4)缓冷后的钢板进行探伤、抛丸、热处理,得到所述700MPa级高韧性防爆钢板。
优选的,所述700MPa级高韧性防爆钢板的厚度为6~50mm。
优选的,步骤(2)所述缓冷是将表面温度为750~850℃的铸坯吊入缓冷坑中缓冷72~120小时。
优选的,步骤(3)所述加热采用四段步进式加热炉,其中预热段温度为800±30℃、二段加热温度为1050±30℃、三段加热温度为1250±30℃、四段加热温度为1230±20℃,出钢温度为1050-1130℃。
优选的,步骤(3)所述轧制包括粗轧和精轧;所述粗轧的终轧温度1000℃~1050℃,终轧之后的中间坯采用空气冷却,然后进行精轧,精轧采用未再结晶区轧制,压缩比3-5倍,所述精轧的开轧温度900℃~970℃,终轧温度为790-840℃,然后经超快冷设备将钢板从750℃-800℃快速冷却至650±10℃。
优选的,步骤(4)所述缓冷是缓冷是将快速冷却至650±10℃的钢板经矫直进入冷床区域空气冷却,空冷至250-400℃之间吊入缓冷坑进行缓冷,缓冷至30~80℃上线剪切。
优选的,步骤(5)所述热处理热处理包括完全淬火、亚温淬火和回火(QLT热处理),所述完全淬火温度为880~910℃,亚温淬火温度为830~850℃,回火温度为500-650℃。
本发明的700MPa级新型高韧性防爆钢板(BR700)包含以下成分:
碳:根据文献总结与生产经验,屈服强度600MPa级以上高强钢大多采用调质热处理,其组织为回火马氏体。为保证淬火马氏体的强度,钢板含C量通常高于0.1%。同时为提高钢板的淬透性,钢中通常加入适量的Cr、Mo、Ni、B等合金元素。为兼顾强度与韧性,BR700的C含量设计为0.09-0.16%。
锰:Mn是良好的脱氧剂和脱硫剂,它能消除或减弱由于硫所引起的钢的热脆性,从而改善钢的热加工性能。通过Mn的添加,可以降低Ar3,抑制渗碳体等碳化物的粗化。Mn有提高调质钢淬透性的作用,但Mn是易偏析元素,含量不宜过高,BR700 Mn含量设计为1.00-1.40%。
铌:可以提高钢板淬透性,还可以显著提高奥氏体未再结晶温度,同时可以有效细化晶粒,0.01%可有效抑制晶粒长大。但当Nb含量超过0.10%析出相粗大,延伸率将会恶化,BR700 Nb含量设计为0.008-0.030%。
钛:调质钢中Ti的作用主要为固定钢中的氮,同时还起到细化晶粒和析出强化的作用。BR700 Ti含量设计为≤0.020%。
镍:提高钢的淬透性,提高钢板低温韧性,且不会引起焊接热影响区韧性恶化,但由于成本较高,且国内资源不丰富,因此含量一般≤3%。BR700 Ni含量设计为0.07-0.30%。
铬:提高钢的淬透性、抗氢脆能力,又可以替代部分Mn和Mo,且偏析倾向小于Mn,在提高钢板强度的同时不降低冲击韧性,BR700 Cr含量设计为0.10-0.60%。
钼:细化组织,促进马氏体/贝氏体形成,提高钢屈服强度。又可以与B协同作用提高钢板淬透性,BR700 Mo含量设计为0.10-0.50%。
硼:提高钢板淬透性,但含量较高后容易偏聚到晶界等缺陷处,降低材料韧性。BR700 B含量设计为0.0008-0.0025%。
残余元素P、S及气体N、H、O均可降低钢板韧性,在生产中应尽可能降低其含量,BR700要求P≤0.020%,S≤0.005%,N≤50ppm,H≤2ppm,O≤15ppm。
与现有技术相比,本发明具有以下有益效果:
本发明制备的700MPa级高韧性防爆钢低温韧性优异、性能稳定。屈服强度在720-800MPa之间,抗拉强度780-870MPa之间,断后延伸率A5≥15%,-40℃纵向冲击功达到了200J以上,典型值达到了220J以上,达到了防爆钢制造领域国际先进水平。本发明生产的700MPa级高韧性防爆钢板能有效抵抗8kg TNT埋爆测试,可达北约三级防护标准。
