CN114957779A - 一种可吸附染料与抗盐的油水分离水凝胶的制备方法 - Google Patents

一种可吸附染料与抗盐的油水分离水凝胶的制备方法 Download PDF

Info

Publication number
CN114957779A
CN114957779A CN202210655106.XA CN202210655106A CN114957779A CN 114957779 A CN114957779 A CN 114957779A CN 202210655106 A CN202210655106 A CN 202210655106A CN 114957779 A CN114957779 A CN 114957779A
Authority
CN
China
Prior art keywords
oil
hydrogel
water
dac
nass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210655106.XA
Other languages
English (en)
Other versions
CN114957779B (zh
Inventor
李学锋
陈梦繁
张高文
黄以万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN202210655106.XA priority Critical patent/CN114957779B/zh
Publication of CN114957779A publication Critical patent/CN114957779A/zh
Application granted granted Critical
Publication of CN114957779B publication Critical patent/CN114957779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/022Hydrogel, i.e. a gel containing an aqueous composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种可吸附染料与抗盐的油水分离水凝胶的制备方法,采用一锅法将带正电荷单元丙烯酰氧乙基三甲基氯化铵、带负电荷单元对苯乙烯磺酸钠、三嗪单元2‑乙烯基‑4‑6‑二氨基‑1,3,5‑三嗪、化学交联剂和光引发剂在有机溶剂DMSO中均匀混合,在紫外光照条件下引发聚合得到P(DAC‑co‑NaSS‑co‑VDT)凝胶,将该凝胶泡水平衡后得到可吸附染料与抗盐的油水分离水凝胶。该水凝胶内部会产生不均匀的“微孔”结构,可以实现油水分离且能吸附过滤染料亚甲基蓝,并且水凝胶在纯水与不同浓度盐溶液中体积能保持稳定,不会发生明显溶胀或者收缩。

Description

一种可吸附染料与抗盐的油水分离水凝胶的制备方法
技术领域
本发明涉及高分子材料技术领域,具体涉及一种可吸附染料与抗盐的油水分离水凝胶的制备方法。
背景技术
油水分离膜多采用将亲水疏油的涂层材料涂在多孔基底上,使混合液通过基底实现油水分离的目的。水凝胶是一种理想的亲水疏油材料,油水混合物通过这样的油水分离膜,膜会允许水通过而阻止油通过,但常发生油堵孔水通过受限而使膜功能失效,含油废水中通常还含有各种金属盐离子,这些金属盐离子会使凝胶体积发生变化,影响油水分离的效率。Jiang等人[Gao,H.,Mao,J.,Cai,Y.,Li,S.,Fu,Y.,Liu,X.,Liang,H.,Zhao,T.,Liu,M.,Jiang,L.,Euryhaline Hydrogel with Constant Swelling and Salinity-EnhancedMechanical Strength in a Wide Salinity Range.Adv.Funct.Mater.2021,31,2007664.]使用疏水单体二乙基丙烯酰胺(DEA)和两性离子3-二甲基(甲基丙烯酰氧基乙基)丙烷磺酸铵(DMAPS)作为单体反应物。水凝胶覆在筛网上用于各种盐度范围的油/水相分离。但该水凝胶本身并不具有油水分离的性质,而是将其涂布在铜网上制备成油水分离膜,通过铜网的微孔实现油水过滤与分离。He等人[Alsaid,Y.,Wu,S.,Wu,D.,Du,Y.,Shi,L.,Khodambashi,R.,Rico,R.,Hua,M.,Yan,Y.,Zhao,Y.,Aukes,D.,He,X.,TunableSponge-Like Hierarchically Porous Hydrogels with Simultaneously EnhancedDiffusivity and Mechanical Properties.Adv.Mater.2021,33,2008235.]开发了一种合成层次结构的开放孔隙水凝胶,通过控制混合溶剂的组成和反应温度可调节孔结构,共溶性的原理来实现竞争性吸附驱动,实现了凝胶溶胀孔道协调,这种方法合成的PNIPAM水凝胶具有快速的水过滤能力。但这类单化学交联水凝胶没有设计高分子水凝胶膜的增强结构链,力学性能较弱,过滤的手段还是基于单级的微孔结构,也没有设计高分子水凝胶膜分子链与水油分子间的相互作用。
本发明在研究过程中,合成得到了一种水凝胶,水凝胶本身就能实现油水分离的功能,无需涂布在多孔材料表面,并且在不同浓度的盐溶液中体积保持稳定,还能吸附溶解在水溶液中的亚甲基蓝染料,能够用于油水分离领域。
发明内容
本发明的目的是提供一种工艺简单、易于操作、原料易得、成本较低且具有优异可吸附染料与抗盐的油水分离水凝胶的制备方法。
技术方案的具体步骤如下:
一种可吸附染料与抗盐的油水分离水凝胶的制备方法,具体步骤如下:
1)将丙烯酰氧乙基三甲基氯化铵DAC、对苯乙烯磺酸钠NaSS、2-乙烯基-4-6-二氨基-1,3,5-三嗪VDT、交联剂、光引发剂加入二甲亚砜DMSO中,在遮光的条件下搅拌溶解得到均匀的混合溶液;
2)将步骤1)得到的混合溶液进行紫外光固化,得到P(DAC-co-NaSS-co-VDT)凝胶。
3)将步骤2)得到的P(DAC-co-NaSS-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜,得到可吸附染料与抗盐的油水分离水凝胶。
优选地,所述交联剂为N,N'-亚甲基双丙烯酰胺MBAA,所述光引发剂为自由基聚合引发剂,优选是α-酮戊二酸KA。
优选地,所述步骤1)得到的混合溶液中,DAC浓度为331~491mg/mL、NaSS浓度为133~197mg/mL、VDT浓度为103~153mg/mL。NaSS、DAC与VDT单体的摩尔浓度总量为2.7~4.0mol/L。
优选地,所述步骤1)得到的混合溶液中,交联剂占单体摩尔总量的百分比为0.5%。
优选地,所述步骤1)得到的混合溶液中,光引发剂占单体摩尔总量的百分比为0.25%,光引发剂的作用是引发单体DAC、单体NaSS与单体VDT发生自由基共聚反应生成聚合物P(DAC-co-NaSS-co-VDT),其浓度过高会导致自由基过多而发生猝灭,聚合产物分子量低,过少会使聚合速度过慢,聚合不充分导致凝胶无法成型。
优选地,所述步骤1)中控制搅拌时的温度为70~80℃,搅拌时间为30~40min。
优选地,所述步骤2)中,混合溶液注入由硅胶垫片与玻璃组成的透明模具中进行紫外光固化,组成透明模具的硅胶垫片厚度为1~4mm,紫外灯下光照的条件为:在波长为365nm、功率为300W的紫外灯下光照时间为8~10h。
本发明还提供一种可吸附染料与抗盐的油水分离水凝胶,采用上述方法制备得到。
本发明还提供上述的可吸附染料与抗盐的油水分离水凝胶在油水分离领域的应用,将所述水凝胶作为分离层,可以快速将油水混合物分离开,不仅能够吸附水溶液中的染料,还能在不同浓度的盐溶液中体积保持稳定。
本发明通过将带正电荷单元丙烯酰氧乙基三甲基氯化铵(DAC)、带负电荷单元对苯乙烯磺酸钠(NaSS)、三嗪单元2-乙烯基-4-6-二氨基-1,3,5-三嗪(VDT)、化学交联剂和光引发剂在二甲亚砜(DMSO)中均匀混合,在紫外光照条件下引发聚合后,泡水平衡得到可吸附染料与抗盐的油水分离水凝胶。如图1为制备过程中进行溶剂交换时P(DAC-co-NaSS-co-VDT)水凝胶的分子间结构变化示意图。
本发明设计溶剂化P(DAC-co-NaSS-co-VDT)水凝胶,通过溶剂交换得到可吸附染料与抗盐的油水分离水凝胶。其水凝胶网络中两性离子基团与水具有更低的结合能,更容易与水发生溶剂化作用,其溶剂化自由能显著低于普通非电解质型水凝胶,使得两性离子水凝胶中的分子链与水具有更强的亲和性,具有比普通水凝胶强得多的吸水斥油能力。DMSO作溶剂较水作溶剂的极性较弱,DMSO溶剂分子存在亲水单元与憎水单元,会诱导电解质亲水端与非亲水端的分离,制备出的DMSO凝胶会形成不均匀的“微孔”结构;DMSO溶剂分子还会与VDT形成较水与VDT更强的氢键,P(DAC-co-NaSS-co-VDT)的三部分单元均能充分的溶解于DMSO溶剂中,制备出的DMSO凝胶通过浸泡水置换为水凝胶的过程中,由于DAC与NaSS两个单元能充分的溶解于水中,VDT单元本身不溶于水而在局部相互聚集,使P(DAC-co-NaSS-co-VDT)水凝胶发生微观的相分离,从而在P(DAC-co-NaSS-co-VDT)水凝胶中产生较P(DAC-co-NaSS-co-VDT)的DMSO凝胶中“微孔”更大的“小孔”结构,小的“微孔”与更大的“小孔”结构复合,使得P(DAC-co-NaSS-co-VDT)水凝胶可以实现油水分离,并且VDT分子因为其所带二氨基三嗪官能团能够在溶液中与自身单元及目标分子间形成强的氢键,也能与染料“亚甲基蓝”之间形成氢键作用,在油水分离过程中能吸附溶解在水中的亚甲基蓝染料。
P(DAC-co-NaSS-co-VDT)水凝胶中分子链各单元间存在多重相互作用,包括由带相反电荷的DAC与NaSS单元相互吸引,阳离子单元DAC与芳香性的VDT单元间的阳离子-π相互作用,VDT单元的强氢键作用共同组成。在纯水溶液中强电质DAC、NaSS单元带相反电荷相互作用力很强,在一定程度上对阳离子-π相互作用与强氢键作用有抑制作用;但在盐水溶液中由于电荷屏蔽作用下带相反电荷的DAC与NaSS单元相互吸引作用会减弱,使阳离子-π相互作用与强的氢键作用增强。在这种此消彼长的分子间相互作用的效果下,以三种单元合适比例制备的P(DAC-co-NaSS-co-VDT)水凝胶,在纯水与不同盐浓度下的体积会保持稳定,不会发生明显的溶胀或者收缩,水凝胶中“微孔”与“小孔”复合结构不会明显变化,油水的过滤性能也不会发生明显变化,得到可吸附染料与抗盐的油水分离水凝胶,在盐水环境中可实现稳定分离油水的效果。而油水分离材料使用普通聚两性电解质水凝胶在盐水中由于电荷屏蔽作用易发生溶胀,使用阳离子电解质或是阴离子电解质水凝胶在盐水中由于渗透压作用易发生收缩,均实现不了本专利技术可吸附染料与抗盐的油水分离的效果。
本发明与现有技术相比,具有如下优点和显著进步:
1)本发明采用简单的一锅法,制备工艺简单,生产周期短、工艺条件简便,原料易得、生产成本低。
2)本发明油水分离操作方法简单,无需将凝胶涂布在其他多孔材料表面,凝胶本体即可分离油水混合物,不仅可以在盐溶液中体积保持稳定,还能吸附水溶液中的亚甲基蓝染料,保证了油水分离功能的稳定,是油水分离的优选材料,具有广阔的应用前景。
附图说明
图1是本发明P(DAC-co-NaSS-co-VDT)水凝胶的分子间结构变化示意图;
图2是本发明中所得可吸附染料与抗盐的油水分离水凝胶在纯水和盐溶液中的微观结构变化示意图及油水分离示意图。
具体实施方式
实施例1
步骤1):分别称取DAC、NaSS、VDT、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为331mg/mL、NaSS的浓度为133mg/mL、VDT的浓度为103mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为2.7mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-NaSS-co-VDT)凝胶。
步骤3):将步骤2)得到的P(DAC-co-NaSS-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜,得到可吸附染料与抗盐的油水分离水凝胶。
本实施例所得的可吸附染料与抗盐的油水分离水凝胶,利用电子万能试验机测试其力学性能,在100mm/min速度下通过拉伸试验测得其拉伸强度为25kPa,断裂伸长率为733%;将泡水平衡的凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为32%;把油水分离水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),过滤后的溶液呈无色透明状,使用紫外光分光光度计测试水包油乳液的浓度,通过水油乳液在过滤前后的浓度变化计算油的截留率为93.27%;将去离子水使用亚甲基蓝染料染色,注入夹有油水分离水凝胶的玻璃管中,水顺利穿过油水分离水凝胶,并且水中的亚甲基蓝染料被水凝胶吸附,使用紫外光分光光度计测试亚甲基蓝溶液的浓度,通过亚甲基蓝溶液在过滤前后的浓度变化计算亚甲基蓝的分离效率为99.86%。
实施例2
步骤1):分别称取DAC、NaSS、VDT、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为368mg/mL、NaSS的浓度为147mg/mL、VDT的浓度为115mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为3.0mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-NaSS-co-VDT)凝胶。
步骤3):将步骤2)得到的P(DAC-co-NaSS-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜,得到可吸附染料与抗盐的油水分离水凝胶。
本实施例所得的可吸附染料与抗盐的油水分离水凝胶,利用电子万能试验机测试其力学性能,在100mm/min速度下通过拉伸试验测得其拉伸强度为43kPa,断裂伸长率为779%;将泡水平衡的水凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为28%;将油水分离水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),过滤后的溶液呈无色透明状,使用紫外光分光光度计测试水包油乳液的浓度,通过水油乳液在过滤前后的浓度变化计算油的截留率为93.81%;将去离子水使用亚甲基蓝染料染色,注入夹有油水分离水凝胶的玻璃管,水顺利穿过油水分离水凝胶,并且水中的亚甲基蓝染料被水凝胶吸附,使用紫外光分光光度计测试亚甲基蓝溶液的浓度,通过亚甲基蓝溶液在过滤前后的浓度变化计算亚甲基蓝的分离效率为99.81%。
实施例3
步骤1):分别称取DAC、NaSS、VDT、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为429mg/mL、NaSS的浓度为172mg/mL、VDT的浓度为134mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为3.5mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-NaSS-co-VDT)凝胶。
步骤3):将步骤2)得到的P(DAC-co-NaSS-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜,得到可吸附染料与抗盐的油水分离水凝胶。
本实施例所得的可吸附染料与抗盐的油水分离水凝胶,利用电子万能试验机测试其力学性能,在100mm/min速度下通过拉伸试验测得其拉伸强度为198kPa,断裂伸长率为647%;将泡水平衡的水凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为34%;将油水分离水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),过滤后的溶液呈无色透明状,使用紫外光分光光度计测试水包油乳液的浓度,通过水油乳液在过滤前后的浓度变化计算油的截留率为95.15%;将去离子水使用亚甲基蓝染料染色,注入夹有油水分离水凝胶的玻璃管,水顺利穿过油水分离水凝胶,并且水中的亚甲基蓝染料被水凝胶吸附,使用紫外光分光光度计测试亚甲基蓝溶液的浓度,通过亚甲基蓝溶液在过滤前后的浓度变化计算亚甲基蓝的分离效率为99.91%。
实施例4
步骤1):分别称取DAC、NaSS、VDT、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为491mg/mL、NaSS的浓度为197mg/mL、VDT的浓度为153mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为4.0mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-NaSS-co-VDT)凝胶。
步骤3):将步骤2)得到的P(DAC-co-NaSS-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜,得到可吸附染料与抗盐的油水分离水凝胶。
本实施例所得的可吸附染料与抗盐的油水分离水凝胶,利用电子万能试验机测试其力学性能,在100mm/min速度下通过拉伸试验测得其拉伸强度为251kPa,断裂伸长率为704%;将泡水平衡的水凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为35%;将油水分离水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),过滤后的溶液呈无色透明状,使用紫外光分光光度计测试水包油乳液的浓度,通过水油乳液在过滤前后的浓度变化计算油的截留率为96.96%;将去离子水使用亚甲基蓝染料染色,注入夹有油水分离水凝胶的玻璃管,水顺利穿过油水分离水凝胶,并且水中的亚甲基蓝染料被水凝胶吸附,使用紫外光分光光度计测试亚甲基蓝溶液的浓度,通过亚甲基蓝溶液在过滤前后的浓度变化计算亚甲基蓝的分离效率为99.95%。
对比例1
步骤1):分别称取DAC、NaSS、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为331mg/mL、NaSS的浓度为305mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为2.7mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-NaSS)凝胶。
步骤3):将步骤2)得到的P(DAC-co-NaSS)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜。
本对比例所得的P(DAC-co-NaSS)水凝胶,利用电子万能试验机测试其力学性能,在100mm/min速度下通过拉伸试验测得其拉伸强度为11kPa,断裂伸长率为610%;将泡水平衡的凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为230%;把P(DAC-co-NaSS)水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),过滤后的溶液呈无色透明状,使用紫外光分光光度计测试水包油乳液的浓度,通过水油乳液在过滤前后的浓度变化计算油的截留率为92.30%;将去离子水使用亚甲基蓝染料染色,注入夹有P(DAC-co-NaSS)水凝胶的玻璃管中,水顺利穿过P(DAC-co-NaSS)水凝胶,但水中的亚甲基蓝染料并未被水凝胶吸附,使用紫外光分光光度计测试亚甲基蓝溶液的浓度,通过亚甲基蓝溶液在过滤前后的浓度变化计算亚甲基蓝的分离效率为2.48%。
对比例2
步骤1):分别称取DAC、NaSS、MBAA、KA溶解于去离子水中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为331mg/mL、NaSS的浓度为305mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为2.7mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-NaSS)水凝胶。
步骤3):将步骤2)得到的P(DAC-co-NaSS)水凝胶浸泡到去离子水中,由水脱去水凝胶中残存未反应的单体。
本对比例所得的P(DAC-co-NaSS)水凝胶,利用电子万能试验机测试其力学性能,在100mm/min速度下通过拉伸试验测得其拉伸强度为710kPa,断裂伸长率为690%;将泡水平衡的水凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为250%;把P(DAC-co-NaSS)水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),水包油乳液不能穿过P(DAC-co-NaSS)水凝胶,该水凝胶不具备油水分离功能。
对比例3
步骤1):分别称取DAC、VDT、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为331mg/mL、VDT的浓度为183mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为2.7mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-VDT)凝胶。
步骤3):将步骤2)得到的P(DAC-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜。
本对比例所得的P(DAC-co-VDT)水凝胶,利用电子万能试验机测试其力学性能,在10mm/min速度下通过压缩试验测得其压缩强度为8kPa,压缩率为11%;将泡水平衡的水凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为-78%;把P(DAC-co-VDT)水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),水包油乳液不能穿过P(DAC-co-VDT)水凝胶,该水凝胶不具备油水分离功能。
对比例4
步骤1):分别称取NaSS、VDT、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,NaSS的浓度为313mg/mL、VDT的浓度为183mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为2.7mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(NaSS-co-VDT)凝胶。
步骤3):将步骤2)得到的P(NaSS-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜。
本对比例所得的P(NaSS-co-VDT)水凝胶,利用电子万能试验机测试其力学性能,在10mm/min速度下通过压缩试验测得其压缩强度为10kPa,压缩率为14%;将泡水平衡的凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为-75%;把P(NaSS-co-VDT)水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),水包油乳液不能穿过P(NaSS-co-VDT)水凝胶,该水凝胶不具备油水分离功能。
对比例5
步骤1):分别称取DAC、NaSS、VDT、MBAA、KA溶解于DMSO溶液中,在遮光的条件下70℃水浴中搅拌30min,得到均匀的混合溶液,使得到的混合溶液中,DAC的浓度为331mg/mL、NaSS的浓度为254mg/mL、VDT的浓度为30mg/mL、MBAA的摩尔量占单体摩尔总量的0.5%、KA的摩尔量占单体摩尔总量的0.25%,单体的摩尔浓度总量为2.7mol/L。
步骤2):将步骤1)得到的混合溶液在遮光的条件下注入玻璃模具中,置于紫外灯下光照10h,得到P(DAC-co-NaSS-co-VDT)凝胶。
步骤3):将步骤2)得到的P(DAC-co-NaSS-co-VDT)凝胶浸泡到去离子水中,由水脱去凝胶中残存未反应的单体并置换出溶剂二甲亚砜。
本对比例所得的P(DAC-co-NaSS-co-VDT)水凝胶,利用电子万能试验机测试其力学性能,在100mm/min速度下通过拉伸试验测得其拉伸强度为15kPa,断裂伸长率为710%;将泡水平衡的水凝胶切成直径10mm的圆片,放入0.75mol/L的NaCl溶液中,测得其体积变化率为200%;把P(DAC-co-NaSS-co-VDT)水凝胶夹在玻璃管之间,将去离子水与白油制备的水包油乳液注入其中(去离子水与白油质量比为1500:1),过滤后的溶液呈无色透明状,使用紫外光分光光度计测试水包油乳液的浓度,通过水油乳液在过滤前后的浓度变化计算油的截留率为93.16%;将去离子水使用亚甲基蓝染料染色,注入夹有P(DAC-co-NaSS-co-VDT)水凝胶的玻璃管中,水顺利穿过P(DAC-co-NaSS-co-VDT)水凝胶,水中的部分亚甲基蓝染料被水凝胶吸附,使用紫外光分光光度计测试亚甲基蓝溶液的浓度,通过亚甲基蓝溶液在过滤前后的浓度变化计算亚甲基蓝的分离效率为70.42%。
表1:水凝胶的拉伸强度、断裂伸长率
Figure BDA0003687268410000091
注:实施例1~4和对比例1、2、5为水凝胶拉伸强度,对比例3、4拉伸强度极低而采用压缩强度测试。
表2:水凝胶在0.75mol/L的NaCl溶液中的体积变化率
Figure BDA0003687268410000101
注:体积变化率定义为(V-V0)/V0*100%,V0代表水凝胶的初始体积,V代表水凝胶在NaCl溶液中的体积,当体积变化率(%)为正时,水凝胶发生溶胀,当体积变化率(%)为负时,水凝胶发生收缩,水凝胶的体积变化率在0%~50%即可称为抗溶胀水凝胶。
表3:水凝胶的水通量、截留率及染料吸附效率
Figure BDA0003687268410000102
注:由于对比例2~4不具备油水分离的能力,故水通量、截留率及染料吸附效率均为0。
通过表1、表2、表3中的数据可以看出:
实施例1~4是DAC、NaSS、VDT的摩尔比一定的情况下改变总单体浓度制备而成的P(DAC-co-NaSS-co-VDT)水凝胶,对比例1、3、4分别是不含VDT、NaSS、DAC制备而成的水凝胶,其总单体浓度与实施例1保持一致,对比例2是在不含VDT同时不采用DMSO溶剂制备的P(DAC-co-NaSS)水凝胶,其总单体浓度与实施例1保持一致,对比例5是DAC摩尔浓度浓度一定的情况下改变NaSS、VDT的摩尔比,其总单体浓度与实施例1保持一致。从实施例1~4可以看出随着总单体浓度的上升,水凝胶的拉伸强度也随之升高,从25kPa增加到251kPa,并且实施例1~4在盐水中的体积变化率很小,均在28%~35%,符合抗溶胀水凝胶的要求。此外,实施例1~4所得水凝胶均拥有油水分离功能,水溶液能顺利通过水凝胶,白油被阻隔不能顺利通过,溶解在水溶液中的亚甲基蓝染料迅速被吸附在水凝胶表面,吸附效率均能达到99%。从对比例1、5和实施例1可以看出,随着VDT含量的降低,水凝胶的拉伸强度、断裂伸长率、染料吸附效率及截留率均随之降低,水通量与体积变化率随之升高。这是由于VDT能形成氢键增加凝胶内部交联度,提供吸附有机染料的结合位点。从对比例1~2可以看出使用水作为溶剂的对比例2在盐溶液中发生溶胀,同时也不具有油水分离的功能。从对比例3~4可以看出只含DAC、VDT或NaSS、VDT的凝胶泡水平衡后力学性能很弱,由于电解质效应该水凝胶在盐溶液中发生大幅度收缩,体积变化率分别为-78%和-75%,水包油乳液不能透过水凝胶,不具有油水分离的功能。附图2为所得可吸附染料与抗盐的油水分离水凝胶的制备方法在纯水和盐溶液中微观结构示意图及油水分离示意图。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种可吸附染料与抗盐的油水分离水凝胶的制备方法,其特征在于,步骤如下:
1)将丙烯酰氧乙基三甲基氯化铵DAC、对苯乙烯磺酸钠NaSS、2-乙烯基-4-6-二氨基-1,3,5-三嗪VDT、交联剂、光引发剂加入二甲亚砜DMSO中,在遮光的条件下搅拌溶解得到均匀的混合溶液;
2)将步骤1)得到的混合溶液进行紫外光固化,得到P(DAC-co-NaSS-co-VDT)凝胶;
3)将步骤2)得到的P(DAC-co-NaSS-co-VDT)凝胶放入去离子水中浸泡48h,得到可吸附染料与抗盐的油水分离水凝胶。
2.如权利要求1所述的可吸附染料与抗盐的油水分离水凝胶的制备方法,其特征在于:所述交联剂为N,N'-亚甲基双丙烯酰胺MBAA,所述光引发剂为α-酮戊二酸KA。
3.如权利要求1所述的可吸附染料与抗盐的油水分离水凝胶的制备方法,其特征在于:所述步骤1)得到的混合溶液中,DAC浓度为331~491mg/mL、NaSS浓度为133~197mg/mL、VDT浓度为103~153mg/mL;交联剂占单体摩尔总量的百分比为0.5%;光引发剂占单体摩尔总量的百分比为0.25%。
4.如权利要求1所述的可吸附染料与抗盐的油水分离水凝胶的制备方法,其特征在于:所述步骤1)得到的混合溶液中,DAC、NaSS与VDT单体的摩尔浓度总量为2.7~4.0mol/L。
5.如权利要求1所述的可吸附染料与抗盐的油水分离水凝胶的制备方法,其特征在于:所述步骤1)中控制搅拌时的温度为70~80℃,搅拌时间为30~40min。
6.如权利要求1所述的可吸附染料与抗盐的油水分离水凝胶的制备方法,其特征在于:所述步骤2)中,混合溶液注入由硅胶垫片和玻璃组成的透明模具中进行紫外光固化,组成透明模具的硅胶垫片厚度为1~4mm,紫外灯下光照的条件为:在波长为365nm、功率为300W的紫外灯下光照8~10h。
7.一种可吸附染料与抗盐的油水分离水凝胶,其特征在于:采用权利要求1~6任一项所述方法制备得到。
8.如权利要求7所述的可吸附染料与抗盐的油水分离水凝胶的应用,其特征在于,用于盐溶液下的油水分离,并且可吸附溶液中的染料。
CN202210655106.XA 2022-06-10 2022-06-10 一种可吸附染料与抗盐的油水分离水凝胶的制备方法 Active CN114957779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210655106.XA CN114957779B (zh) 2022-06-10 2022-06-10 一种可吸附染料与抗盐的油水分离水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210655106.XA CN114957779B (zh) 2022-06-10 2022-06-10 一种可吸附染料与抗盐的油水分离水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN114957779A true CN114957779A (zh) 2022-08-30
CN114957779B CN114957779B (zh) 2023-06-20

Family

ID=82962408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210655106.XA Active CN114957779B (zh) 2022-06-10 2022-06-10 一种可吸附染料与抗盐的油水分离水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN114957779B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646461A (zh) * 2022-10-27 2023-01-31 西南科技大学 一种用于吸附放射性碘的铋基阳离子水凝胶复合材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149759A (ja) * 2007-12-20 2009-07-09 Kawamura Inst Of Chem Res カチオン性有機・無機複合ヒドロゲルの製造方法
CN101812182A (zh) * 2010-02-02 2010-08-25 江南大学 一种光敏性荷电纳米粒子的制备方法
CN101824123A (zh) * 2009-12-23 2010-09-08 天津大学 高强度温度敏感水凝胶及制备方法和应用
CN105330787A (zh) * 2015-12-02 2016-02-17 华中科技大学 一种用于吸附重金属的水凝胶及其制备方法与应用
US20170107310A1 (en) * 2014-03-11 2017-04-20 Italmatch Chemicals S.P.A. New polyelectrolytic polymers, process for their preparation and uses thereof
US9745439B1 (en) * 2016-05-10 2017-08-29 Qatar Foundation For Education, Science And Community Development Methods of forming aerogels
CN108905651A (zh) * 2018-06-12 2018-11-30 石狮市川大先进高分子材料研究中心 一种可同时实现油水乳液分离和染料去除的功能膜的制备方法
CN110028681A (zh) * 2019-04-19 2019-07-19 西南交通大学 三重形状记忆聚两性电解质水凝胶的制备方法和使用方法
CN112830994A (zh) * 2021-01-14 2021-05-25 湖北工业大学 一种强氢键与阳离子π协同高粘附复合水凝胶及其制备方法
CN113308077A (zh) * 2021-06-18 2021-08-27 湖北工业大学 一种可自修复循环加工成型的聚(两性电解质-三嗪)/石英砂复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149759A (ja) * 2007-12-20 2009-07-09 Kawamura Inst Of Chem Res カチオン性有機・無機複合ヒドロゲルの製造方法
CN101824123A (zh) * 2009-12-23 2010-09-08 天津大学 高强度温度敏感水凝胶及制备方法和应用
CN101812182A (zh) * 2010-02-02 2010-08-25 江南大学 一种光敏性荷电纳米粒子的制备方法
US20170107310A1 (en) * 2014-03-11 2017-04-20 Italmatch Chemicals S.P.A. New polyelectrolytic polymers, process for their preparation and uses thereof
CN105330787A (zh) * 2015-12-02 2016-02-17 华中科技大学 一种用于吸附重金属的水凝胶及其制备方法与应用
US9745439B1 (en) * 2016-05-10 2017-08-29 Qatar Foundation For Education, Science And Community Development Methods of forming aerogels
CN108905651A (zh) * 2018-06-12 2018-11-30 石狮市川大先进高分子材料研究中心 一种可同时实现油水乳液分离和染料去除的功能膜的制备方法
CN110028681A (zh) * 2019-04-19 2019-07-19 西南交通大学 三重形状记忆聚两性电解质水凝胶的制备方法和使用方法
CN112830994A (zh) * 2021-01-14 2021-05-25 湖北工业大学 一种强氢键与阳离子π协同高粘附复合水凝胶及其制备方法
CN113308077A (zh) * 2021-06-18 2021-08-27 湖北工业大学 一种可自修复循环加工成型的聚(两性电解质-三嗪)/石英砂复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUN XU, ET AL.: "Spontaneous volume transition of polyampholyte nanocomposite hydrogels based on pure electrostatic interaction", 《 JOURNAL OF COLLOID AND INTERFACE SCIENCE》, vol. 321, no. 2, pages 272 - 278, XP022593731, DOI: 10.1016/j.jcis.2008.02.024 *
熊潇雅: "仿生关节软骨聚电解质水凝胶的制备及性能研究", 《中国优秀硕士学位论文全文数据库·工程科技Ⅰ辑》, pages 016 - 758 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646461A (zh) * 2022-10-27 2023-01-31 西南科技大学 一种用于吸附放射性碘的铋基阳离子水凝胶复合材料及其制备方法

Also Published As

Publication number Publication date
CN114957779B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
DE60027291T2 (de) Elektrisch geladene membran
KR101785184B1 (ko) 다공질막용 수지 조성물, 제막 원액, 다공질막, 상기 다공질막을 사용한 중공사막, 수처리 장치, 전해질 지지체 및 세퍼레이터
US20070068816A1 (en) Hydrogel preparation and process of manufacture thereof
KR102469297B1 (ko) 여과 멤브레인의 제조
NO157049B (no) MakroporŸs asymmetrisk hydrofil membran av syntetisk polymerisat.
KR19990037346A (ko) 친수성 막
US20200222860A1 (en) Method for preparing membrane selective layers by interfacial free radical polymerization
US10040033B2 (en) Multilayer separation membrane
CN114957779A (zh) 一种可吸附染料与抗盐的油水分离水凝胶的制备方法
Tang et al. A polymeric ionic liquid functionalized temperature-responsive composite membrane with tunable responsive behavior
CN110461454A (zh) 多孔膜、膜组件、水处理装置及多孔膜的制造方法
Wang et al. Preparation and characterization of a pH-responsive membrane carrier for meso-tetraphenylsulfonato porphyrin
EP2203490A1 (en) Hydrogel with high water content and stability
CN116351254A (zh) 一种耐溶剂交联结构阴离子交换膜的制备方法
Hu et al. Poly (N-vinyl imidazole) gel-filled membrane adsorbers for highly efficient removal of dyes from water
CN107551833A (zh) 一种双改性中空纤维超滤膜及其制备方法
Dadhaniya et al. Removal of anionic dyes from aqueous solution using poly [N-vinyl pyrrolidone/2-(methacryloyloxyethyl) trimethyl ammonium chloride] superswelling hydrogels
Norhayati et al. Synthesis and characterization of poly (HEMA-co-EGDMA-co-VBC) by modified suspension polymerization: Effects of polymerization parameters reaction on chemical and thermal properties of polymer
CN108499370B (zh) 一种离子印迹共混膜的制备方法
CN104801209A (zh) 一种咪唑磺酸盐接枝型聚醚砜超低压纳滤膜
Lin et al. Characterization of temperature-sensitive membranes prepared from poly (vinylidene fluoride)-graft-poly (N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization
EP3808436A1 (en) Membrane system, method for its manufacture and its use
Chantasirichot et al. Introduction of functional groups to reactive ABA block-copolymers composed of poly (2-methacryloyloxyethyl phosphorylcholine) and poly (glycidyl methacrylate) for spontaneous hydrogel formation
CN112588132A (zh) 一种中空纤维膜及其制备方法
WO2020231919A1 (en) Additive manufacturing of self-assembled polymer films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant