CN114931947A - 一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂 - Google Patents

一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂 Download PDF

Info

Publication number
CN114931947A
CN114931947A CN202210609237.4A CN202210609237A CN114931947A CN 114931947 A CN114931947 A CN 114931947A CN 202210609237 A CN202210609237 A CN 202210609237A CN 114931947 A CN114931947 A CN 114931947A
Authority
CN
China
Prior art keywords
catalyst
light
supported
catalytic hydrogenation
selective catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210609237.4A
Other languages
English (en)
Inventor
王朝
李学宇
严永情
卫琦琛
陈丽华
苏宝连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210609237.4A priority Critical patent/CN114931947A/zh
Publication of CN114931947A publication Critical patent/CN114931947A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/52Gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明开发了一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径,该途径以载体负载的金属纳米颗粒为催化剂,利用具有等离子体共振效应的金属纳米颗粒为催化活性中心,在受到光照时会通过表面电子与光波之间的协同共振,将太阳能高效地转化为热能来驱动加氢反应,替代热催化反应过程中通过传统消耗化石能源获取能量的方式,从而实现清洁环保的选择性催化加氢过程。本发明所开发的不饱和碳碳键选择性催化加氢的新途径简单易行且环境友好,所开发的碳载体负载的金属纳米颗粒催化剂在选择性加氢反应中表现出很高的催化活性。

Description

一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其 催化剂
技术领域
本发明提供了一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂,属于烯炔烃催化加氢领域。
背景技术
单烯烃是仲丁醇、合成橡胶、润滑油添加剂、叠合汽油等化工产品的重要合成原料,在石油裂化产生单烯烃的过程中常常会产生一定量的炔烃或双烯烃等副产物,如丁烯中1,3-丁二烯或丁炔的含量为0.3%~6.0%。由于1,3-丁二烯有两个C=C的化学活性,所以其活性比单烯烃活性高,更容易参与化学反应,负面影响单烯烃的一些深加工过程和产品。例如,在发生烷基化反应时,极少量的1,3-丁二烯的存在都会导致重质叠合物的生成,这将会升高烷基化油的干点,从而将导致其辛烷值下降;在发生齐聚反应时,只要存在极微量的1,3-丁二烯就会导致1-丁烯的质量下降,而不能达到共聚单体的要求,也很容易导致该反应的催化剂发生结焦现象而失去活性;在发生醚化反应时,1,3-丁二烯极容易在醚化树脂上发生一些齐聚反应,产生的一些产物会导致催化剂孔道被堵塞,从而会严重地缩短催化剂的寿命。因此,在单烯烃深加工过程中,为力求避免催化剂中毒失活,必须保证1,3-丁二烯的浓度在10ppm以下。为了达到将1,3-丁二烯的浓度降到规定要求以下的目的,核心问题是将其及时脱除,而将炔烃或二烯烃选择性加氢为单烯烃是目前化工行业最常用的去除原料中杂质的手段之一。
自上世纪工业革命以来,环境污染和能源短缺等问题日益恶化,受到了广泛的关注。传统化工行业的选择性加氢都是利用热催化进行的,这将消耗大量的不可再生能源,不仅会受到能源储量的影响,还会带来许多环境问题。因此,低耗高效、绿色环保的能源转化技术的开发和应用显得尤为重要。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂。该途径以碳载体负载的金属纳米颗粒为催化剂,利用具有等离子体共振效应的金属纳米颗粒为催化活性中心,在受到光照时会通过表面电子与光波之间的协同共振,将太阳能高效地转化为热能来驱动加氢反应,替代热催化反应过程中通过传统消耗化石能源获取能量的方式,从而实现清洁环保的选择性催化加氢过程,所开发的碳载体负载的金属纳米颗粒催化剂在选择性加氢反应中表现出很高的催化活性。
本发明为解决上述提出的问题所采用的技术方案为:
一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径,其特征在于该途径采用载体和在光激发下具有等离子体共振效应的金属纳米颗粒制成的负载型催化剂;所述载体为对光具有吸收转化性质的材料。
按上述方案,所述载体包括但不限于碳粉、氧化石墨烯、氮化碳、二氧化钛、二氧化硅等;优选地,所述载体是黑色材料,包含但不限于碳粉、氧化石墨烯等碳载体。
按上述方案,所述金属纳米颗粒包含但不限于Au、Ag、Pd、Cu等纳米颗粒,形貌可以是球型、棒状等纳米结构。
按上述方案,所述催化剂负载的金属纳米颗粒的负载量范围一般在0.2wt%~10wt%,且负载的金属纳米颗粒的尺寸在100nm以下,即金属纳米颗粒的尺寸从单原子到100nm均可发生催化作用。
按上述方案,所述负载型催化剂可以通过沉淀法、原位还原法、尿素沉积沉淀法等各种方法制备得到,其中负载的金属纳米颗粒须暴露出来发挥光热转换和催化作用。
按上述方案,所述负载型金属纳米颗粒优选为以氧化石墨烯为载体的负载型金纳米颗粒、以氧化石墨烯为载体的负载型银纳米颗粒和以氧化石墨烯为载体的负载型钯纳米颗粒等,可采用阳离子吸附法制备。以氧化石墨烯为载体的负载型金纳米颗粒为例,具体方法为:以带正电的金前驱体溶液与带负电的氧化石墨烯溶液混合进行静电自组装,制备得到以氧化石墨烯为载体的负载型金纳米颗粒(Au/GO催化剂)。
本发明还提供一种光转热驱动不饱和烯炔烃选择性催化加氢的方法,步骤如下:在至少一侧透光的反应器中,催化剂安设在反应器中,通入不饱和烯炔烃选择性催化加氢的反应气体后,将光源射入到反应器中的催化剂表面,从而实现光转热选择性催化加氢反应,将反应气体中的炔烃和/或多烯烃转化为单烯烃,实现不饱和烯炔烃选择性催化加氢。其中,催化剂以乙醇分散后涂覆于玻璃片上,烘干后,安设于反应器中。
上述方法中,不饱和烯炔烃选择性催化加氢的反应气体主要包括多烯烃或炔烃以及氢气,其中,多烯烃或炔烃作为主要反应气体,氢气作为选择性加氢反应的氢源;此外,单烯烃可作为反应气体中主要存在的系统环境气体,以验证在大量单烯烃存在的条件下对多烯烃或炔烃进行选择性加氢除杂,例如:乙烯、丙烯等;同时,还可加入一些惰性气体进行稀释保护,例如:氦气、氩气等。在工业上,不饱和烯炔烃选择性催化加氢的反应气体一般为石油裂化产生的单烯烃,由于其中含有一定量的炔烃或双烯烃副产物,因此可采用本发明所述方法进行选择性催化加氢。
按上述方案,所述光源的波长为全光谱,优选氙灯等提供光源。
按上述方案,反应器是至少一面具有高光透过率(光波波长300~1000nm下的透光率不低于80%,一般为透明的石英玻璃)的反应器,包含但不限于间歇式反应器、固定床反应器或者流化床反应器等。
按上述方案,反应气体的体积为1ml~50ml时,催化剂的用量一般为5mg~500mg,一般情况贵金属催化剂在光转热催化加氢反应中可以长期使用(如金基催化剂),不会失活;反应时间为0min~300min,优选60~120min;光照强度不低于0.1W·cm-2,优选0.1W·cm-2~1W·cm-2
与现有技术相比,本发明的有益效果是:
本发明打破了传统热催化不饱和烯烃加氢的思路,所开发的不饱和烯炔烃选择性催化加氢的新途径采用负载型金属纳米颗粒催化剂,充分利用丰富的太阳能资源来驱动化学反应,在进行光热转换的同时,提供了大量的活性位点,从而实现了光转热催化剂的能量转换效率和加氢活性,在选择性加氢反应中表现出很高的催化活性,实现清洁环保的选择性催化加氢过程;并且还利用具有高吸光性质的材料作为载体,一定程度上增强光热转换效率。
附图说明
图1为反应器的剖面图;其中,1、聚四氟乙烯板材,2、玻璃盖板,3、催化剂,4、装载催化剂的载玻片,5、凹槽,6、通孔。
图2为实施例1中制备的Au/GO催化剂的高分辨透射电子显微镜图片(标尺为50nm)。
图3为实施例1中Au/GO催化剂对1,3-丁二烯的选择性催化加氢活性的丁二烯转化率和丁烯选择性数据图(横坐标为光照强度,左纵坐标为丁二烯转化率,右纵坐标为丁烯选择性;实心球为丁二烯转化率,空心球为丁烯选择性)。
图4为实施例2中制备的Ag/GO催化剂的高分辨透射电子显微镜图片(标尺为50nm)。
图5为实施例2中Ag/GO催化剂对1,3-丁二烯的选择性催化加氢活性的丁二烯转化率和丁烯选择性数据图(横坐标为光照强度,左纵坐标为丁二烯转化率,右纵坐标为丁烯选择性;实心球为丁二烯转化率,空心球为丁烯选择性);
图6为实施例3中制备的Pd/GO催化剂的高分辨透射电子显微镜图片(标尺为50nm)。
图7为实施例3中Pd/GO催化剂对1,3-丁二烯的选择性催化加氢活性的丁二烯转化率和丁烯选择性数据图(横坐标为光照强度,左纵坐标为丁二烯转化率,右纵坐标为丁烯选择性;实心球为丁二烯转化率,空心球为丁烯选择性)。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
下述实施例中,反应器为在一侧透光的反应器,具体制作方法如下:用聚四氟乙烯材料制作一个90mm×30mm×60mm的长方体,并在90mm×60mm的一面挖出一个25mm×40mm×2mm的凹槽,包括但不限于此规格和形状的凹槽等;然后分别在凹槽的短边一侧的中点位置打一个直径为2mm的可以连通凹槽的通孔,作用是反应气体的输入和输出;将具有高光透过率的石英玻璃板作为盖板,盖在反应器的凹槽侧,得到一个具有一面可透光的反应器。下述实施例中,反应气体的体积就是凹槽的体积,反应气体体积为2.7ml(约0.1mmol。
选择性催化加氢反应的设备准备:将上述反应器的一个通孔与反应气体连接起来,另一个通孔与气相色谱仪连接起来,并检查其气密性是否良好;用镊子取出适量的石英棉,放到连接凹槽的孔洞中压实,以此来防止在催化反应过程中固体催化剂粉末被吹飞,污染管道,造成实验误差;将准备好的反应器放在平台上,称量适量的催化剂粉末混合1~2ml乙醇涂敷在1mm×25mm×40mm的玻璃片上,60℃烘干5min后,放置在反应器的凹槽中,在凹槽侧盖上具有高光透过率的石英玻璃,固定后,检查气密性是否良好,气密性良好方可对其施加光源,接通催化反应设备进行实验。
下述实施例中,采用的光源为300W的氙灯,且光源与反应器的距离为5cm。
下述实施例中,负载量以负载的金属纳米颗粒占载体的质量百分比来计。
实施例1
一种用于不饱和烯炔烃选择性催化加氢的氧化石墨烯负载纳米金(Au/GO)催化剂,包括载体氧化石墨烯和活性成分纳米金颗粒,其中纳米金颗粒的负载量为0.5wt%。
上述氧化石墨烯负载纳米金(Au/GO)催化剂的制备方法如下:将20mg氧化石墨烯粉末超声分散在20ml去离子水中,加入0.1ml浓度为1mgAu/ml(表示每毫升溶液中金的质量)的氯金酸溶液,剧烈搅拌15min后进行5次或5次以上离心,洗涤后经过冷冻干燥后并在180℃下空气气氛中煅烧处理,得到氧化石墨烯负载纳米金(Au/GO)催化剂。如图2所示,该催化剂是在氧化石墨烯片层结构上负载了金纳米颗粒,金纳米颗粒呈球形,颗粒尺寸约24nm。
一种光转热驱动不饱和烯炔烃选择性催化加氢的方法,步骤如下:采用前述选择性催化加氢反应的设备,将反应器的两个通孔与反应气体和气相色谱仪分别连接,并进行气密性检查。称取10mg的Au/GO催化剂以乙醇为溶剂涂敷在反应器中的玻璃片上,在60℃烘箱中烘干5min。随后将反应气体(反应气体按体积百分比计由0.03%的丁二烯、15%的丙烯、25%的氢气和59.97%的氦气组成)从一个通孔引入,从另一个通孔导出,待反应气体稳定后截断到反应器中,此时反应器内外压强一致,反应器中的反应气体体积为2.7ml(约0.1mmol)。随后用氙灯(PLS-SEX300,电流强度为10-21A)照射,并改变光照强度(0.1~0.2W·cm-2)进行光热催化加氢反应90min。反应结束后,用氦气将反应器中的气体推入气相色谱仪(Perichrom PR 2100,FID检测器温度为220℃,色谱柱为毛细管柱,柱箱温度为75℃)进行分析。
由图3可知,随着光照强度的增强,丁二烯转化率逐渐增大。其中,当光照强度为0.2W/cm2时,丁二烯转化率为99%,丁烯选择性为98%,实现了清洁、高效的光转热催化选择性加氢反应。
实施例2
一种用于不饱和烯炔烃选择性催化加氢的氧化石墨烯负载纳米银(Ag/GO)催化剂,包括载体氧化石墨烯和活性成分纳米银颗粒,其中纳米银颗粒的负载量为0.5wt%。
氧化石墨烯负载纳米银(Ag/GO)催化剂的制备方法如下:将20mg氧化石墨烯粉末超声分散在20ml去离子水中,加入0.1ml浓度为1mgAg/ml的硝酸银溶液,剧烈搅拌15min后进行5次或5次以上离心,洗涤后经过冷冻干燥后并在180℃下空气气氛中煅烧处理,得到氧化石墨烯负载纳米银(Ag/GO)催化剂。如图4所示,该催化剂是在氧化石墨烯片层结构上负载了银纳米颗粒,银纳米颗粒呈球形,颗粒尺寸约26nm。
一种光转热驱动不饱和烯炔烃选择性催化加氢的方法,步骤如下:采用前述选择性催化加氢反应的设备,将反应器的两个通孔与反应气体控制装置和气相色谱仪连接,并进行气密性检查。称取10mg的Ag/GO催化剂以乙醇为溶剂涂敷在反应器中的玻璃片上,在60℃烘箱中烘干5min。随后将反应气体(反应气体按体积百分比计由0.03%的丁二烯、15%的丙烯、25%的氢气和59.97%的氦气组成)从一个通孔引入,从另一个通孔导出,待反应气体稳定后截断到反应器中,此时反应器内外压强一致,反应器中的反应气体体积为2.7ml(约0.1mmol)。随后用氙灯(PLS-SEX300,电流强度为10-21A)照射,并改变光照强度(0.1~0.2W·cm-2)进行光热催化加氢反应90min。反应结束后,用氦气将反应器中的气体推入气相色谱仪(Perichrom PR 2100,FID检测器温度为220℃,色谱柱为毛细管柱,柱箱温度为75℃)进行分析。
从图5可知,随着光照强度的增强,丁二烯转化率逐渐增大。其中,当光照强度为0.2W/cm2时,丁二烯转化率为84%,丁烯选择性为99%,实现了清洁、高效的光转热催化选择性加氢反应。
实施例3
一种用于不饱和烯炔烃选择性催化加氢的氧化石墨烯负载纳米钯(Pd/GO)催化剂,包括载体氧化石墨烯和活性成分纳米钯颗粒,其中纳米钯颗粒的负载量为0.5wt%。
氧化石墨烯负载纳米钯(Pd/GO)催化剂的制备方法如下:将20mg氧化石墨烯粉末超声分散在20ml去离子水中,加入0.1ml浓度为1mgPd/ml的醋酸钯溶液,剧烈搅拌15min后进行5次或5次以上离心,洗涤后经过冷冻干燥后并在180℃下空气气氛中煅烧处理,得到氧化石墨烯负载纳米钯(Pd/GO)催化剂。如图6所示,该催化剂是在氧化石墨烯片层结构上负载了钯纳米颗粒,钯纳米颗粒呈球形,颗粒尺寸约31nm。
一种光转热驱动不饱和烯炔烃选择性催化加氢的方法,步骤如下:采用前述选择性催化加氢反应的设备,将反应器的两个通孔与反应气体控制装置和气相色谱仪连接,并进行气密性检查。称取10mg的Pd/GO催化剂以乙醇为溶剂涂敷在反应器中的玻璃片上,在60℃烘箱中烘干5min。随后将反应气体(反应气体按体积百分比计由0.03%的丁二烯、15%的丙烯、25%的氢气和59.97%的氦气组成)从一个通孔引入,从另一个通孔导出,待反应气体稳定后截断到反应器中,此时反应器内外压强一致,反应器中的反应气体体积为2.7ml(约0.1mmol)。随后用氙灯(PLS-SEX300,电流强度为10-21A)照射,并改变光照强度(0.1~0.2W·cm-2)进行光热催化加氢反应90min。反应结束后,用氦气将反应器中的气体推入气相色谱仪(Perichrom PR 2100,FID检测器温度为220℃,色谱柱为毛细管柱,柱箱温度为75℃)进行分析。
从图7中可以看出,随着光照强度的增强,丁二烯转化率逐渐增大。其中,当光照强度为0.2W/cm2时,丁二烯转化率为99%,丁烯选择性为99%,实现了清洁、高效的光转热催化选择性加氢反应。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (10)

1.一种光转热驱动不饱和烯炔烃选择性催化加氢的催化剂,其特征在于所述催化剂是采用载体和在光激发下具有等离子体共振效应的金属纳米颗粒制成的负载型催化剂;所述载体为对光具有吸收性质的材料。
2.根据权利要求1所述的催化剂,其特征在于所述载体是黑色材料,主要包括碳载体。
3.根据权利要求1所述的催化剂,其特征在于所述载体包含但不限于碳粉、氧化石墨烯、氮化碳、二氧化钛、二氧化硅中的一种或几种。
4.根据权利要求1所述的催化剂,其特征在于所述金属纳米颗粒包含但不限于Au、Ag、Pd、Cu的纳米颗粒,尺寸在单原子到100nm之间。
5.根据权利要求1所述的催化剂,其特征在于负载型催化剂负载的金属纳米颗粒的负载量范围不超过10wt%。
6.根据权利要求1所述的催化剂,其特征在于所述负载型金属纳米颗粒为以氧化石墨烯为载体的负载型金纳米颗粒、以氧化石墨烯为载体的负载型银纳米颗粒和以氧化石墨烯为载体的负载型钯纳米颗粒中的一种。
7.根据权利要求1所述的催化剂,其特征在于所述氧化石墨烯为载体的负载型金纳米颗粒的具体方法为:以带正电的金前驱体溶液与带负电的氧化石墨烯溶液混合进行静电自组装,制备得到以氧化石墨烯为载体的负载型金纳米颗粒。
8.一种光转热驱动不饱和烯炔烃选择性催化加氢的方法,其特征在于步骤如下:将权利要求1所述催化剂安设在至少一侧透光的反应器中,通入不饱和烯炔烃选择性催化加氢的反应气体后,将光源通过反应器的透光面照射反应器中的催化剂,从而进行光转热选择性催化加氢反应,将反应气体中的炔烃和/或多烯烃转化为单烯烃,实现不饱和烯炔烃选择性催化加氢。
9.根据权利要求8所述方法,其特征在于不饱和烯炔烃选择性催化加氢的反应气体包括含有炔烃或多烯烃的单烯烃,以及氢气;其中,多烯烃或炔烃作为主要反应气体,氢气作为选择性加氢反应的氢源,单烯烃作为反应气体中主要存在的系统环境气体。
10.根据权利要求8所述方法,其特征在于以每毫摩尔反应气体来计,催化剂用量为5mg~500mg;反应时间为30min~300min,光照强度不低于0.1W·cm-2
CN202210609237.4A 2022-05-31 2022-05-31 一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂 Pending CN114931947A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210609237.4A CN114931947A (zh) 2022-05-31 2022-05-31 一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210609237.4A CN114931947A (zh) 2022-05-31 2022-05-31 一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂

Publications (1)

Publication Number Publication Date
CN114931947A true CN114931947A (zh) 2022-08-23

Family

ID=82867352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210609237.4A Pending CN114931947A (zh) 2022-05-31 2022-05-31 一种光转热驱动不饱和烯炔烃选择性催化加氢的新途径及其催化剂

Country Status (1)

Country Link
CN (1) CN114931947A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603038B1 (en) * 1997-08-13 2003-08-05 Celanese Chemicals Europe Gmbh Method for producing catalysts containing metal nanoparticles on a porous support, especially for gas phase oxidation of ethylene and acetic acid to form vinyl acetate
WO2015141876A1 (ko) * 2014-03-19 2015-09-24 금오공과대학교 산학협력단 광열효과가 우수한 그래핀 옥사이드 나노복합체 및 그 제조방법
CN106824268A (zh) * 2017-02-14 2017-06-13 南京工业大学 一种提高负载型催化剂催化选择性的方法及其应用
US20220134323A1 (en) * 2019-09-30 2022-05-05 Lg Chem, Ltd. Catalyst for hydrogenation reaction and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603038B1 (en) * 1997-08-13 2003-08-05 Celanese Chemicals Europe Gmbh Method for producing catalysts containing metal nanoparticles on a porous support, especially for gas phase oxidation of ethylene and acetic acid to form vinyl acetate
WO2015141876A1 (ko) * 2014-03-19 2015-09-24 금오공과대학교 산학협력단 광열효과가 우수한 그래핀 옥사이드 나노복합체 및 그 제조방법
CN106824268A (zh) * 2017-02-14 2017-06-13 南京工业大学 一种提高负载型催化剂催化选择性的方法及其应用
US20220134323A1 (en) * 2019-09-30 2022-05-05 Lg Chem, Ltd. Catalyst for hydrogenation reaction and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李学宇等: "等离激元共振光转热增强负载纳米金对丁二烯选择性加氢的催化性能", 高等学校化学学报, pages 1 *

Similar Documents

Publication Publication Date Title
Wang et al. The cooperation effect in the Au–Pd/LDH for promoting photocatalytic selective oxidation of benzyl alcohol
Li et al. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation
Yang et al. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content
Shi et al. Pt decorated hierarchical Sb 2 WO 6 microspheres as a surface functionalized photocatalyst for the visible-light-driven reduction of nitrobenzene to aniline
Wang et al. Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts
Liu et al. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene
Qu et al. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation
Zhang et al. Towards highly active Pd/CeO 2 for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts
CN110813280B (zh) 一种高分散铂负载表面修饰的黑色二氧化钛光催化剂、制备方法及其应用
Moliner et al. Trapping of metal atoms and metal clusters by chabazite under severe redox stress
CN109126774A (zh) 一种超高分散负载型单原子贵金属催化剂及其制备方法
CN109103473A (zh) 用于碱性氢氧化反应的氮掺杂碳担载粒径均一的金属纳米颗粒电催化剂的制备方法及应用
Luo et al. Dynamic modification of palladium catalysts with chain alkylamines for the selective hydrogenation of alkynes
CN107342427B (zh) 一种直接乙醇燃料电池用Pd/Ag纳米合金催化剂的制备方法
Wu et al. Heteropolyacids-immobilized graphitic carbon nitride: highly efficient photo-oxidation of benzyl alcohol in the aqueous phase
Huang et al. Design and synthesis of Z-scheme LaFeO3/MoS2/graphene heterojunction with enhanced photocatalytic performance
KR20110089357A (ko) 금속 장입된 촉매 및 그의 제조 방법
Guan et al. Selective hydrogenation of acetylene to ethylene over the surface of sub-2 nm Pd nanoparticles in Miscanthus sinensis-derived microporous carbon tubes
CN112108175A (zh) 一种芳香族烯烃的制备方法
Zhang et al. The surface plasmon resonance, thermal, support and size effect induced photocatalytic activity enhancement of Au/reduced graphene oxide for selective oxidation of benzylic alcohols
Zhu et al. Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene
Duan et al. Ppm-level Cu dopant on ultrathin Pd nanosheets/TiO2 for highly enhanced photocatalytic alcoholysis of epoxides
Yang et al. Alkyl group-decorated gC 3 N 4 for enhanced gas-phase CO 2 photoreduction
Mao et al. N-doped porous carbon supported Au nanoparticles for benzyl alcohol oxidation
Wei et al. Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220823