附图说明
图1是实施例1制备的20mm厚度BR700的金相组织照片;
图2是实施例1制备的20mm厚度BR700的爆炸测试后的钢板3D扫描图。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
一种700MPa级高韧性防爆钢板(BR700)的制造方法,步骤如下:
(1)以优质铁水和废钢为原料制备冶炼铁水,采用双渣法和留渣操作降低冶炼铁水中的P、S元素含量,在转炉吹炼中途倒出1/2的炉渣,然后加入新渣料重新造渣,另外在出钢过程中将本炉已经造好的高碱度、高温度和较高FeO含量的终渣的1/3留在炉内,冶炼合格的钢水经LF精炼,并经连铸浇铸成厚度为320mm的铸坯;
所述铸坯中化学组分重量百分比如下:
C:0.12%,Mn:1.05%,Cr:0.50%,Ni:0.25%,Mo:0.30%,Nb:0.023%,B:0.0015%,Ti:0.013%,P:0.012%,S:0.002%,N:36ppm,H:0.8ppm,O:10ppm,Pb:0.001wt%、As:0.0008wt%、Sn:0.0002wt%、Sb:0.001wt%、Bi:0.001wt%;其余为Fe及不可避免的杂质;
(2)表面温度为810℃的铸坯吊入缓冷坑进行缓慢冷却,实际缓冷时间为81小时;
(3)将步骤(2)缓冷之后的铸坯进行加热,控制出钢温度为1089℃,然后进行粗轧,粗轧终轧温度1025℃,中间坯空气冷却后进行精轧,精轧开轧温度910℃,终轧温度830℃,中间坯厚度80mm,未再结晶区压缩比为4倍;然后经超快冷设备将钢板从765℃快速冷却至656℃;
(4)将步骤(3)冷却后的钢板然后经矫直进入冷床区域空气冷却,空冷至330℃时吊入了缓冷坑进行缓冷,缓冷至65℃上线剪切;
(5)将步骤(4)缓冷后的铸坯进行探伤、抛丸、热处理,所述热处理为QLT(完全淬火+亚温淬火+回火)热处理,其中完全淬火温度为889℃,亚温淬火温度为835℃,回火温度为560℃,得到厚度为20mm的700MPa级高韧性防爆钢板。
实施例1制备的BR700成品性能如表1.
表1
板厚 20mm
屈服强度 791MPa
抗拉强度 830MPa
伸长率 15.0%
冲击尺寸 10*10*55
试样方向
试验温度 -40℃
冲击1 246.0J
冲击2 258.0J
冲击3 269.0J
冲击AVE 257.6J
对比例1
对比例1的防暴钢钢种代号为S700,由以下质量百分比元素构成:C0.14%、Si0.26%、Mn1.15%、P0.009%、S0.001%、Als0.03%、Nb0.0036%、Ni0.07%、Ti0.008%、Cr0.302%、Mo0.165%、B0.0012%,余量为Fe及不可避免的杂质。
实施例1制备的20mm厚度规格与国外先进指标各项对比结果见表2。强度、塑韧性一致,D=a冷弯与-10℃横向落锤性能均合格;国外某700MPa级防爆钢拉力试样出现断后分层现象,但对使用无影响。而纵向-40℃低温冲击功相对于国外某品牌更加优异,极大拓宽了使用环境。另外经过8KgTNT埋爆测试,变形量为260mm,表面无裂纹,可达北约三级防护标准。完全可代替国外相同强度级别防爆钢板,实现国产化。
表2
Figure BDA0003642710790000051
Figure BDA0003642710790000061
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种700MPa级高韧性防爆钢板的制造方法,其特征在于,包括以下步骤:
(1)转炉冶炼采用双渣法和留渣操作降低冶炼钢水中的P、S元素含量,具体操作要求为:在转炉吹炼中途倒出1/2~2/3的炉渣,然后加入新渣料重新造渣;在出钢过程中将终渣的1/3~1/2留在炉内,以便下一炉钢初渣的快速形成,加速转炉冶炼前期去P效率;然后经LF精炼、连铸技术得到铸坯,所述铸坯中的化学成分百分比如下:
C:0.09-0.16%,Mn:1.00-1.40%,Cr:0.10-0.60%,Ni:0.07-0.30%,Mo:0.10-0.50%,Nb:0.008-0.030%,B:0.0008-0.0025%,Ti≤0.020%,S≤0.03wt%、P≤0.110wt%、Pb≤0.005wt%、As≤0.005wt%、Sn≤0.005wt%、Sb≤0.005wt%、Bi≤0.005wt%,其余为Fe及不可避免的杂质;
(2)将步骤(1)中的铸坯及时吊入缓冷坑进行缓冷操作;
(3)将步骤(2)缓冷之后的铸坯依次进行加热、轧制成所需尺寸规格的钢板,然后利用超快冷设备进行快速冷却至650±10℃;
(4)将步骤(3)快速冷却后的钢板进一步空气冷却至250-400℃后,将钢板吊入缓冷坑进行缓冷;
(5)将步骤(4)缓冷后的钢板进行探伤、抛丸、热处理,得到所述700MPa级高韧性防爆钢板。
2.根据权利要求1所述700MPa级高韧性防爆钢板的制造方法,其特征在于,所述700MPa级高韧性防爆钢板的厚度为6~50mm。
3.根据权利要求1所述700MPa级高韧性防爆钢板的制造方法,其特征在于,步骤(2)所述缓冷是将表面温度为750~850℃的铸坯吊入缓冷坑中缓冷72~120小时。
4.根据权利要求1所述700MPa级高韧性防爆钢板的制造方法,其特征在于,步骤(3)所述加热采用四段步进式加热炉,其中预热段温度为800±30℃、二段加热温度为1050±30℃、三段加热温度为1250±30℃、四段加热温度为1230±20℃,出钢温度为1050-1130℃。
5.根据权利要求1所述700MPa级高韧性防爆钢板的制造方法,其特征在于,步骤(3)所述轧制包括粗轧和精轧;所述粗轧的终轧温度1000℃~1050℃,终轧之后的中间坯采用空气冷却,然后进行精轧,精轧采用未再结晶区轧制,压缩比3-5倍,所述精轧的开轧温度900℃~970℃,终轧温度为790-840℃,然后经超快冷设备将钢板从750℃-800℃快速冷却至650±10℃。
6.根据权利要求1所述700MPa级高韧性防爆钢板的制造方法,其特征在于,步骤(4)所述缓冷是将快速冷却至650±10℃的钢板经矫直进入冷床区域空气冷却,空冷至250-400℃之间吊入缓冷坑进行缓冷,缓冷至30~80℃上线剪切。
7.根据权利要求1所述700MPa级高韧性防爆钢板的制造方法,其特征在于,步骤(5)所述热处理包括完全淬火、亚温淬火和回火,所述完全淬火温度为880~910℃,亚温淬火温度为830~850℃,回火温度为500-650℃。
CN202210523085.6A 2022-05-13 2022-05-13 一种700MPa级高韧性防爆钢板的制造方法 Pending CN114959511A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210523085.6A CN114959511A (zh) 2022-05-13 2022-05-13 一种700MPa级高韧性防爆钢板的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210523085.6A CN114959511A (zh) 2022-05-13 2022-05-13 一种700MPa级高韧性防爆钢板的制造方法

Publications (1)

Publication Number Publication Date
CN114959511A true CN114959511A (zh) 2022-08-30

Family

ID=82982787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210523085.6A Pending CN114959511A (zh) 2022-05-13 2022-05-13 一种700MPa级高韧性防爆钢板的制造方法

Country Status (1)

Country Link
CN (1) CN114959511A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140580A (ja) * 1997-11-04 1999-05-25 Nippon Steel Corp 低温靱性に優れた高強度鋼用の連続鋳造鋳片およびその製造法、および低温靱性に優れた高強度鋼
CN102168227A (zh) * 2010-02-25 2011-08-31 宝山钢铁股份有限公司 抗拉强度60公斤级超厚调质钢板及其制造方法
CN107805758A (zh) * 2017-10-24 2018-03-16 南京钢铁股份有限公司 一种高强度优良低温韧性船用钢及其一钢多级热处理工艺
CN108914006A (zh) * 2018-08-10 2018-11-30 武汉钢铁集团鄂城钢铁有限责任公司 一种厚度方向性能优良的超高强度调质钢板及其制造方法
CN109112419A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 海洋工程用调质eh550特厚钢板及其制造方法
CN111155025A (zh) * 2020-01-20 2020-05-15 北京理工大学 一种高强度高韧性且抗高速冲击的贝氏体钢及其制备方法
CN112941412A (zh) * 2021-01-30 2021-06-11 南阳汉冶特钢有限公司 一种特厚550MPa级抗震耐候钢的生产方法
CN113444974A (zh) * 2021-07-02 2021-09-28 河北普阳钢铁有限公司 一种1000MPa级超高强韧钢板及其生产方法
CN113832413A (zh) * 2020-06-23 2021-12-24 宝山钢铁股份有限公司 芯部低温冲击韧性及焊接性优良的超厚800MPa级调质钢板及其制造方法
CN114058793A (zh) * 2021-10-27 2022-02-18 舞阳钢铁有限责任公司 一种降低超高强度海工钢eh890屈强比的热处理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140580A (ja) * 1997-11-04 1999-05-25 Nippon Steel Corp 低温靱性に優れた高強度鋼用の連続鋳造鋳片およびその製造法、および低温靱性に優れた高強度鋼
CN102168227A (zh) * 2010-02-25 2011-08-31 宝山钢铁股份有限公司 抗拉强度60公斤级超厚调质钢板及其制造方法
CN109112419A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 海洋工程用调质eh550特厚钢板及其制造方法
CN107805758A (zh) * 2017-10-24 2018-03-16 南京钢铁股份有限公司 一种高强度优良低温韧性船用钢及其一钢多级热处理工艺
CN108914006A (zh) * 2018-08-10 2018-11-30 武汉钢铁集团鄂城钢铁有限责任公司 一种厚度方向性能优良的超高强度调质钢板及其制造方法
CN111155025A (zh) * 2020-01-20 2020-05-15 北京理工大学 一种高强度高韧性且抗高速冲击的贝氏体钢及其制备方法
CN113832413A (zh) * 2020-06-23 2021-12-24 宝山钢铁股份有限公司 芯部低温冲击韧性及焊接性优良的超厚800MPa级调质钢板及其制造方法
CN112941412A (zh) * 2021-01-30 2021-06-11 南阳汉冶特钢有限公司 一种特厚550MPa级抗震耐候钢的生产方法
CN113444974A (zh) * 2021-07-02 2021-09-28 河北普阳钢铁有限公司 一种1000MPa级超高强韧钢板及其生产方法
CN114058793A (zh) * 2021-10-27 2022-02-18 舞阳钢铁有限责任公司 一种降低超高强度海工钢eh890屈强比的热处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
孔为: "《板材生产技术概论》", 31 March 2019, 冶金工业出版社 *
崔风平,孙玮,刘彦春: "《中厚板生产与质量控制》", 31 October 2008, 冶金工业出版社 *
鞍山钢铁学院: "《炼钢学》", 30 June 1961, 中国工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505852A (zh) * 2022-10-26 2022-12-23 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法

Similar Documents

Publication Publication Date Title
CN105839003B (zh) 一种正火态交货的180~200mm厚EH36钢板及其制备方法
CN110184525B (zh) 一种高强度q500gje调质态建筑结构用钢板及其制造方法
CN107208212B (zh) 厚壁高韧性高强度钢板及其制造方法
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
CN109252107B (zh) 一种高平直度超高强钢的生产方法
CN102321847A (zh) 一种海洋平台用调质结构厚钢板及其生产方法
CN112813344B (zh) 一种屈服强度620MPa级高强高韧易焊接结构钢板及其制备方法
CN106756495A (zh) 一种1760MPa超高强抗弹钢及其制造方法
CN106834946B (zh) 大厚度保高温抗拉强度钢板SA299GrB及其制备方法
CN113846266A (zh) 一种高塑韧性屈服强度1300MPa级调质钢板的生产方法
KR20230116043A (ko) 고강도, 고인성 및 절단이 용이한 비담금질 및 템퍼링원형강재 및 그 제조방법
CN107326304A (zh) 一种TMCP型屈服500MPa级桥梁钢板及生产方法
CN113846260A (zh) 一种工程机械用高强度钢板的生产方法
CN114480970B (zh) 一种高强高韧钢及其制备方法和应用
JPH0794687B2 (ja) 高溶接性、耐応力腐食割れ性および低温靭性にすぐれたht80鋼の製造方法
CN114959511A (zh) 一种700MPa级高韧性防爆钢板的制造方法
CN115341138B (zh) 一种高强防护钢板及其制造方法
KR102209555B1 (ko) 강도 편차가 적은 열연 소둔 강판, 부재 및 이들의 제조방법
CN113846267B (zh) 一种30CrMnB热轧合金结构钢板及生产方法
CN114875331A (zh) 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法
CN114231826A (zh) 一种Q420qE桥梁结构钢板的生产方法
CN114134387A (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
CN107326279A (zh) 热机械轧制型特厚易焊接s460m结构钢板及生产方法
CN115261717A (zh) 一种1800MPa级高强度自强韧防护用钢板及其制造方法
JP2021038439A (ja) フェライト系ステンレス棒鋼、自動車燃料系部品および自動車燃料系部材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220830