CN114921242A - 一种气相自组装可控制备中空微纳结构的有机发光材料及其应用 - Google Patents

一种气相自组装可控制备中空微纳结构的有机发光材料及其应用 Download PDF

Info

Publication number
CN114921242A
CN114921242A CN202210553710.1A CN202210553710A CN114921242A CN 114921242 A CN114921242 A CN 114921242A CN 202210553710 A CN202210553710 A CN 202210553710A CN 114921242 A CN114921242 A CN 114921242A
Authority
CN
China
Prior art keywords
nano structure
hollow micro
cover glass
micro
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210553710.1A
Other languages
English (en)
Other versions
CN114921242B (zh
Inventor
姚伟
安众福
史慧芳
王佳敏
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210553710.1A priority Critical patent/CN114921242B/zh
Publication of CN114921242A publication Critical patent/CN114921242A/zh
Application granted granted Critical
Publication of CN114921242B publication Critical patent/CN114921242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/56Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed
    • C07C15/60Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed containing three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/14Purification; Separation; Use of additives by crystallisation; Purification or separation of the crystals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D293/00Heterocyclic compounds containing rings having nitrogen and selenium or nitrogen and tellurium, with or without oxygen or sulfur atoms, as the ring hetero atoms
    • C07D293/10Heterocyclic compounds containing rings having nitrogen and selenium or nitrogen and tellurium, with or without oxygen or sulfur atoms, as the ring hetero atoms condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种气相自组装可控制备中空微纳结构的有机发光材料及其应用。选取磷光材料和/或荧光材料置于盖玻片上,同时采用支撑部件,保证距离盖玻片上方0.13‑0.16 mm的高度处盖上盖玻片,两块盖玻片与支撑部件整体保证稳定,在对带有盖玻片的样品处进行加热,通过调控加热温度和加热时间,在固相奥斯瓦尔德熟化效应下,可控制备中空微纳结构的有机发光材料。本发明所得的中空微纳结构的有机发光材料具有大比表面积,中空微纳结构对氧气和湿度比较敏感,将此材料用于传感器领域,保证了检测的灵敏度以及准确性。

Description

一种气相自组装可控制备中空微纳结构的有机发光材料及其 应用
技术领域
本发明属于微纳材料制备技术领域,具体涉及一种气相自组装可控制备中空微纳结构的有机发光材料及其应用。
背景技术
近年来,低维材料在结构设计和形貌调控方面取得了巨大进展。目前,研究人员已经开发出具有各种形貌的微纳米结构,包括实心微纳结构和空心微纳结构。与实心材料相比,空心微纳结构具有许多独特的性质,如大比表面积、低密度和高承载能力等。因此,它们在生物医学、催化、气体传感和储能等领域显示出巨大的潜力。
研究人员主要通过硬模板法和软模板法制备空心微纳结构。但是硬模板法需要额外去除模板的过程,操作繁琐;软模板法虽不需去除模板,但是所获得的中空微纳结构均一性较差。除了这两种方法之外,另一种新兴的方法是基于奥斯瓦尔德(Ostwald)熟化的无模板策略,它因方法灵活和过程简单而引起了极大的研究兴趣。然而,Ostwald熟化一般发生在液相中,这不利于构建具有高结晶度的中空微结构。
有机发光材料在数据加密、防伪、生物成像、传感等领域显示出广泛的应用前景。尽管在大块单晶中已成功调控了各种发光特性,但在微纳米尺度上对光学性能进行探索仍具有挑战,特别是在具有大表面体积比和对外部刺激快速响应的中空微结构中。构建有机发光材料的中空微纳结构,可以拓展发光材料在传感器领域的应用,进一步促进其工业化应用。
发明内容
针对现有技术的不足,本发明提供了一种气相自组装可控制备中空微纳结构的有机发光材料及其应用,通过调控加热温度和加热时间,在固相奥斯瓦尔德熟化,可控制备中空微纳结构的有机发光材料,所得材料具有大比表面积,适合用于制备检测器件。
一种气相自组装可控制备中空微纳结构的有机发光材料,选取磷光材料和/或荧光材料作为原料,置于盖玻片上,同时采用支撑部件,保证距离盖玻片上方0.13-0.16mm的高度处盖上盖玻片,两块盖玻片与支撑部件整体保证稳定,在对带有盖玻片的样品处进行加热,通过调控加热温度和加热时间,在固相奥斯瓦尔德熟化效应下,可控制备具有中空微纳结构的有机发光材料。
进一步地,所述磷光材料至少含一种组分的小分子磷光材料,所述小分子磷光材料为为10,10′-(1,4-亚苯基)双[10H-吩硒嗪]或10,10′-(1,4-亚苯基)双[10H-吩噻嗪]。
进一步地,所述荧光材料至少含一种组分的小分子荧光材料,所述小分子荧光材料为苝、4,7-二(2-溴-5-噻吩基)-2,1,3-苯并噻二唑或9,10-双(苯乙炔基)-蒽。
进一步地,当原料为磷光材料和荧光材料复合时,所述磷光材料为1,3,5-三氟-2,4,6-三碘苯,荧光材料为芘。
进一步地,当磷光材料为小分子磷光材料10,10′-(1,4-亚苯基)双[10H-吩噻嗪]时,取固体粉末或浓度为1-10mM的乙酸乙酯溶液置于盖玻片上,同时采用支撑部件,保证距离盖玻片上方0.13-0.16mm的高度处盖上盖玻片,两块盖玻片与支撑部件整体保证稳定。
进一步地,当加热温度为160℃时,所得有机发光材料的中空微纳结构的形状为六棱柱。
进一步地,当加热温度为180℃时,所得有机发光材料的中空微纳结构的形状为管状结构。
更进一步地,所述管状结构为一维管状结构或支状结构。
上述中空微纳结构的有机发光材料在制备检测传感器上的应用。
进一步地,所述检测包括氧气检测或湿度检测。
有益效果:
与现有技术相比,本发明一种气相自组装可控制备中空微纳结构的有机发光材料及其应用,通过调节温度和加热时间,气相自助装得到不同形貌的中空微纳结构,通过观察中空微纳结构的生长过程发现,Ostwald熟化效应和热对流的存在在中空微纳结构的形成中起了关键作用,最终得到了有机发光材料的多种中空微纳结构,该结构保证了作为传感器使用时的灵敏性和准确性,具有良好的市场前景。
附图说明
图1为本发明实施例1气相自组装方法所用的装置实物图;
图2为不同浓度的溶液对中空微纳结构的影响,其中,a为溶液浓度为1mM,b为溶液浓度为2mM,c为溶液浓度为5mM,d为溶液浓度为10mM;
图3为不同加热温度对中空微纳结构的影响,其中,a为温度120℃,b为温度140℃,c为温度160℃,d为温度180℃;
图4为不同加热时长对中空微纳结构的影响;
图5为溶剂挥发法制备的p-DP微纳结构的形貌;
图6为p-DP六棱柱中空微纳结构(a)在明场下,(b)紫外激发下的荧光显微镜照片,(c)SEM图片,(d)TEM图片;
图7为p-DP一维管状结构(a)在明场下,(b)紫外激发下的荧光显微镜照片,(c)SEM图片,(d)TEM图片;
图8为p-DP大块晶体的光物理性质(a)PL光谱,(b)荧光寿命和(c)磷光寿命;
图9为p-DP微纳结构的光物理性质(a)PL光谱,(b)荧光寿命(插图中标尺为:10μm);
图10为Ostwald熟化制备中空微纳结构的普适性证明;
图11为p-DP,p-DPSeZ和Dbt-BT的热分析测试;
图12为大块p-DPSeZ的光物理性质;
图13为p-DPSeZ微纳结构对氧气的敏感性探究。荧光显微镜照片(a)氮气氛围下,(b)氧气氛围下的实心微纳结构;(c)氮气氛围下,(d)氧气氛围下的中空微纳结构;
图14为在氮气和氧气氛围中p-DPSeZ实心微纳结构和中空微纳结构的磷光性能对比,(插图中标尺大小:25μm);
图15为(a)p-DP晶体的模拟生长形貌;(b)p-DP晶体中的分子间作用力;
图16为p-DP六棱柱中空微纳结构的(a)-(d)SEM表征的生长过程图,(e)生长过程示意图;
图17为(a)基于表面能计算的p-DP晶体的生长形态。(b)相邻(111)面的矩形轮廓。(c)p-DP晶体示意图,(d)一维管状结构的生长过程示意图;
图18为p-DP分支管状结构的SEM图片;
图19为p-DPSeZ微纳结构对湿度的敏感性探究,其中,荧光显微镜照片(a)水汽熏蒸0分钟,(b)水汽熏蒸10分钟的实心微纳结构,(c)水汽熏蒸0分钟,(d)水汽熏蒸10分钟的中空微纳结构;
图20为在水汽熏蒸0分钟和10分钟后p-DPSeZ实心微纳结构和中空微纳结构的磷光性能对比,(a)为实心微纳结构的光谱,(b)为实心微纳结构的寿命,(c)为中空微纳结构的光谱,(d)为中空微纳结构的寿命,所用标尺:10μm。
具体实施方式
下面的实施例可使本专业技术人员更全面地理解本发明,但不以任何方式限制本发明。
以下实施例中所用的试剂与药品除p-DP与p-DPSeZ外均为市售产品,具体可参照下表1。p-DP与p-DPSeZ参照文献制备,分别为Adv.Funct.Mater.2021,31,2101719与Chem.Mater.2020,32,2583-2592。
表1主要试剂与药品
Figure BDA0003651536720000041
大块样品的稳态光致发光光谱和磷光光谱是在室温大气环境下由日立F-4600进行测定的。光致发光的寿命和时间分辨光谱由爱丁堡FLSP920和爱丁堡FLS1000瞬态荧光光谱仪进行测试表征。爱丁堡FLSP920瞬态荧光光谱仪测试中使用的激发光源为Xe900氙灯用于表征短寿命发光(纳秒级别),而爱丁堡FLS1000瞬态荧光光谱仪用于表征长寿命发光(从毫秒到秒级别)。
微纳结构的稳态光致发光光谱和磷光光谱是用微区光谱仪测得。其中,利用375nm皮秒激光器(Pilas-37X,40MHz)局部激发,聚焦至其衍射极限获得稳态发光光谱;利用355nm脉冲激光器(L3550.01K30,0.35mW)局部激发,聚焦至衍射极限获得微纳结构的磷光光谱。X-ray单晶衍射是利用Bruker公司配备Mo-Kα石墨单色器的SMART APEX-II CCD仪器上测得。晶体的荧光显微镜照片由Nikon DS-Ri2荧光显微镜拍摄获得,配有汞灯激发器Nikon INTENSILIGHT C-HGFI。扫描电子显微镜照片是通过场发射扫描电子显微镜(SEM)JSM-7800F拍摄获得。透射电子显微镜照片是由透射电子显微镜(TEM)JEM2100F拍摄获得。中空微纳结构通过WH220-HT数字式加热磁力搅拌器制得。差示扫描量热(DSC)曲线由差示扫描量热仪NETZSCH DSC214Polyma测得,热重分析(TGA)曲线由热重分析仪METTLERTOLEDO TGA2测得。晶体形貌模拟是通过Materials Studio软件计算得到的。其分子的模拟形貌使用接触能和表面能计算方法,在University力场下计算获得。
实施例1
选取大块的10,10'-(1,4-亚苯基)双[10H-吩噻嗪](p-DP)分子为研究对象,吩噻嗪基团具有柔性的分子骨架,当对外界不同的刺激做出反应时,S原子有足够的自由度围绕N-S轴折叠,其分子构象易发生变化,有利于多晶型现象的发生。除此之外,吩噻嗪基团中所含的氮、硫杂原子具有孤对电子,可以促进n-π*跃迁以及ISC,有利于室温磷光发射。通过Materials Studio软件基于晶体的晶面接触能模拟了p-DP晶体可能的生长形貌,如图15a所示。
另外,在p-DP晶体中存在多种分子间作用力,如CH…CH
Figure BDA0003651536720000051
C-H…π(2.850,
Figure BDA0003651536720000052
),C-H…H-C
Figure BDA0003651536720000053
和C-H…S
Figure BDA0003651536720000054
(图15b)。因此,在多种分子间作用力的驱动下,p-DP将组装成六棱柱中空微结构。
表2 p-DP晶体不同晶面的计算接触能(Eatt)
Figure BDA0003651536720000055
表3 p-DP晶体的单晶数据
Figure BDA0003651536720000061
在荧光显微镜下观察了p-DP微纳结构的生长过程,并对其进行SEM表征。如图16a所示,当加热5分钟时,顶部盖玻片上大部分为p-DP熔滴,还没有p-DP晶体沉积生长;当加热10分钟时,由于p-DP分子之间存在多种分子间相互作用,p-DP熔滴开始组装成六棱柱中空微结构(图16b)。因此,顶部盖玻片上开始出现p-DP六棱柱中空微结构,但是还存在部分p-DP熔滴;当加热时间达到15分钟时,六棱柱每个表面的中心开始出现凹陷,中空结构开始形成。这是由内向外的奥斯瓦尔德(Ostwald)熟化引起的(图16c),Ostwald熟化是晶体生长过程中的一种物理现象,是指“小晶体或溶胶颗粒溶解,溶解物质在较大晶体或溶胶颗粒表面重新沉积。根据这一熟化过程可知,位于微结构中心部分的p-DP微晶在能量上比位于外部的微晶更不稳定,因为它们更小、密度更低且结晶性更差。为了降低系统的总能量,位于中心的p-DP微晶有着很强的溶解、扩散和再沉积在微晶外表面的趋势,最终导致中空微结构的形成。此外,SEM图像中每个表面的凹陷表明位于中心的微晶总是在垂直于表面的方向上溶解,这对应于内部和外部空间之间的最短距离。最后,随着Ostwald熟化的进行,p-DP六棱柱中空微结构在20分钟时逐渐形成(图16d)。
基于上述形成机理,实施例1进一步明确p-DP六棱柱中空微结构的形成过程,如图16e所示。在第一阶段,p-DP熔滴在多种分子间相互作用的驱动下形成p-DP六棱柱微结构。随着长时间的加热过程,这些p-DP六棱柱微结构会发生由内而外的Ostwald熟化。因此,在下一阶段,六棱柱微结构中心的p-DP微晶倾向于溶解并迁移到微结构的边缘,从而降低系统的表面能。在最后阶段中,通过Ostwald熟化效应形成了最终的p-DP六棱柱中空微结构。
Ostwald熟化是一种热力学驱动的现象,因此,温度是形成中空结构的重要参数。图3表明,在较低温度(140℃)下,仅发现p-DP熔滴。当反应温度升至160℃时,p-DP分子自组装成六棱柱中空微结构。而长时间使用较高的温度(~180℃)进行生长,将会观察到一维和分支微观结构的形成。因此,从晶体能量的角度阐明了管状分支微结构的形成机制(图17d)。由于在理想的晶体生长系统中能量是守恒的,所以结晶发生时多余的能量会转移到微结构的表面上,故而微结构的表面能将随着温度的升高而增加。根据Materials Studio所计算的表面能可知(表4),与其他面相比,{111}面具有更高的表面能(0.2216kcal/mol)和更大的面积(48.74%),这表明{111}面在能量上时不太稳定的。因此,为了降低系统的总能量,{111}平面首先通过Ostwald熟化溶解(stage1)。由于这一过程伴随着颗粒的结晶,具有高表面能的两个相邻{111}晶面被刻蚀并促进微管生长,导致尺寸进一步增加(stage2)。除了Ostwald熟化外,气相自组装物质通过热对流现象在p-DP管状微结构内部传输。在热对流的作用下,部分蒸汽颗粒会突然改变生长方向,从而在缺陷部位形成分支微管(stage3),如图18所示。
表4 p-DP晶体不同晶面的计算表面能(Esuf)
Figure BDA0003651536720000071
微纳结构由气相自组装法制备获得,具体实验方法为:将15μL、5mM的p-DP乙酸乙酯溶液分散滴加在底部盖玻片上,或直接将p-DP固体粉末置于盖玻片上,底部盖玻片置于加热磁力搅拌器中央。底部盖玻片两端分别放置一片盖玻片作为支撑,再放置一片顶部盖玻片作为样品沉积的基底。其中,盖玻片高度为0.13-0.16mm。将加热磁力搅拌器的温度设置为160℃,加热25分钟后,顶部盖玻片上会出现较多六棱柱中空结构。随着加热时间的延长,顶部盖玻片上还会出现一维中空结构。采用的装置结构如图1所示,所得材料的结构如图6和图7所示。
利用荧光显微镜观察p-DP六棱柱中空微纳结构,如图6a和图6b所示,在明场下上述微纳结构具有明显的缺陷,六棱柱的每个裸露表面均有空洞。六棱柱中空微纳结构的边长在10-20μm,其中,孔的平均尺寸可以达到直径6μm。与p-DP菱形微纳结构相同,六棱柱中空微纳结构在330-380nm波段光源激发下的荧光发光也为蓝色发射,有晶体缺损的部分发光明显变弱。
为了进一步证明六棱柱中空微纳结构的形成,利用扫描电子显微镜和透射电子显微镜对其进行表征。由图6c和6d可知,无论是SEM照片还是TEM照片都p-DP六棱柱微纳结构具有表明明显的孔洞结构。这均证明了p-DP六棱柱中空结构的成功制备。
进一步,研究了p-DP一维管状结构,并进行了一系列形貌表征。在明场下,p-DP一维微纳结构的表面有明显缺陷,在紫外光激发时也能观察到该现象(图7a和图7b)。同样,我们还利用SEM和TEM进行进一步表征。SEM图片中一维微结构的空心末端清楚地证实了其管状结构(图7c)。TEM图像(图7d)则说明单个微管的内径约为1μm,壁厚约为1.5μm。
按照实施例1的操作方法,在相同的加热时间下(20分钟),相同的温度(160℃)以及相同的溶液体积(15μL),观察不同溶液浓度对形成中空微纳结构的影响,结果如图2所示。
如图2a所示,当溶液浓度C=1mM时,溶液中的p-DP分子太少,难以达到其成核阈值,因此,在加热20分钟后顶部盖玻片上仅存在大量的p-DP熔滴。
如图2b所示,当溶液浓度C=2mM时,p-DP熔滴明显减少且呈现出结晶的趋势,顶部盖玻片上开始出现p-DP晶体。
如图2c所示,当溶液浓度C=5mM时,p-DP在顶部盖玻片上生长出较多的六棱柱微纳晶体,从荧光显微镜照片初步推测其均为空心结构,且分散均匀。
如图2d所示,当溶液浓度C=10mM时,p-DP分子将生长成更大更厚的晶体,且为实心晶体。
因此,溶液浓度为5mM的p-DP分子更有利于中空微纳结构的形成。
实施例2
按照实施例1的操作方法,在相同的加热时间下(20分钟),相同浓度的溶液(5mM)以及相同的溶液体积(15μL),观察不同温度下对形成中空微纳结构的影响,结果图3所示。
图3a,当加热温度为120℃时,由于温度远远低于p-DP分子的熔点(262℃),p-DP很难升华熔化,因此顶部盖玻片上未有p-DP熔滴;
图3b,当加热温度为140℃时,p-DP开始熔化,但顶部盖玻片上仅有p-DP熔滴而没有晶体出现;
图3c,当温度为160℃时,顶部盖玻片上有六棱柱中空微纳结构的p-DP晶体沉积;
图3d,当温度太高达到180℃时,顶部盖玻片上开始出现管状结构的p-DP晶体。
实施例3
按照实施例1的操作方法,在相同的加热温度下(160℃),相同浓度的溶液(5mM)以及相同的溶液体积(15μL),观察不同时间下对形成中空微纳结构的影响,结果图4所示。
图4a为加热时间为5分钟,图4b为加热时间为10分钟,顶部盖玻片上沉积的p-DP晶体较少且多为实心结构而不是中空结构,大部分为p-DP熔滴;
图4c为加热时间为20分钟,图4d为加热时间为25分钟,顶部盖玻片上趋向于形成较多的p-DP晶体,且多数为中空微纳结构;
图4e为加热时间为30分钟,图4f为加热时间为35分钟,随着加热时间的增加(30和35分钟),p-DP晶体尺寸进一步增加,晶体表面出现明显的缺陷。
综上所述,加热温度为160℃、加热时间为20-25分钟对于形成中空微纳结构较为合适。
对比例1
利用溶剂挥发法通过调节溶液极性来制备菱形片状p-DP。向5mM p-DP的乙酸乙酯溶液中加入80%体积的无水乙醇,在室温下置于正己烷氛围中挥发结晶。当加入80%无水乙醇时,基底上会生长大量菱形片状结构,大小均一,分布均匀如图5所示。利用荧光显微镜拍摄菱形片状结构在330-380nm波段光源激发下的荧光发光,为蓝光发射。
性能测试
1、p-DP中空微纳结构材料的光物理性质
首先是在大块晶体下,p-DP在440nm和460nm处具有荧光发射,寿命分别为2.03ns和2.06ns;在~605nm处具有磷光发射,寿命为105μs(如图8b和图8c所示)。此外,p-DP的磷光光谱和PL光谱在约500nm处有部分重叠,这是由于三线态-三线态湮灭(TTA)。
同时,测试了三种不同微纳结构的稳态光致发光(PL)光谱,如图9a所示,三种微纳结构的荧光发射几乎重叠,447nm处的发射为主要的荧光发射,这与荧光显微镜所观察到的图像颜色一致。其中,菱形微纳结构(Rhombus),六棱柱中空微纳结构(Hexagon)和一维管状微纳结构(Microtubes)的荧光寿命分别为2.04,2.00和1.65ns。
2、Ostwald熟化制备中空微纳结构的普适性证明
制备中空微纳结构的原料可以为小分子磷光材料,小分子荧光材料或者小分子磷光材料与小分子荧光材料组成的复合体系。
本实施例中,所用的材料分别为:
小分子磷光材料选为10,10′-(1,4-亚苯基)双[10H-吩硒嗪](p-DPSeZ),其结构与p-DP类似,由于重原子Se的存在使其具有更高的重原子效应,进而展现更好的磷光性能。
荧光材料可选4,7-二(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(Dbt-BT)、9,10-双(苯乙炔基)-蒽(BPEA)或苝(Perylene)。
复合材料体系中,小分子磷光材料为1,3,5-三氟-2,4,6-三碘苯(Py-TIPB),小分子荧光材料为芘。
上述材料均可通过Ostwald熟化过程得到中空微纳结构,从它们的荧光显微镜照片以及SEM图片可以看出,晶体的中部均有明显的孔洞结构(图10),这证明了无论是在单组分还是多组分体系当中,Ostwald熟化都是制备中空微纳结构的有效方法。
为了研究上述材料的热稳定性,对材料进行了一系列热分析测试,结果如图11所示。从热重分析(TGA)曲线和差式扫描量热分析(DSC)曲线可以看出,无论材料熔点与分解温度、熔点与结晶温度相差多大,都可利用简单的气相法生长中空微纳结构。
结合表5所列各材料晶体生长参数,生长温度均低于其熔点(p-DP:Tm=262℃,Tsublimation=160℃;p-DPSeZ:Tm=235℃,Tsublimation=170℃;Dbt-BT:Tm=249℃,Tsublimation=160℃;BPEA:Tm=390℃,Tsublimation=180℃;苝:Tm=276℃,Tsublimation=180℃)。另外,晶体生长的速度极快短时间之内(<1h)就可以生长出几十甚至上百微米的高质量单晶。不同材料生长温度与时间的差异可归因于材料升华焓的不同。
表5中空微纳结构生长温度及生长时间
Figure BDA0003651536720000111
3、中空微纳结构对氧气的敏感性研究
磷光很容易被氧气猝灭。由于p-DPSeZ具有重原子效应,展现出了更好的磷光性能,选择以p-DPSeZ分子为研究对象,探究实心微纳结构和中空微纳结构对氧气的敏感性。
大块p-DPSeZ的光物理性质,如图12a所示,p-DPSeZ分子的PL光谱与磷光光谱具有较大重叠,表现出亮的绿色磷光发射,发射峰位于496nm。p-DPSeZ分子的磷光寿命为457μs,光致发光量子产率(PLQY)为31.0%,磷光效率为24.3%。
将制备好的p-DPSeZ中空微纳结构和实心结构(按照对比例1的制备方法,仅将p-DP换成p-DPSeZ)同时封存与比色皿中,比色皿中充满氮气,随后,通氧气5分钟,观察两种类型微纳晶体的发光强弱并检测其磷光光谱及寿命,以探究两者对氧气的敏感性程度,结果如图13和图14所示。
利用荧光显微镜拍摄p-DPSeZ实心微纳结构和p-DPSeZ中空微纳结构在330-380nm波段光源激发下的发光颜色,在氮气氛围中,两种结构均显示出绿色(图13a和图13c)。再通入氧气5分钟之后,由于三线态激子与氧分子之间的强相互作用,实心微纳结构和中空微纳结构的发光强度都降低。其中,p-DPSeZ中空微纳结构的发光强度下降的程度更明显(图13b和图13d),这是因为实心微纳结构中晶体的紧密堆积抑制氧气的扩散,而中空微结构具有更大接触表面和更多氧气扩散通道导致磷光被猝灭。
4、中空微纳结构对湿度的敏感性研究
利用荧光显微镜拍摄p-DPSeZ实心微纳结构和p-DPSeZ中空微纳结构在330-380nm波段光源激发下的发光颜色,在未被水汽熏蒸时,两种结构均显示出绿色(图19a和图19c)。再被水汽熏蒸10分钟之后,由于水中的氧分子会猝灭三线态激子,实心微纳结构和中空微纳结构的发光强度都降低。其中,p-DPSeZ中空微纳结构的发光强度下降的程度更明显(图19b和图19d),这是因为实心微纳结构中晶体的紧密堆积不利于水汽的扩散,而中空微结构具有更大接触表面和更多扩散通道导致磷光被猝灭。

Claims (10)

1.一种气相自组装可控制备中空微纳结构的有机发光材料,其特征在于,选取磷光材料和/或荧光材料作为原料,置于盖玻片上,同时采用支撑部件,保证距离盖玻片上方0.13-0.16 mm的高度处盖上盖玻片,两块盖玻片与支撑部件整体保证稳定,在对带有盖玻片的样品处进行加热,通过调控加热温度和加热时间,在固相奥斯瓦尔德熟化效应下,可控制备具有中空微纳结构的有机发光材料。
2.根据权利要求1所述的气相自组装可控制备中空微纳结构的有机发光材料,其特征在于:所述磷光材料至少含一种组分的小分子磷光材料,所述小分子磷光材料为10,10′-(1,4-亚苯基)双[10H-吩硒嗪]或10,10′-(1,4-亚苯基)双[10H-吩噻嗪]。
3.根据权利要求1所述的气相自组装可控制备中空微纳结构的有机发光材料,其特征在于:所述荧光材料至少含一种组分的小分子荧光材料,所述小分子荧光材料为苝、4,7-二(2-溴-5-噻吩基)-2,1,3-苯并噻二唑(Dbt-BT)或9,10-双(苯乙炔基)-蒽。
4.根据权利要求1所述的气相自组装可控制备中空微纳结构的有机发光材料,其特征在于:当原料为磷光材料和荧光材料复合时,所述磷光材料为1,3,5-三氟-2,4,6-三碘苯,荧光材料为芘。
5.根据权利要求1所述的气相自组装可控制备中空微纳结构的有机发光材料,其特征在于,当磷光材料为小分子磷光材料10,10′-(1,4-亚苯基)双[10H-吩噻嗪]时,取固体粉末或浓度为1-10 mM的乙酸乙酯溶液置于盖玻片上,同时采用支撑部件,保证距离盖玻片上方0.13-0.16 mm的高度处盖上盖玻片,两块盖玻片与支撑部件整体保证稳定。
6.根据权利要求5所述的气相自组装可控制备中空微纳结构的有机发光材料,其特征在于,当加热温度为160℃时,所得有机发光材料的中空微纳结构的形状为六棱柱。
7.根据权利要求5所述的气相自组装可控制备中空微纳结构的有机发光材料,其特征在于,当加热温度为180℃时,所得有机发光材料的中空微纳结构的形状为管状结构。
8.根据权利要求7所述的气相自组装可控制备中空微纳结构的有机发光材料,其特征在于,所述管状结构为一维管状结构或支状结构。
9.基于权利要求1所述的中空微纳结构的有机发光材料在制备检测传感器上的应用。
10.根据权利要求9所述的应用,其特征在于,所述检测包括氧气检测或湿度检测。
CN202210553710.1A 2022-05-19 2022-05-19 一种气相自组装可控制备中空微纳结构的有机发光材料及其应用 Active CN114921242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210553710.1A CN114921242B (zh) 2022-05-19 2022-05-19 一种气相自组装可控制备中空微纳结构的有机发光材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210553710.1A CN114921242B (zh) 2022-05-19 2022-05-19 一种气相自组装可控制备中空微纳结构的有机发光材料及其应用

Publications (2)

Publication Number Publication Date
CN114921242A true CN114921242A (zh) 2022-08-19
CN114921242B CN114921242B (zh) 2023-09-26

Family

ID=82809882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210553710.1A Active CN114921242B (zh) 2022-05-19 2022-05-19 一种气相自组装可控制备中空微纳结构的有机发光材料及其应用

Country Status (1)

Country Link
CN (1) CN114921242B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056074A (zh) * 2018-07-13 2018-12-21 苏州大学 一种二维共晶有机单晶微米晶体、制备方法及其应用
CN111039859A (zh) * 2018-10-12 2020-04-21 中国科学院化学研究所 一种有机共晶增益材料及其制备方法和在激光性能中的应用
CN111334292A (zh) * 2020-04-16 2020-06-26 苏州大学 三嵌段多色发光有机微纳晶体及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056074A (zh) * 2018-07-13 2018-12-21 苏州大学 一种二维共晶有机单晶微米晶体、制备方法及其应用
CN111039859A (zh) * 2018-10-12 2020-04-21 中国科学院化学研究所 一种有机共晶增益材料及其制备方法和在激光性能中的应用
CN111334292A (zh) * 2020-04-16 2020-06-26 苏州大学 三嵌段多色发光有机微纳晶体及其制备和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BASUDEV ROY ET AL.: "Self-Assembly of Mesoscopic Materials To Form Controlled and Continuous Patterns by Thermo-Optically Manipulated Laser Induced Microbubbles" *
JIAMIN WANG ET AL.: "Organic Hollow Microstructures with Room Temperature Phosphorescence" *
WEIKANG WANG ET AL.: "All-in-One Hollow Flower-Like Covalent Organic Frameworks for Flexible Transparent Devices" *

Also Published As

Publication number Publication date
CN114921242B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
Tachibana et al. Photo-assisted growth and polymerization of C60 ‘nano’whiskers
Yu et al. Sol–gel synthesis and photoluminescent properties of LaPO 4: A (A= Eu 3+, Ce 3+, Tb 3+) nanocrystalline thin films
Pang et al. Patterning and luminescent properties of nanocrystalline Y2O3: Eu3+ phosphor films by sol–gel soft lithography
Gu et al. Surface tension driven aggregation of organic nanowires via lab in a droplet
CN110387223B (zh) 一种羟卤铅矿/铅卤钙钛矿复合微纳米材料及其制备方法
Zhai et al. Synthesis of ordered ZnS nanotubes by MOCVD-template method
CN110611014A (zh) 一种Cs3Cu2I5紫外探测器及其薄膜制备方法
CN108675341A (zh) 一种一维发光超细CsPbBr3钙钛矿纳米线的制备方法
Heng et al. Fabrication of small organic luminogens honeycomb-structured films with aggregation-induced emission features
CN110129039A (zh) 一种钙钛矿结构RNH3PbBr3纳米晶荧光材料的制备方法
Li et al. A gelable pure organic luminogen with fluorescence-phosphorescence dual emission
US9281481B2 (en) Polymeric fluorescent material
Hamroun et al. Structural and optical properties of LSO scintillator-polymer composite films
Zhang et al. Preparation of silicate-based red phosphors with a patterned nanostructure via metabolic insertion of europium in marine diatoms
CN114921242B (zh) 一种气相自组装可控制备中空微纳结构的有机发光材料及其应用
Li et al. A pre-organized monomer-reservoir strategy to prepare multidimensional phosphorescent organoplatinum nanocrystals and suprastructures
CN107722962A (zh) 发光材料及其制备方法、纳米片膜材、背光源和显示装置
Yago et al. Growth of β-perylene crystal
CN113024443A (zh) 9-酰基-3-碘咔唑类化合物及其作为磷光材料的应用
CN106978164A (zh) 二芳基乙烯衍生物与钙钛矿材料的复合材料及其制备方法与应用
WO2012177021A2 (en) Polymeric fluorescent material
CN117801809A (zh) 一种具有阶梯缩进型凹面微纳结构的有机发光材料及其应用
Ding et al. Dual-Mode Luminescence from Polyacrylonitrile-Stabilized CsPbX3 (X= Br and I) Nanocrystals Triggered by NaYF4: Yb/Ln (Ln= Er and Tm) Upconversion Nanoparticles: Implications for Anticounterfeiting and Optical Thermometry
Wang et al. Facile patterning of luminescent GdVO 4: Ln (Ln= Eu 3+, Dy 3+, Sm 3+) thin films by microcontact printing process
Lovera et al. Colour-coded photoluminescence and chemiluminescence of fluorene polymer-based organic nanowires in random and organised arrangements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant