CN114942520B - 基于锤形优化的低失调敏感度三反望远镜设计方法 - Google Patents

基于锤形优化的低失调敏感度三反望远镜设计方法 Download PDF

Info

Publication number
CN114942520B
CN114942520B CN202210697165.3A CN202210697165A CN114942520B CN 114942520 B CN114942520 B CN 114942520B CN 202210697165 A CN202210697165 A CN 202210697165A CN 114942520 B CN114942520 B CN 114942520B
Authority
CN
China
Prior art keywords
mirror
aberration
optimization
offset
hammer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210697165.3A
Other languages
English (en)
Other versions
CN114942520A (zh
Inventor
顾志远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202210697165.3A priority Critical patent/CN114942520B/zh
Publication of CN114942520A publication Critical patent/CN114942520A/zh
Application granted granted Critical
Publication of CN114942520B publication Critical patent/CN114942520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0626Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Telescopes (AREA)

Abstract

本发明涉及一种基于锤形优化的低失调敏感度三反望远镜设计方法,该方法通过建立包括系统设计产生的设计波像差以及安装失调产生的失调波像差的光学系统制造性能评估模型,将该评估模型编写为宏语言函数,作为系统的优化指标,以反射镜的曲率半径、二次系数和镜间距为优化变量,并设定镜间距变化范围,在光学设计软件Zemax中使用锤形优化功能调用深度受限搜索进行优化,实现低失调敏感度三反望远镜系统的设计。本发明的三反望远镜系统制造性能更好,提高了系统制造性能评估的准确性,而且本发明的设计方法不需要大量的光线追迹,只需要追迹近轴边缘光线和主光线即可完成,计算量小,时间短,优化速度快。

Description

基于锤形优化的低失调敏感度三反望远镜设计方法
技术领域
本发明涉及光学系统设计技术领域,特别是涉及一种基于锤形优化的低失调敏感度三反望远镜设计方法。
背景技术
三反望远镜具有较大的成像视场,目前在天文观测、遥感等领域应用十分广泛。传统的三反望远镜系统设计方法一般从像差与光学结构参数出发,校正多种初级像差,得到具有良好像质的光学系统。但其往往公差过紧,系统的制造成本与加工、装配难度很大,系统抗扰动能力较弱。
基于以上问题,考虑设计出具有低装调敏感度的三反系统。目前光学系统的降敏方法主要有解析法和数值法。数值法应用较为普遍,它通常依赖于复杂的全局优化算法和大量的光线追迹过程来获得设计结果,主要包括整体优化法和光线入射角优化法。整体优化法通常的过程是基于初始结构构建多重结构,以模拟具有定量误差的光学系统的状态。通过全局优化功能来优化这组多重结构,去寻找一种最佳的设计方案。光线入射角优化法通过光学表面上具有代表性的光线(通常使用边缘光线)的入射角作为评估系统灵敏度的指标,同样通过全局优化功能来优化系统,达到低敏感度设计。解析法以像差理论为设计指导,对光学系统的整体性能进行优化设计。通常需要建立装调误差与其引起的波前差之间的量化解析关系,由此评估光学系统的制造性能,通过优化制造性能来实现低装调敏感度的设计。
传统的三反望远镜光学设计流程将系统性能优化和容差分配两个步骤隔离开来,光学设计优化过程不考虑由制造和装调误差引起的像质下降的影响,而仅追求最佳的设计性能。设计完成后,在进行公差分析时,其公差一般较为严格。严格的公差导致在光学系统的装调过程中,光学组件的装调误差会严重导致成像质量下降,性能退化严重。与软件设计出的性能相比,光学系统在投入使用后的良好性能更应该是光学设计人员所追求的最终目标。
发明内容
针对传统的三反望远镜光学设计方法没有同时考虑系统性能和装调误差影响,导致三反望远镜光学系统的装调敏感度较高的问题,本发明提出一种基于锤形优化的低失调敏感度三反望远镜设计方法,通过该方法设计得到的三反望远镜光学系统具有良好的像质与低装调敏感度。
针对三反望远镜系统,为解决上述问题,实现对其降失调敏感度的设计,本发明采取如下的技术方案:
一种基于锤形优化的低失调敏感度三反望远镜设计方法,包括以下步骤:
步骤一:建立光学系统制造性能评估模型,所述光学系统制造性能评估模型的表达式为:
Figure BDA0003703107770000021
其中,A为三反望远镜系统的制造性能;
Figure BDA0003703107770000022
为设计波像差,表示在视场H中光学系统设计时产生的均方根波像差的值;
Figure BDA0003703107770000023
为失调波像差,表示由视场H中的装调误差引起的均方根波像差的值;
步骤二:通过预估三反望远镜系统的公差范围给定所述光学系统制造性能评估模型中偏心值和倾角值,在视场H中选取计算波像差的视场点;
步骤三:将所述光学系统制造性能评估模型以宏语言函数的形式写入Zemax软件中,并求解出三反望远镜系统的失调波像差
Figure BDA0003703107770000024
步骤四:将全部所述视场点的波像差取平均值,得到三反望远镜系统的设计波像差
Figure BDA0003703107770000025
步骤五:将所述失调波像差
Figure BDA0003703107770000026
和所述设计波像差
Figure BDA0003703107770000027
代入到所述光学系统制造性能评估模型中;
步骤六:以三反望远镜系统的制造性能A最小值作为优化指标,以反射镜的曲率半径、二次系数和镜间距为优化变量,并设定镜间距变化范围,使用Zemax软件的锤形优化功能调用深度受限搜索进行优化,优化后得到低失调敏感度的三反望远镜系统。
与现有技术相比,本发明具有以下有益效果:
本发明所提出的一种基于锤形优化的低失调敏感度三反望远镜设计方法,通过建立包括系统设计残差以及镜面失调产生的波像差的光学系统制造性能评估模型,将该评估模型编写为宏语言函数,作为系统的优化指标,在光学设计软件Zemax中使用锤形优化功能实现低失调敏感度三反望远镜系统的设计。本发明的三反望远镜设计方法在光学设计阶段将系统性能和装调误差影响同时考虑进来,使得优化后得到的三反望远镜系统同时具有良好像质与低失调灵敏度,与传统优化方法相比,本发明的三反望远镜系统制造性能更好,与现有的其余降敏方法相比,本发明提高了系统制造性能评估的准确性,而且本发明的设计方法不需要大量的光线追迹,只需要追迹近轴边缘光线和主光线即可完成,计算量小,时间短,优化速度快。
附图说明
图1为本发明的一种基于锤形优化的低失调敏感度三反望远镜设计方法的流程图;
图2为光学系统制造性能评估模型以及波像差计算所选取的视场点;
图3为三反望远镜的初始光学结构示意图;
图4为采用传统优化方法优化后的三反望远镜光学结构示意图(a)和采用本发明中的制造性能锤形优化法优化后的三反望远镜光学结构示意图(b);
图5为采用传统优化方法优化后的结果图(a)和采用本发明中的制造性能锤形优化法优化后的结果图(b)。
具体实施方式
下面将结合附图及较佳实施例对本发明的技术方案进行详细描述。
如图1所示,本发明提供一种基于锤形优化的低失调敏感度三反望远镜设计方法,该方法包括以下步骤:
步骤一:建立光学系统制造性能评估模型。
本步骤选用波像差作为设计残差与装调误差的评价指标,建立光学系统制造性能评估模型,该评估模型用于评估三反望远镜的制造性能A。光学系统制造性能评估模型的表达式为:
Figure BDA0003703107770000031
其中,A为三反望远镜系统的制造性能;
Figure BDA0003703107770000032
表示在视场H中光学系统设计时产生的均方根(RMS)波像差的值,定义为设计波像差;
Figure BDA0003703107770000033
表示由视场H中的装调误差引起的RMS波像差的值,定义为失调波像差。设计波像差
Figure BDA0003703107770000034
在系统优化过程中,可直接在光学设计软件中调取。因此建立光学系统制造性能评估模型的关键是获得失调波像差
Figure BDA0003703107770000035
的表达式。
在失调的光学系统中,镜面的偏心和倾斜主要引入视场不对称的彗差和像散,它们是导致光学系统在装调过程完成后引起像质下降的主要像差。
在三反望远镜中,通常以主镜(PM)的位置作为参考,分析次镜(SM)和三镜(TM)的倾斜和偏心误差。这里选取了归一化Fringe波前Zernike多项式的四个主要低阶项的系数Z5,Z6,Z7和Z8,用以表征失调产生的彗差与像散。在每个装调误差单独作用的情况下,分别计算每项Zernike多项式系数来得到失调波像差的贡献,并将其合成为系统的失调波像差
Figure BDA0003703107770000041
失调波像差
Figure BDA0003703107770000042
的具体公式由(2)给出:
Figure BDA0003703107770000043
其中,Z5、Z6、Z7、Z8为泽尼克多项式的系数,Z5和Z6为三阶像散,Z7和Z8为三阶彗差,公式中下标T代表倾斜误差引入的像差,下标D代表偏心误差引入的像差。
失调引起的三阶像散Z5和Z6、三阶彗差Z7和Z8均与倾斜和偏心误差密切相关。这些Zernike多项式项可以被表达为关于视场(FOV)和光学结构参数的形式,即失调波像差
Figure BDA0003703107770000044
可以通过光学结构参数来表示,继而通过调节光学结构参数来控制由失调引起的波像差。下面将推导出z5,D,z5,T,z6,D,z6,T,z7,D,z7,T,z8,D和z8,T的具体表达式。
当光学元件失调后,像差场中心将发生偏移,这时我们要引入矢量像差理论(Nodal Aberration Theory,NAT)。矢量像差理论主要研究的是当光学系统元件存在倾斜和偏心的情况时光学系统的像差情况。失调状态下,根据赛德尔系数与归一化Zernike系数(考虑前九项)的关系,基于NAT的三阶彗差可由下式给出:
Figure BDA0003703107770000045
其中,
Figure BDA0003703107770000046
Figure BDA0003703107770000047
分别为失调引入的彗差矢量
Figure BDA0003703107770000048
的x分量和y分量,
Figure BDA0003703107770000049
Figure BDA00037031077700000410
的表达式如下:
Figure BDA00037031077700000411
其中,W131,sph,SM为次镜彗差波像差系数球面分量,W131,asph,SM为次镜彗差波像差系数非球面分量,W131,sph,TM为三镜彗差波像差系数球面分量,W131,asph,TM为三镜彗差波像差系数非球面分量,
Figure BDA00037031077700000412
为次镜的像差场偏移矢量球面X轴分量,
Figure BDA00037031077700000413
为次镜的像差场偏移矢量非球面X轴分量,
Figure BDA00037031077700000414
为次镜的像差场偏移矢量球面Y轴分量,
Figure BDA00037031077700000415
为次镜的像差场偏移矢量非球面Y轴分量,
Figure BDA00037031077700000416
为三镜的像差场偏移矢量球面X轴分量,
Figure BDA00037031077700000417
为三镜的像差场偏移矢量非球面X轴分量,
Figure BDA00037031077700000418
为三镜的像差场偏移矢量球面Y轴分量,
Figure BDA00037031077700000419
为三镜的像差场偏移矢量非球面Y轴分量。
当系统孔径光阑位于主镜上时,三反望远镜系统的次镜像差场偏移矢量和三镜像差场偏移矢量分别如公式(5)和(6)所示。
次镜像差场偏移矢量:
Figure BDA0003703107770000051
三镜像差场偏移矢量:
Figure BDA0003703107770000052
其中,XDESM为次镜X轴方向偏心误差,YDESM为次镜Y轴方向偏心误差,ADESM为次镜绕X轴倾斜误差,BDESM为次镜绕Y轴倾斜误差,XDETM为三镜X轴方向偏心误差,YDETM为三镜Y轴方向偏心误差,ADETM为三镜绕X轴倾斜误差,BDETM为三镜绕Y轴倾斜误差,
Figure BDA0003703107770000053
为主镜近轴主光线入射角,d1为主镜和次镜之间的距离,d2为次镜和三镜之间的距离,r1为主镜的曲率半径,r2为次镜的曲率半径,r3为三镜的曲率半径。上述XDESM、YDESM、ADESM、BDESM、XDETM、YDETM、ADETM、BDETM的定义与CodeV11.5中Decenter andReturn定义一致。
此外,三反望远镜的彗差波像差系数(W131,sph,SM,W131,asph,SM,W131,sph,TM和W131,asph,TM)可由赛德尔公式计算,计算公式如下:
Figure BDA0003703107770000061
其中,y1为主镜边缘光线入射高度,bs2为次镜的二次系数,bs3为三镜的二次系数。
将公式(4)-(7)带入公式(3)中,可以得到Zernike系数z7和z8项,在公式(5)和(6)中,令ADESM、ADETM和BDESM、BDETM为0,可以得到只存在偏心失调时的彗差即z7,D和z8,D,令XDESM、XDETM和YDESM、YDETM为0,可以得到只存在倾斜失调时的彗差即z7,T和z8,T
类似的,在失调状态下,基于NAT的三阶像散可由下式给出:
Figure BDA0003703107770000062
其中,
Figure BDA0003703107770000063
Figure BDA0003703107770000064
分别为失调引入的彗差矢量
Figure BDA0003703107770000065
的x分量和y分量,
Figure BDA0003703107770000066
Figure BDA0003703107770000067
的表达式如下:
Figure BDA0003703107770000068
其中,W222,sph,SM为次镜像散波像差系数球面分量,W222,asph,SM为次镜像散波像差系数非球面分量,W222,sph,TM为三镜像散波像差系数球面分量,W222,asph,TM为三镜像散波像差系数非球面分量。
此外,三反望远镜的像散波像差系数(W222,sph,SM,W222,asph,SM,W222,sph,TM和W222,asph,TM)可由赛德尔公式计算,计算公式如下:
Figure BDA0003703107770000071
将公式(5)、(6)、(9)和(10)代入公式(8)中,可以得到Zernike系数z5和z6项,即得到三阶像散Z5和Z6。在公式(5)和(6)中,令ADESM、ADETM和BDESM、BDETM为0,可以得到只存在偏心失调时的像散,即z5,D和z6,D。令XDESM、XDETM和YDESM、YDETM为0,可以得到只存在倾斜失调时的像散,即z5,T和z6,T。至此已经推导出了失调波像差的具体表达式,并将其表示为关于光学结构参数的形式。
步骤二:通过预估三反望远镜系统的公差范围给定光学系统制造性能评估模型中偏心值和倾角值。优选地,偏心值可以设置为0.1mm,倾角值可以设置为1.5′。并且,在视场H中选取用于计算波像差的视场点,选取的视场点如图2所示,图中以黑点表示视场点,分别为(-1,1)、(0,1)、(-1,0)、(0,0)、(-1,-1)、(0.-1)。。
步骤三:将光学系统制造性能评估模型以宏语言函数的形式写入Zemax软件中,并根据失调波像差
Figure BDA0003703107770000072
的计算公式(2)在Zemax软件求解出三反望远镜系统的失调波像差
Figure BDA0003703107770000073
步骤四:将全部视场点的波像差取平均值,得到三反望远镜系统的设计波像差
Figure BDA0003703107770000074
步骤五:将步骤三得到的失调波像差
Figure BDA0003703107770000075
和步骤四得到的设计波像差
Figure BDA0003703107770000076
代入到光学系统制造性能评估模型中,得到三反望远镜系统的制造性能A。
步骤六:以三反望远镜系统的制造性能A最小值作为优化指标,以三反望远镜系统中反射镜的曲率半径、二次系数和镜间距为优化变量,并设定镜间距变化范围,例如镜间距变化范围为镜间距的±10%,然后使用Zemax软件的锤形优化功能调用深度受限搜索(Depth-Limited-Search,DLS)进行优化,优化后得到低失调敏感度的三反望远镜系统。
进一步地,基于锤形优化的低失调敏感度三反望远镜设计方法还包括以下步骤:
步骤七:基于蒙特卡洛法对优化后得到的三反望远镜系统的装调性能进行分析,以预测优化后得到的三反望远镜系统的装调性能。
本发明所提出的一种基于锤形优化的低失调敏感度三反望远镜设计方法,通过建立包括系统设计残差以及镜面失调产生的波像差的光学系统制造性能评估模型,将该评估模型编写为宏语言函数,作为系统的优化指标,在光学设计软件Zemax中使用锤形优化功能实现低失调敏感度三反望远镜系统的设计。本发明的三反望远镜设计方法在光学设计阶段将系统性能和装调误差影响同时考虑进来,使得优化后得到的三反望远镜系统同时具有良好像质与低失调灵敏度,与传统优化方法相比,本发明的三反望远镜系统制造性能更好,与现有的其余降敏方法相比,本发明提高了系统制造性能评估的准确性,而且本发明的设计方法不需要大量的光线追迹,只需要追迹近轴边缘光线和主光线即可完成,计算量小,时间短,优化速度快。
下面以具体的三反望远镜系统设计实例来对本发明的效果进行详细说明
将一个F/20、通光口径6.6m的视场偏轴型三反望远镜用作参考系统。其系统参数见表1,初始光学结构如图3所示,三反望远镜系统包括主镜1、次镜2、三镜3和平面反射镜4,平行光入射后到达主镜1,经主镜1反射后达到次镜2,经次镜2反射后达到三镜3,经三镜3反射后达到平面反射镜4,经平面反射镜4反射后到达像面5。全视场为0.3°×0.15°,视场偏角为0.2°。望远镜的孔径光阑位于主镜1上,主镜1、次镜2和三镜3的旋转对称轴重合。在三镜3与像面5的光路中间加装一个平面反射镜4,用来折转光路。
表1初始镜头参数
表面 曲率半径(毫米) 厚度(毫米) 二次系数
主镜 -16287.757 -7170 -0.995
次镜 -2318.335 7965 -1.836
三镜 -2702.046 -1845 -0.720
平面反射镜 Infinity 3006.431
接下来将使用传统优化方法以及本发明中的制造性能锤形优化法对该三反望远镜系统初始结构进行优化,来比较不同的优化方式对失调敏感度的降低效果以及优化效率。最后使用蒙特卡罗公差分析来评估和比较优化结果。
(1)传统优化方法
为了验证本发明评估模型优化效果,首先不考虑失调像差影响,直接对光学系统进行优化。将三个反射镜的曲率半径、二次系数以及镜间距设为变量,其中平面反射镜到像面的距离保持不变,通过改变三镜到平面反射镜距离来优化三镜到像面距离。在Zemax软件中选择默认波前RMS评价函数,优化过程中控制焦距不变。将镜间距d的变化范围设置为各距离的±10%。为避免陷入局部极小值,使用锤形优化功能调用深度受限搜索(DLS)进行优化,优化过程可在20~30分钟完成。优化中使用的CPU是AMD Ryzen74800H@2.90GHz,内存型号为DDR4@2666MHz。优化后的光学系统参数如表2所示,结构如附图4(a)所示。
表2传统优化后镜头参数
表面 曲率半径(毫米) 厚度(毫米) 二次系数
主镜 -17903.491 -7853.997 -0.994
次镜 -2634.344 8760.399 -1.877
三镜 -3085.537 -2326.482 -0.702
平面反射镜 Infinity 3006.262
(2)制造性能锤形优化法
接下来使用本发明中的制造性能锤形优化法对同一个三反望远镜系统初始结构进行优化。将光学系统制造性能评估模型中偏心值和倾角值分别设置为0.1mm和1.5′,优化变量的选择以及镜间距变化范围保持不变,优化方向为取光学系统制造性能评估模型最小值。然后对表1中的初始系统同样使用锤形优化功能调用深度受限搜索(DLS)进行优化。优化时间为4~5个小时,优化后的光学系统参数如表3所示,结构如附图4(b)所示。
表3制造性能锤形优化法优化后镜头参数
表面 曲率半径(毫米) 厚度(毫米) 二次系数
主镜 -17348.755 -7761.731 -0.995
次镜 -2190.831 7205.633 -1.886
三镜 2490.657 -1400.877 -0.710
平面反射镜 Infinity 3006.637
为了评估和比较不同优化结果的失调灵敏度,下面基于蒙特卡洛法对优化后得到的三反望远镜系统的装调性能进行分析。采用2000个样本的蒙特卡洛容差分析方法来预测装调性能。将次镜以及三镜的偏心和倾斜量作为系统装调公差,公差是均匀分布的。在公差分析中,每个表面的X和Y方向的偏心公差最大值设置为0.1mm,计算波长为587.6nm。X和Y轴倾斜公差最大值设置为1.5′,同时将像面位置作为补偿器。对2000个蒙特卡洛样本的全视场平均波像差进行了统计分析,分析结果见表4和图5。
表4优化结果比较
Figure BDA0003703107770000091
Figure BDA0003703107770000101
从附图5以及表4中可以看出,经传统方法优化后的光学系统的装调性能下降严重。镜间距变化范围10%条件下,本发明中光学系统制造性能评估模型优化方法结果的波前误差名义值为传统优化方法结果的1.6~3.5倍,而波前差均方根误差(RMSE)为传统优化方法结果的84%~86%,中位数为传统优化方法结果的88%~93%。对比分析结果表明,本发明中的制造性能锤形优化法较传统优化方法有更低的失调敏感度,基于制造性能锤形优化的三反望远镜的成像质量与装调敏感度更优。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,包括以下步骤:
步骤一:建立光学系统制造性能评估模型,所述光学系统制造性能评估模型的表达式为:
Figure FDA0004205335750000011
其中,A为三反望远镜系统的制造性能;
Figure FDA0004205335750000012
为设计波像差,表示在视场H中光学系统设计时产生的均方根波像差的值;
Figure FDA0004205335750000013
为失调波像差,表示由视场H中的装调误差引起的均方根波像差的值;
步骤二:通过预估三反望远镜系统的公差范围给定所述光学系统制造性能评估模型中偏心值和倾角值,在视场H中选取用于计算设计波像差的视场点;
步骤三:将所述光学系统制造性能评估模型以宏语言函数的形式写入Zemax软件中,并求解出三反望远镜系统的失调波像差
Figure FDA0004205335750000014
步骤四:将全部所述视场点的波像差取平均值,得到三反望远镜系统的设计波像差
Figure FDA0004205335750000015
步骤五:将所述失调波像差
Figure FDA0004205335750000016
和所述设计波像差
Figure FDA0004205335750000017
代入到所述光学系统制造性能评估模型中;
步骤六:以三反望远镜系统的制造性能A最小值作为优化指标,以反射镜的曲率半径、二次系数和镜间距为优化变量,并设定镜间距变化范围,使用Zemax软件的锤形优化功能调用深度受限搜索进行优化,优化后得到低失调敏感度的三反望远镜系统。
2.根据权利要求1所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,失调波像差
Figure FDA0004205335750000018
的公式为:
Figure FDA0004205335750000019
其中,Z5、Z6、Z7、Z8为泽尼克多项式的系数,Z5和Z6为三阶像散,Z7和Z8为三阶彗差,公式中下标T代表倾斜误差引入的像差,下标D代表偏心误差引入的像差。
3.根据权利要求2所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,三阶彗差Z7和Z8的表达式如下:
Figure FDA0004205335750000021
其中,
Figure FDA0004205335750000022
Figure FDA0004205335750000023
分别为失调引入的彗差矢量
Figure FDA0004205335750000024
的x分量和y分量,
Figure FDA0004205335750000025
Figure FDA0004205335750000026
的表达式如下:
Figure FDA0004205335750000027
其中,W131,sph,SM为次镜彗差波像差系数球面分量,W131,asph,SM为次镜彗差波像差系数非球面分量,W131,sph,TM为三镜彗差波像差系数球面分量,W131,asph,TM为三镜彗差波像差系数非球面分量,
Figure FDA0004205335750000028
为次镜的像差场偏移矢量球面X轴分量,
Figure FDA0004205335750000029
为次镜的像差场偏移矢量非球面X轴分量,
Figure FDA00042053357500000210
为次镜的像差场偏移矢量球面Y轴分量,
Figure FDA00042053357500000211
为次镜的像差场偏移矢量非球面Y轴分量,
Figure FDA00042053357500000212
为三镜的像差场偏移矢量球面X轴分量,
Figure FDA00042053357500000213
为三镜的像差场偏移矢量非球面X轴分量,
Figure FDA00042053357500000214
为三镜的像差场偏移矢量球面Y轴分量,
Figure FDA00042053357500000215
为三镜的像差场偏移矢量非球面Y轴分量;
当系统孔径光阑位于主镜上时,三反望远镜系统的次镜像差场偏移矢量和三镜像差场偏移矢量分别为:
Figure FDA00042053357500000216
Figure FDA0004205335750000031
其中,XDESM为次镜X轴方向偏心误差,YDESM为次镜Y轴方向偏心误差,ADESM为次镜绕X轴倾斜误差,BDESM为次镜绕Y轴倾斜误差,XDETM为三镜X轴方向偏心误差,YDETM为三镜Y轴方向偏心误差,ADETM为三镜绕X轴倾斜误差,BDETM为三镜绕Y轴倾斜误差,
Figure FDA0004205335750000032
为主镜近轴主光线入射角,d1为主镜和次镜之间的距离,d2为次镜和三镜之间的距离,r1为主镜的曲率半径,r2为次镜的曲率半径,r3为三镜的曲率半径;
三反望远镜系统的彗差波像差系数可由赛德尔公式计算得到,计算公式如下:
Figure FDA0004205335750000033
其中,y1为主镜边缘光线入射高度,bs2为次镜的二次系数,bs3为三镜的二次系数;
将公式(4)-(7)代入公式(3)中,可以得到三阶彗差Z7和Z8,在公式(5)和(6)中,令ADESM、ADETM和BDESM、BDETM为0,可以得到只存在偏心失调时的彗差即z7,D和z8,D,令XDESM、XDETM和YDESM、YDETM为0,可以得到只存在倾斜失调时的彗差即z7,T和z8,T
4.根据权利要求3所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,三阶像散Z5和Z6的表达式如下:
Figure FDA0004205335750000041
其中,
Figure FDA0004205335750000042
Figure FDA0004205335750000043
分别为失调引入的彗差矢量
Figure FDA0004205335750000044
的x分量和y分量,
Figure FDA0004205335750000045
Figure FDA0004205335750000046
的表达式如下:
Figure FDA0004205335750000047
其中,W222,sph,SM为次镜像散波像差系数球面分量,W222,asph,SM为次镜像散波像差系数非球面分量,W222,sph,TM为三镜像散波像差系数球面分量,W222,asph,TM为三镜像散波像差系数非球面分量;
三反望远镜系统的像散波像差系数可由赛德尔公式计算得到,计算公式如下:
Figure FDA0004205335750000048
将公式(5)、(6)、(9)和(10)代入公式(8)中,可以得到三阶像散Z5和Z6,在公式(5)和(6)中,令ADESM、ADETM和BDESM、BDETM为0,可以得到只存在偏心失调时的像散即z5,D和z6,D,令XDESM、XDETM和YDESM、YDETM为0,可以得到只存在倾斜失调时的像散即z5,T和z6,T
5.根据权利要求1所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,所述三反望远镜系统包括主镜(1)、次镜(2)、三镜(3)和平面反射镜(4),且所述主镜(1)、所述次镜(2)和所述三镜(3)的旋转对称轴重合;
平行光入射后到达所述主镜(1),经所述主镜(1)反射后达到所述次镜(2),经所述次镜(2)反射后达到所述三镜(3),经所述三镜(3)反射后达到所述平面反射镜(4),经所述平面反射镜(4)反射后到达像面(5)。
6.根据权利要求1所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,所述偏心值设置为0.1mm,所述倾角值设置为1.5′。
7.根据权利要求1所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,所述镜间距变化范围为镜间距的±10%。
8.根据权利要求1所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,还包括以下步骤:
步骤七:基于蒙特卡洛法对优化后得到的三反望远镜系统的装调性能进行分析。
9.根据权利要求8所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,在步骤七中进行分析时,将次镜以及三镜的偏心和倾斜量作为系统装调公差,公差是均匀分布的,每个表面的X和Y方向的偏心公差最大值设置为0.1mm,X和Y轴倾斜公差最大值设置为1.5′,计算波长为587.6nm,同时将像面位置作为补偿器,对蒙特卡洛样本的全视场平均波像差进行统计分析。
10.根据权利要求9所述的一种基于锤形优化的低失调敏感度三反望远镜设计方法,其特征在于,所述蒙特卡洛样本的总数量为2000个。
CN202210697165.3A 2022-06-20 2022-06-20 基于锤形优化的低失调敏感度三反望远镜设计方法 Active CN114942520B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210697165.3A CN114942520B (zh) 2022-06-20 2022-06-20 基于锤形优化的低失调敏感度三反望远镜设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210697165.3A CN114942520B (zh) 2022-06-20 2022-06-20 基于锤形优化的低失调敏感度三反望远镜设计方法

Publications (2)

Publication Number Publication Date
CN114942520A CN114942520A (zh) 2022-08-26
CN114942520B true CN114942520B (zh) 2023-06-13

Family

ID=82910878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210697165.3A Active CN114942520B (zh) 2022-06-20 2022-06-20 基于锤形优化的低失调敏感度三反望远镜设计方法

Country Status (1)

Country Link
CN (1) CN114942520B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980996B (zh) * 2022-11-28 2024-04-30 中国科学院长春光学精密机械与物理研究所 一种空间引力波望远镜的设计方法
CN116540407B (zh) * 2023-07-06 2023-09-22 中国科学院长春光学精密机械与物理研究所 低偏振像差三反光学系统设计方法、系统、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2127846A1 (en) * 1993-07-16 1995-01-17 Ian Powell Panoramic lens
EP0909970A1 (en) * 1997-10-16 1999-04-21 Canon Kabushiki Kaisha Optical element with a plurality of reflecting surfaces
CN1347207A (zh) * 2000-10-05 2002-05-01 朗迅科技公司 用于自由空间无线光通信系统的望远镜
CN1379287A (zh) * 2001-03-30 2002-11-13 海德堡印刷机械股份公司 具有offner型宏光具的印版制图像装置
RU2472190C1 (ru) * 2011-07-21 2013-01-10 Открытое акционерное общество "Производственное объединение "Новосибирский приборостроительный завод" (ОАО "ПО "НПЗ") Катадиоптрический телескоп
CN108802996A (zh) * 2018-06-08 2018-11-13 中国科学院紫金山天文台 一种大视场巡天望远镜的三镜光学系统
CN113946041A (zh) * 2021-10-22 2022-01-18 中国科学院长春光学精密机械与物理研究所 一种折反式卡塞格林望远镜系统及其偏振像差校正方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050979A (zh) * 2007-05-21 2007-10-10 北京理工大学 全反射式高分辨率大视场傅立叶变换成像光谱仪的光路结构
JP2014077904A (ja) * 2012-10-11 2014-05-01 Olympus Corp 光学組立体の製造方法および組立用レンズの設計方法
WO2019005014A1 (en) * 2017-06-27 2019-01-03 Massachusetts Institute Of Technology REMOTE IMAGING APPARATUS
CN108121049B (zh) * 2017-12-19 2020-12-18 北京空间机电研究所 一种多谱段多通道遥感相机镜头的装调测试方法
US11567309B2 (en) * 2019-07-25 2023-01-31 Raytheon Company On-axis four mirror anastigmat telescope
CN111367075B (zh) * 2020-04-27 2021-05-04 中国科学院长春光学精密机械与物理研究所 以镜间隔为自由参量的平像场三反消像散望远镜设计方法
CN113640978A (zh) * 2021-07-27 2021-11-12 南京航空航天大学 一种基于自由曲面的离轴三反光学系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2127846A1 (en) * 1993-07-16 1995-01-17 Ian Powell Panoramic lens
EP0909970A1 (en) * 1997-10-16 1999-04-21 Canon Kabushiki Kaisha Optical element with a plurality of reflecting surfaces
CN1347207A (zh) * 2000-10-05 2002-05-01 朗迅科技公司 用于自由空间无线光通信系统的望远镜
CN1379287A (zh) * 2001-03-30 2002-11-13 海德堡印刷机械股份公司 具有offner型宏光具的印版制图像装置
RU2472190C1 (ru) * 2011-07-21 2013-01-10 Открытое акционерное общество "Производственное объединение "Новосибирский приборостроительный завод" (ОАО "ПО "НПЗ") Катадиоптрический телескоп
CN108802996A (zh) * 2018-06-08 2018-11-13 中国科学院紫金山天文台 一种大视场巡天望远镜的三镜光学系统
CN113946041A (zh) * 2021-10-22 2022-01-18 中国科学院长春光学精密机械与物理研究所 一种折反式卡塞格林望远镜系统及其偏振像差校正方法

Also Published As

Publication number Publication date
CN114942520A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN114942520B (zh) 基于锤形优化的低失调敏感度三反望远镜设计方法
CN114994913B (zh) 基于多初始点拟牛顿优化的低敏感度三反望远镜设计方法
US10386625B2 (en) Korsch-type compact three-mirror anastigmat telescope
CN111240010B (zh) 一种用于自由曲面测量的可变形镜面形设计方法及装置
CN111367075B (zh) 以镜间隔为自由参量的平像场三反消像散望远镜设计方法
CN112394508A (zh) 一种基于二阶灵敏度矩阵法的装调方法
CN110705040A (zh) 一种基于泽尼克多项式系数与最小二乘法求取主次镜失调误差量的方法
CN109739019A (zh) 基于矢量像差理论的共轴自由曲面光学系统优化设计方法
CN111189620B (zh) 基于星点像斑形状特征的波前像差估算方法
CN115421297A (zh) 光学系统最佳焦面位置的确定方法
CN110579277B (zh) 大视场自由曲面光谱仪光学系统设计方法及光学系统
US9733491B2 (en) Method for calculating and optimizing an eyeglass lens taking into consideration higher-order imaging errors
CN117406429B (zh) 自由曲面光学系统的降敏设计方法
CN117350020A (zh) 一种光学引擎偏振平衡优化方法和系统
CN108873305B (zh) 一种大视场两反式Golay3稀疏孔径望远镜的设计方法
CN115576102A (zh) 一种面向制造性能最优的光学优化方法
CN114185144B (zh) 一种基于小口径平面镜装调大口径光学系统的装调方法
Pascal et al. New modelling of freeform surfaces for optical design of astronomical instruments
CN115901181A (zh) 一种基于cgh的凸面光栅检测系统及设计方法
Zhang et al. The design of 3-mirror off-axis optical system with stray light analysis based on vector aberration theory
CN113253453A (zh) 一种基于单视场的主次镜系统装配误差计算方法及系统
CN103792660B (zh) 一种小视场光学系统面形误差相互补偿的自动优化方法
Bloomberg et al. Zernike coefficient specifications for manufacture of aspheric mirrors
CN113701882B (zh) 一种光谱仪光学系统及其设计方法
CN117537711A (zh) 一种基于深度学习的光学镜片装调位姿误差辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant