CN114924431A - 一种增强棒状量子点偏振发射的方法 - Google Patents

一种增强棒状量子点偏振发射的方法 Download PDF

Info

Publication number
CN114924431A
CN114924431A CN202210620104.7A CN202210620104A CN114924431A CN 114924431 A CN114924431 A CN 114924431A CN 202210620104 A CN202210620104 A CN 202210620104A CN 114924431 A CN114924431 A CN 114924431A
Authority
CN
China
Prior art keywords
photoluminescence
quantum dot
quantum dots
single quantum
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210620104.7A
Other languages
English (en)
Inventor
张国峰
牛鸿琪
白秀清
陈瑞云
秦成兵
胡建勇
肖连团
贾锁堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202210620104.7A priority Critical patent/CN114924431A/zh
Publication of CN114924431A publication Critical patent/CN114924431A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01716Optically controlled superlattice or quantum well devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于量子点的发光显示技术领域,具体涉及一种增强棒状量子点偏振发射的方法。技术方案包括以下步骤:在洁净的盖玻片上制备金纳米颗粒,利用原子层沉积方法在金纳米颗粒上沉积氧化铝薄膜,将棒状CdSe/CdS核/壳量子点溶液充分稀释后旋涂在氧化铝薄膜表面,利用脉冲激光器激发单量子点,测量金纳米颗粒基底上单量子点的光致发光特性,分析单量子点的光致发光衰减曲线和偏振光致发光强度轨迹,确定量子点线偏振发射的增强。本发明增强棒状量子点的线偏振发射特性对于基于量子点的发光显示应用具有重要的意义。

Description

一种增强棒状量子点偏振发射的方法
技术领域
本发明属于量子点的发光显示技术领域,具体涉及一种增强棒状量子点偏振发射的方法。
背景技术
胶体棒状CdSe/CdS核壳量子点是由球形CdSe核与棒状CdS壳层所构成的异质结构纳米材料。独特的棒状壳层结构使其具有较高的光致发光量子产率、较大的光学吸收截面、高效的光学增益和线偏振吸收与发射等。这些优异的特性使得棒状CdSe/CdS量子点能够广泛地应用于发光显示器件的制备等。在常规的显示器件中,例如LCD,通常利用偏振器将非偏振光转换成线偏振光,通常会损失一半的能耗。而CdSe/CdS棒状量子点可以直接发射线偏振光,不需要起偏器,从而可以节约一半的能耗提高发光器件的效率。然而,如何有效地增强胶体棒状CdSe/CdS核壳量子点的线偏振发射特性是研究者目前需要解决的关键问题。
金纳米颗粒在激光的激发下,其表面电子会产生集体振荡行为被称作为表面等离子激元效应。可以通过改变金纳米颗粒的大小、几何形状和组成来调控表面等离子激元效应的强弱。我们通过实验和理论研究发现,纳米尺度的金纳米颗粒和棒状量子点的相互作用可以有效调控量子点的线偏振发射特性,可以有效地增强量子点的线偏振发射。
发明内容
本发明的目的是通过基于等离激元效应增强棒状量子点线偏振发射的方法,可应用于量子点的发光显示等领域,而提供一种增强棒状量子点偏振发射的方法。
为实现上述目的,本发明的技术方案是:
一种增强棒状量子点线偏振发射的方法,包括:(a)将金纳米颗粒利用氨基丙基三乙氧基硅烷溶液链接到清洗干净的玻片上,金颗粒直径为120nm;(b)利用原子层沉积方法在金纳米颗粒上沉积厚度为5nm的氧化铝薄膜,改变量子点与金纳米颗粒的距离以调控金纳米颗粒与棒状量子点的相互作用强弱,研究发现5nm的氧化铝薄膜是获得最好实验效果的最佳厚度;(c)将量子点利用旋涂法制备在沉积有氧化铝薄膜的金纳米颗粒的基底上,将量子点溶解在光谱纯度的甲苯溶剂中,浓度约为10-8~10-9摩尔/升,旋涂的转速为3000转/分,旋涂时间为120s,使单量子点均匀地分散在有氧化铝薄膜的金纳米颗粒的基底上,每平方微米约0.1个量子点,其中量子点为棒状CdSe/CdS核/壳量子点,光致发光的发射波长峰值为602nm;
(d)利用共聚焦显微镜系统对金纳米颗粒玻片上的单量子点进行光致发光成像,并对玻片上的单量子点进行定点激发,激发光源为皮秒脉冲激光器,发射的激光波长为532±10nm,重频为5MHz,激光通过λ/2玻片、λ/4玻片以及激光扩束器;激光扩束器的出射光路上设有倒置荧光显微镜,所述倒置荧光显微镜的入射端口位于激光扩束器的出射光路上,经过扩束后的激光通过激发滤光器进行滤波后由二向色镜反射进入显微镜物镜;显微镜物镜前端设有一个用于搭载样品的三维纳米台;倒置荧光显微镜的荧光收集光路上顺次设有一个发射滤波器、一个共焦针孔、一个安装有1/2波片的高精度电动旋转台、一个偏振分束器和两个单光子探测器,利用时间分辨的单光子计数系统记录单量子点的光致发光光子的时间标记信息;
(e)通过分析单量子点的光致发光光子的时间标记信息获得单量子点的光致发光衰减曲线和偏振光致发光轨迹。通过拟合单量子点的光致发光衰减曲线获得量子点的光致发光寿命,与玻片上单量子点的光致发光寿命对比,通过寿命值的改变来判定金纳米颗粒与量子点是否发生相互作用;
(f)然后通过对偏振光致发光轨迹进行拟合并计算偏振度,来确定线偏振发射的增强值。利用金纳米颗粒的等离激元效应能够实现对棒状量子点线偏振发射的增强。
附图说明
图1为单量子点样品制备与实验测量流程图。
图2为实现本发明所述方法的实验样品制备示意图。
图3为金纳米颗粒基底上单量子点的光致发光成像图。
图4(a)为玻片表面上单量子点的光致发光强度轨迹曲线及强度统计分布柱状图;(b)为金纳米颗粒基底上单量子点的光致发光强度轨迹及强度统计分布柱状图。
图5(a)为玻片表面上单量子点的光致发光衰减曲线及单指数函数的拟合;(b)为金纳米颗粒基底上单量子点的光致发光衰减曲线及单指数函数的拟合图,虚线为系统的仪器响应函数。
图6(a)为玻片表面上单量子点的偏振光致发光轨迹;(b)为金纳米颗粒基底上单量子点的偏振光致发光轨迹。
图7为玻片表面和金纳米颗粒基底上单量子点的偏振度柱状统计图。
具体实施方式
本实施例所述一种增强棒状量子点线偏振发射的方法,包括以下步骤:
(a)合成CdSe/CdS量子点,将0.057g CdO、3.00g TOPO、0.08g HPA和0.29g ODPA溶解并注入反应烧瓶中,将反应烧瓶抽成真空并加热到150℃。充入氮气,在氮气的保护下将溶液加热至350℃并注入1.5g TOP。之后将反应烧瓶中的混合液加热至380℃,同时注入适量的已预先制备好的CdSe纳米晶体和0.12g S,在氮气的保护下温度保持在380℃持续8min以完成CdSe/CdS量子点壳层的生长,最后移除加热套停止反应,得到长度和直径分布均匀的CdSe/CdS量子点;
(b)将金纳米颗粒利用氨基丙基三乙氧基硅烷溶液链接到清洗干净的玻片上,金颗粒直径为120nm;
(c)利用原子层沉积方法(ALD)在金纳米颗粒上沉积厚度为5nm的氧化铝(Al2O3)层,以调控量子点与金纳米颗粒之间的相互作用强弱;
(d)将量子点利用旋涂法制备在有氧化铝薄膜的金纳米颗粒的玻片上,量子点溶解在光谱纯度的甲苯溶剂中,浓度约为10-8~10-9摩尔/升,旋涂的转速为3000转/分,旋涂时间为120s,使单量子点均匀地分散在有氧化铝薄膜的金纳米颗粒的玻片上,每平方微米约0.1个量子点。
(e)利用共聚焦显微镜系统对金纳米颗粒基底上的单量子点进行光致发光成像,并对基底上的单量子点进行定点激发,激发光源为皮秒脉冲激光器,发射的激光波长为532±10nm,重频为5MHz,激光通过λ/2玻片、λ/4玻片以及激光扩束器;激光扩束器的出射光路上设有倒置荧光显微镜,所述倒置荧光显微镜的入射端口位于激光扩束器的出射光路上,经过扩束后的激光通过激发滤光器进行滤波后由二向色镜反射进入显微镜物镜;显微镜物镜前端设有一个用于搭载样品的三维纳米台;倒置荧光显微镜的荧光收集光路上顺次设有一个发射滤波器、一个共焦针孔、一个安装有1/2波片的高精度电动旋转台、一个偏振分束器和两个单光子探测器,利用时间分辨的单光子计数系统记录单量子点的光致发光光子的时间标记信息;
(f)通过分析单量子点的光致发光光子的时间标记信息获得单量子点的光致发光衰减曲线和偏振光致发光轨迹。通过拟合单量子点的光致发光衰减曲线获得量子点的光致发光寿命,与玻片上单量子点的光致发光寿命对比,通过光致发光寿命的变化来判定金纳米颗粒与量子点是否发现作用;然后通过对偏振光致发光轨迹拟合计算偏振度。与玻片上单量子点偏振度结果进行比较,确定线偏振发射的增强量。
本发明的实验样品的检验和测量可通过多种公知的仪器实现,具体采用的仪器包括:荧光倒置显微镜(Olympus,IX83),皮秒连续脉冲激光器(EXW-12,NKT,50-100ps),三维纳米位移台(Tritor 200/20SG),单光子探测器(SPCM-AQR-15,PerkinElmer),时间相关单光子计数采集卡(HydraHarp 400)等。软件程序方面有多通道分析仪软件、自编的LabVIEW和MATLAB数据采集和分析程序等。
本发明所述的一种增强棒状量子点线偏振发射特性的方法,图1为单量子点样品制备与实验测量流程图。
实验样品如图2所示,从图2中可以看到整个实验样品由四个部分组成,分别为盖玻片、金纳米颗粒、氧化铝薄膜和CdSe/CdS棒状量子点。
图3所示为实验样品的共聚焦光致发光成像图。
为验证本发明所示方法的有效性,本发明所制备的样品将与直接制备在盖玻片表面上的单量子点样品进行比较。
图4(a)和(b)分别为玻片表面和金纳米颗粒基底上单量子点的光致发光强度轨迹及强度分布柱状图,从图中可以看到玻片表面上单量子点的光致发光强度轨迹曲线具有强烈的波动,该强度轨迹曲线的波动和起伏即为量子点的光致发光闪烁,强度分布柱状图显示了单量子点的光致发光处于暗态的概率较多。而金纳米颗粒基底上单量子点的光致发光闪烁显著减小并且其暗态的持续时间也明显较小,强度分布柱状图显示量子点的光致发光主要处于亮态。
图5(a)和(b)分别为玻片表面和金纳米颗粒基底上单量子点的光致发光衰减曲线及单指数函数的拟合,虚线为系统的仪器响应函数,其半高全宽(FWHM)约为750ps。我们利用MATLAB程序对单量子点光致发光衰减曲线进行反卷积和单指数函数拟合。玻片表面和金纳米颗粒基底上单量子点的光致发光衰减曲线都可以用单指数函数
Figure BDA0003676188810000061
进行拟合,其中τ为寿命值,A为振幅。玻片表面上的单量子点的寿命拟合值为τ=25.61ns;金纳米颗粒基底上单量子点的寿命拟合值为τ=2.63ns。金纳米颗粒基底上量子点的光致发光寿命值减小,指示着金纳米颗粒与量子点之间发生相互作用。
图6(a)和(b)分别为盖玻片表面和金纳米颗粒基底上单量子点的偏振光致发光轨迹图,黑色曲线拟合曲线。我们通过公式I(θλ/2)=(Imax-Imin)cos2λ/2)+Imin对光致发光强度轨迹进行拟合,获得光致发光强度的最大值Imax和最小值Imin,通过公式
Figure BDA0003676188810000062
计算出棒状单量子点的偏振度p。
图7(a)和(b)分别为盖玻片表面和金纳米颗粒基底上单量子点偏振度的柱状统计图。对图6(a)和(b)中两个柱状图进行高斯函数拟合可以得到盖玻片表面单量子点的偏振度为0.45±0.08,金纳米颗粒基底上单量子点的偏振度为0.66±0.10。比较两种情况下的偏振度,可以得到偏振度值的平均增加量为0.21。因此,可以确定金纳米颗粒的等离激元效应能够有效增强棒状量子点的线偏振发射。

Claims (2)

1.一种增强棒状量子点偏振发射的方法,其特征在于,包括以下步骤:
(a)将金纳米颗粒利用氨基丙基三乙氧基硅烷溶液链接到清洗干净的盖玻片上;
(b)利用原子层沉积方法在金纳米颗粒上沉积厚度为5nm的氧化铝薄膜;
(c)将量子点利用旋涂法制备在表面沉积有氧化铝薄膜的金纳米颗粒的基底上,量子点溶解在光谱纯度的甲苯溶剂中,浓度约为10-8~10-9摩尔/升,旋涂的转速为3000转/分,旋涂时间为120s,使单量子点均匀地分散在有氧化铝薄膜的金纳米颗粒基底上,每平方微米约0.1个量子点;
(d)利用共聚焦显微镜系统对金纳米颗粒基底上的单量子点样品进行光致发光成像,并对基底上的单量子点进行定点激发,利用时间分辨的单光子计数系统记录单量子点的光致发光光子的时间标记信息;
(e)通过分析单量子点的光致发光光子的时间标记信息获得单量子点的光致发光衰减曲线和偏振光致发光轨迹,通过拟合单量子点的光致发光衰减曲线获得量子点的光致发光寿命,与玻片上单量子点的光致发光寿命对比,当光致发光寿命减小时可判定金纳米颗粒与量子点已经发现相互作用;
(f)然后通过偏振度的计算公式
Figure FDA0003676188800000011
对偏振光致发光轨迹进行偏振度计算,可以获得偏振度值,来确定线偏振发射的增强值。
2.权利要求1所述的一种增强棒状量子点偏振发射的方法,其特征在于,步骤(a)中所述金纳米颗粒直径为120nm。
CN202210620104.7A 2022-06-02 2022-06-02 一种增强棒状量子点偏振发射的方法 Pending CN114924431A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210620104.7A CN114924431A (zh) 2022-06-02 2022-06-02 一种增强棒状量子点偏振发射的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210620104.7A CN114924431A (zh) 2022-06-02 2022-06-02 一种增强棒状量子点偏振发射的方法

Publications (1)

Publication Number Publication Date
CN114924431A true CN114924431A (zh) 2022-08-19

Family

ID=82812467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210620104.7A Pending CN114924431A (zh) 2022-06-02 2022-06-02 一种增强棒状量子点偏振发射的方法

Country Status (1)

Country Link
CN (1) CN114924431A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374918A (zh) * 2014-08-26 2016-03-02 清华大学 发光装置以及采用该发光装置的显示装置
CN106847797A (zh) * 2017-01-17 2017-06-13 电子科技大学 一种贵金属纳米颗粒‑量子点阵列发光器件制备方法
CN108039646A (zh) * 2017-11-29 2018-05-15 山西大学 一种近红外量子点单光子源的制备方法及检测方法
CN112420900A (zh) * 2020-11-05 2021-02-26 电子科技大学 一种贵金属纳米颗粒-量子棒阵列的偏振器件制备方法
CN114184586A (zh) * 2021-11-16 2022-03-15 山西大学 一种基于单量子点光谱技术的铅离子的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374918A (zh) * 2014-08-26 2016-03-02 清华大学 发光装置以及采用该发光装置的显示装置
CN106847797A (zh) * 2017-01-17 2017-06-13 电子科技大学 一种贵金属纳米颗粒‑量子点阵列发光器件制备方法
CN108039646A (zh) * 2017-11-29 2018-05-15 山西大学 一种近红外量子点单光子源的制备方法及检测方法
CN112420900A (zh) * 2020-11-05 2021-02-26 电子科技大学 一种贵金属纳米颗粒-量子棒阵列的偏振器件制备方法
CN114184586A (zh) * 2021-11-16 2022-03-15 山西大学 一种基于单量子点光谱技术的铅离子的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANGGANG YANG: "Efficient, Stable, and Photoluminescence Intermittency-Free CdSe- Based Quantum Dots in the Full-Color Range", ACS PHOTONICS, 9 August 2021 (2021-08-09), pages 2538 *

Similar Documents

Publication Publication Date Title
Dong et al. Upconversion emission studies of single particles
Pettinger et al. Direct monitoring of plasmon resonances in a tip-surface gap of varying width
Félidj et al. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering
Kühn et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna
Zhang et al. Fluorescence enhancement based on cooperative effects of a photonic nanojet and plasmon resonance
Wang et al. Enhance fluorescence study of grating structure based on three kinds of optical disks
Chi et al. Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film
Ditlbacher et al. Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays
Zhang et al. Effective excitation and control of guided surface plasmon polaritons in a conjugated polymer–silver nanowire composite system
Martínez et al. Thermoplasmonic enhancement of upconversion in small-size doped NaGd (Y) F 4 nanoparticles coupled to gold nanostars
Chen et al. Photoluminescence from single CdSe quantum rods
CN114924431A (zh) 一种增强棒状量子点偏振发射的方法
Park et al. Enhanced triplet–triplet annihilation in bicomponent organic systems by using a gap plasmon resonator
Zheng et al. Plasmon-tuned upconversion luminescence in silanized NaYF4: Yb, Er nanocrystals via ultra-thin gold film
Ray et al. Observation of surface plasmon-coupled emission using thin platinum films
Goulet et al. Surface-enhancement of fluorescence near noble metal nanostructures
Ferrera-González et al. NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids
Li et al. Multilayer enhanced SERS active materials: fabrication, characterization, and application to trace chemical detection
Frenzel Characterisation of Photo-Physical Properties of Upconversion Nanocrystals at Ensemble and Single Particle Level
CN107064002B (zh) 一种荧光分析的标准光源
Nie et al. Simple preparation method for silver SERS substrate by reduction of AgNO3 on copper foil
Hayashi et al. Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers
Matsune et al. Size-effect on fluorescence spectrum of perylene nanocrystal studied by single-particle microspectroscopy coupled with atomic force microscope observation
RU203331U1 (ru) Подложка для детектирования поверхностно-усиленного комбинационного рассеяния с широким спектральным рабочим диапазоном
JP2000275160A (ja) 走査近接場光学顕微鏡による試料観測方法および走査近接場光学顕微鏡用超平坦サファイア基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination