CN114937008A - 基于持续同调的建筑裂缝特征提取方法 - Google Patents

基于持续同调的建筑裂缝特征提取方法 Download PDF

Info

Publication number
CN114937008A
CN114937008A CN202210494248.2A CN202210494248A CN114937008A CN 114937008 A CN114937008 A CN 114937008A CN 202210494248 A CN202210494248 A CN 202210494248A CN 114937008 A CN114937008 A CN 114937008A
Authority
CN
China
Prior art keywords
continuous
crack
bar code
image
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210494248.2A
Other languages
English (en)
Inventor
刘小飞
曹迪
刘广华
张鹏
陈立
龙偲
曹东磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Eighth Engineering Bureau Testing Technology Co ltd
Original Assignee
China Construction Eighth Engineering Bureau Testing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Eighth Engineering Bureau Testing Technology Co ltd filed Critical China Construction Eighth Engineering Bureau Testing Technology Co ltd
Priority to CN202210494248.2A priority Critical patent/CN114937008A/zh
Publication of CN114937008A publication Critical patent/CN114937008A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种基于持续同调的建筑裂缝特征提取方法,包括如下步骤:采集裂缝处的图像,对图像进行预处理并转化为几何模型;对该几何模型进行离散化处理以形成点云集,并得出点云集中每个点的坐标;将点云集中的每个点根据对应的坐标放入欧氏空间中,进行持续同调后得出条码图,以反映连通半径变化中同调持续变化的拓扑特征;根据条码图得出裂缝的特征参数。本发明有效地解决了现有裂缝检测的成本高的问题,通过利用持续同调的方法对裂缝特征进行提取,实现精确化的裂缝检测,提升检测的精度,降低施工成本,能够满足实际施工需求。

Description

基于持续同调的建筑裂缝特征提取方法
技术领域
本发明涉及建筑、桥梁施工领域,特指一种基于持续同调的建筑裂缝特征提取方法。
背景技术
对于建筑、桥梁的裂缝检测,目前通常使用裂缝测宽仪、超声波无损仪等仪器设备直接进行检测,也有大量基于视觉的智能化检测和光纤应力应变检测方法等,然而上述的这些检测方法和装置都需要大量的成本投入,且检测的内容比较单一,不能满足实际施工需求。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种基于持续同调的建筑裂缝特征提取方法,解决了现有裂缝检测的成本高的问题,通过利用持续同调的方法对裂缝特征进行提取,实现精确化的裂缝检测,提升检测的精度,降低施工成本,能够满足实际施工需求。
实现上述目的的技术方案是:
本发明提供了一种基于持续同调的建筑裂缝特征提取方法,包括如下步骤:
采集裂缝处的图像,对图像进行预处理并转化为几何模型;
对该几何模型进行离散化处理以形成点云集,并得出点云集中每个点的坐标;
将点云集中的每个点根据对应的坐标放入欧氏空间中,进行持续同调后得出条码图,以反映连通半径变化中同调持续变化的拓扑特征;
根据条码图得出裂缝的特征参数。
本发明基于持续同调的建筑裂缝特征提取方法,通过对采集的图像预处理并转化为几何模型后,对几何模型进行离散化处理形成点云集,并得到点云集中每个点的坐标,进而放入欧氏空间中进行持续同调后得到条码图,以反映连通半径变化中同调持续变化的拓扑特征,在条码图中零维条码图即可直观反映点云集中各点的相对位置、变化趋势、变化大小以及变化方向,一维条码图和二维条码图反映平面连通体形成的孔洞数,反映了裂缝横纵向的最大距离以及产生的破坏程度,解决了现有裂缝检测的成本高的问题,通过利用持续同调的方法对裂缝特征进行提取,实现精确化的裂缝检测,提升检测的精度,降低施工成本,能够满足实际施工需求。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,进行持续同调时,还包括:
得到零维条码图和一维条码图,零维条码图中的零维贝蒂数表示离散化处理后形成的点的数量,一维条码图中的一维贝蒂数表示一维平面内随连通半径变化形成的空洞数量。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,零维条码图中零维贝蒂数的最大值为裂缝的最大宽度,根据零维条码图得出裂缝的宽度变化趋势。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,一维条码图中连通半径的最大值为裂缝产生的孔洞的最大半径,根据一维条码图得出裂缝的破坏程度以及空腔和孔洞的大小、数量和发展趋势。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,连通半径为点云集中任意两点之间的距离。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,利用COMSOLMultiphysics软件去除图像的噪音,并转化形成几何模型。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,图像为二维或三维图像。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,图像通过拍摄或雷达扫描获取。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,通过UDEC软件对几何模型进行离散化处理。
本发明基于持续同调的建筑裂缝特征提取方法的进一步改进在于,通过matlab软件根据点云集中各点的坐标进行持续同调计算,从而得到条码图。
附图说明
图1为本发明基于持续同调的建筑裂缝特征提取方法的流程图。
图2为本发明基于持续同调的建筑裂缝特征提取方法中零维条码图。
图3为本发明基于持续同调的建筑裂缝特征提取方法中一维条码图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
参阅图1,本发明提供了一种基于持续同调的建筑裂缝特征提取方法,通过对采集的图像预处理并转化为几何模型后,对几何模型进行离散化处理形成点云集,并得到点云集中每个点的坐标,进而放入欧氏空间中进行持续同调后得到条码图,以反映连通半径变化中同调持续变化的拓扑特征,在条码图中零维条码图即可直观反映点云集中各点的相对位置、变化趋势、变化大小以及变化方向,一维条码图和二维条码图反映平面连通体形成的孔洞数,反映了裂缝横纵向的最大距离以及产生的破坏程度,解决了现有裂缝检测的成本高的问题,通过利用持续同调的方法对裂缝特征进行提取,实现精确化的裂缝检测,提升检测的精度,降低施工成本,能够满足实际施工需求。下面结合附图对本发明基于持续同调的建筑裂缝特征提取方法进行说明。
参阅图1,图1为本发明基于持续同调的建筑裂缝特征提取方法的流程图。下面结合图1,对本发明基于持续同调的建筑裂缝特征提取方法进行说明。
如图1所示,本发明的基于持续同调的建筑裂缝特征提取方法,包括如下步骤:
采集裂缝处的图像,对图像进行预处理并转化为几何模型;
对该几何模型进行离散化处理以形成点云集,并得出点云集中每个点的坐标;
将点云集中的每个点根据对应的坐标放入欧氏空间中,进行持续同调后得出条码图,以反映连通半径变化中同调持续变化的拓扑特征;
根据条码图得出裂缝的特征参数。
具体的,利用COMSOL Multiphysics软件去除图像的噪音,并转化形成几何模型。
较佳地,图像为二维或三维图像。
又佳地,图像通过拍摄或雷达扫描获取。
具体的,通过UDEC软件对几何模型进行离散化处理。
具体的,通过matlab软件根据点云集中各点的坐标进行持续同调计算,从而得到条码图。
作为本发明的一较佳实施方式,进行持续同调时,还包括:
得到零维条码图和一维条码图,零维条码图中的零维贝蒂数表示离散化处理后形成的点的数量,一维条码图中的一维贝蒂数表示一维平面内随连通半径变化形成的空洞数量。
具体的,零维条码图中零维贝蒂数的最大值为裂缝的最大宽度,根据零维条码图得出裂缝的宽度变化趋势。
具体的,一维条码图中连通半径的最大值为裂缝产生的孔洞的最大半径,根据一维条码图得出裂缝的破坏程度以及空腔和孔洞的大小、数量和发展趋势。
较佳地,连通半径为点云集中任意两点之间的距离。
进一步的,在进行拓扑分析时,需要从拓扑空间开始,对拓扑学和持续同调进行推导,具体如下:
拓扑空间为一组有序对(A,b),其中A是集合,b是A的子集的集群,其中空集∈b,b中有限单元的交∈b,b中任意多单元的并属于A,满足以上条件,则b的单元为开集,b为一个集群,b为A上的一个拓扑,拓扑空间具有连通性,这是它的基本属性,其中A不能表示为两个非空互斥的开集的并;
单纯形为任意一个有限的顶点集合,顶点间构成的最大无关向量的秩为m,假定维度为m,则可以表示为:R={ri,i=0…m},而单纯复形就是单纯形的集合必须满足单纯复形C的任意单纯形的任意面依旧属于C且C中任意两个单纯形的交集是空集或者有共同的面;
VR复形为
Figure BDA0003631920960000041
点云集P为d维空间,ε可以看作半径,Vε(P)为它的VR复形,从公式中可以看出,VR复形结构不仅由其点云集数据确定,还需要根据点与点之间的距离确定;
同调群定义为
Figure BDA0003631920960000042
n代表第n个同调群,连通数bn为Hn的维度,表达式为bn=dim(Hn),同时
Figure BDA0003631920960000043
的核是n链Zn∈Cn的群;
Figure BDA0003631920960000044
B0是Z0的子群,
Figure BDA0003631920960000045
得出
Figure BDA0003631920960000046
即H0=Z0,b0=1,假设
Figure BDA0003631920960000047
推出
Figure BDA0003631920960000048
由于C2是空集,推出B1={0},所以推出
Figure BDA0003631920960000051
以上就是一个简单化的单纯复形的推导过程,如果需要将其推向一般化,就需要运用线性变换就行变换;
持续同调可以看作一定时间上空间上的半径变化形成的单纯复形的连通数,对于任意一个点云集N,N表示为{n0,n1…nm},该点云集可度量化,现选取任意两点并连接,则他们的连通半径为ε,以
Figure BDA0003631920960000052
为半径,两点中任意点为圆心画圆,则形成包球,此时假设
Figure BDA0003631920960000053
形成复形流
Figure BDA0003631920960000054
再对复形流求不同时间的同调群Hp(A0),Hp(A1),...,Hp(An)。
本发明的具体实施方法如下:
以桥梁裂缝的二维图像为例,采集裂缝位置的图像,对图像进行预处理,以出去图像中的噪音,并将图像转化为几何模型;
将几何模型进行离散化处理,以形成无数个点的集合,即点云集,并得出每个点的坐标,可以利用comsol软件得到每个点的坐标,将离散元处理后的坐标与comsol软件得到每个点的坐标进行比对,以避免因为软件转换而产生较大的误差;
将点云集根据对应的坐标放入欧氏空间中,以构建VR复形,来研究数据的拓扑结构;
对点云集中各点的坐标进行持续同调计算,形成零维条码图和一维条码图,如图2和图3所示;
在图2中可以看出块体间的连通半径ε绝大部分是在0-12这个区间,部分连通半径为0的已成为噪音被踢除,从这里可以直接测量裂缝的最大宽度(即最大连通半径)为11.65mm,裂缝的变化趋势区间在4-12mm以内;
在图3中1维贝蒂数代表着在连通半径变化中形成的孔洞数,其中较小的横线代表着一定不必要的噪音,其中ε的最大值为19.62,即裂缝产生的孔洞最大连通半径为19.62,对照桥梁裂缝检测规范,一般情况桥梁裂缝必须控制在0.3mm内,故实例远远超过安全线,为极度危险桥梁。
以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

Claims (10)

1.一种基于持续同调的建筑裂缝特征提取方法,其特征在于,包括如下步骤:
采集裂缝处的图像,对所述图像进行预处理并转化为几何模型;
对所述几何模型进行离散化处理以形成点云集,并得出所述点云集中每个点的坐标;
将所述点云集中的每个点根据对应的坐标放入欧氏空间中,进行持续同调后得出条码图,以反映连通半径变化中同调持续变化的拓扑特征;
根据所述条码图得出所述裂缝的特征参数。
2.如权利要求1所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,进行持续同调时,还包括:
得到零维条码图和一维条码图,所述零维条码图中的零维贝蒂数表示离散化处理后形成的点的数量,所述一维条码图中的一维贝蒂数表示一维平面内随连通半径变化形成的孔洞数量。
3.如权利要求2所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,所述零维条码图中零维贝蒂数的最大值为所述裂缝的最大宽度,根据所述零维条码图得出所述裂缝的宽度变化趋势。
4.如权利要求2所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,所述一维条码图中连通半径的最大值为所述裂缝产生的孔洞的最大半径,根据所述一维条码图得出所述裂缝的破坏程度以及空腔和孔洞的大小、数量和发展趋势。
5.如权利要求2所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,所述连通半径为所述点云集中任意两点之间的距离。
6.如权利要求1所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,利用COMSOL Multiphysics软件去除图像的噪音,并转化形成几何模型。
7.如权利要求1所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,所述图像为二维或三维图像。
8.如权利要求1所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,所述图像通过拍摄或雷达扫描获取。
9.如权利要求1所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,通过UDEC软件对所述几何模型进行离散化处理。
10.如权利要求1所述的基于持续同调的建筑裂缝特征提取方法,其特征在于,通过matlab软件根据所述点云集中各点的坐标进行持续同调计算,从而得到所述条码图。
CN202210494248.2A 2022-05-07 2022-05-07 基于持续同调的建筑裂缝特征提取方法 Pending CN114937008A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210494248.2A CN114937008A (zh) 2022-05-07 2022-05-07 基于持续同调的建筑裂缝特征提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210494248.2A CN114937008A (zh) 2022-05-07 2022-05-07 基于持续同调的建筑裂缝特征提取方法

Publications (1)

Publication Number Publication Date
CN114937008A true CN114937008A (zh) 2022-08-23

Family

ID=82863527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210494248.2A Pending CN114937008A (zh) 2022-05-07 2022-05-07 基于持续同调的建筑裂缝特征提取方法

Country Status (1)

Country Link
CN (1) CN114937008A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110390683A (zh) * 2018-04-17 2019-10-29 河海大学 一种基于密集点云的古城墙三维裂缝检测方法
CN110443785A (zh) * 2019-07-18 2019-11-12 太原师范学院 一种持久同调下三维点云的特征提取方法
CN110796393A (zh) * 2019-11-14 2020-02-14 山东建筑大学 一种基于持久同调的金融风险预警方法及其实现系统
CN112183477A (zh) * 2020-10-28 2021-01-05 太原师范学院 一种基于持续同调的脑电信号持续特征提取方法
US20210256414A1 (en) * 2019-09-19 2021-08-19 International Business Machines Corporation Quantum topological classification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110390683A (zh) * 2018-04-17 2019-10-29 河海大学 一种基于密集点云的古城墙三维裂缝检测方法
CN110443785A (zh) * 2019-07-18 2019-11-12 太原师范学院 一种持久同调下三维点云的特征提取方法
US20210256414A1 (en) * 2019-09-19 2021-08-19 International Business Machines Corporation Quantum topological classification
CN110796393A (zh) * 2019-11-14 2020-02-14 山东建筑大学 一种基于持久同调的金融风险预警方法及其实现系统
CN112183477A (zh) * 2020-10-28 2021-01-05 太原师范学院 一种基于持续同调的脑电信号持续特征提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
陈龙飞 等: "基于持续同调的边坡破坏过程的拓扑特征研究", 《计算力学学报》, vol. 38, no. 2, pages 146 - 153 *
陈龙飞: "基于持续同调机器学习的边坡失稳与破坏过程研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 2, pages 1 - 5 *

Similar Documents

Publication Publication Date Title
JP6143893B2 (ja) 3d点の集合にプリミティブ形状をフィッティングする方法
CN102236794B (zh) 3d场景中3d对象的识别和姿态确定
CN107301648B (zh) 基于重叠区域边界角度的冗余点云去除方法
CN106874580B (zh) 一种基于点云数据的弯管模型重建方法
CN109579695B (zh) 一种基于异构立体视觉的零件测量方法
Yu et al. Fast bridge deflection monitoring through an improved feature tracing algorithm
CN103913131A (zh) 一种基于双目视觉的自由曲面法矢量测量方法
CN102411779B (zh) 基于图像的物体模型匹配姿态测量方法
CN113160287B (zh) 一种基于特征融合的复杂构件点云拼接方法及系统
CN104040590A (zh) 用于估计物体的姿态的方法
CN108564653B (zh) 基于多Kinect的人体骨架追踪系统及方法
CN108830888B (zh) 基于改进的多尺度协方差矩阵特征描述子的粗匹配方法
CN106844620B (zh) 一种基于视图的特征匹配三维模型检索方法
CN105654483A (zh) 三维点云全自动配准方法
JP2020173795A (ja) オブジェクトの姿勢推定を生成するシステム、デバイス、および方法
CN111126116A (zh) 无人船河道垃圾识别方法及系统
CN114037706A (zh) 一种基于三维点云模型的预制梁段表面平整度检测方法
CN113516695B (zh) 激光轮廓仪平面度测量中的点云配准策略
CN109101761B (zh) 一种基于实测表面形貌的装配接触的空间姿态确定方法
CN114332510A (zh) 一种层次化的图像匹配方法
CN115546116A (zh) 全覆盖式岩体不连续面提取与间距计算方法及系统
CN116401794A (zh) 基于注意力引导的深度点云配准的叶片三维精确重建方法
CN113870326B (zh) 一种基于图像和三维点云配准的结构损伤映射、量化及可视化方法
CN110310322A (zh) 一种10微米级高精度器件装配表面检测方法
CN114937008A (zh) 基于持续同调的建筑裂缝特征提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination