CN114916254B - 一种定时提前量确定方法及设备 - Google Patents

一种定时提前量确定方法及设备 Download PDF

Info

Publication number
CN114916254B
CN114916254B CN202080003904.3A CN202080003904A CN114916254B CN 114916254 B CN114916254 B CN 114916254B CN 202080003904 A CN202080003904 A CN 202080003904A CN 114916254 B CN114916254 B CN 114916254B
Authority
CN
China
Prior art keywords
transmission
timing advance
value
initial
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080003904.3A
Other languages
English (en)
Other versions
CN114916254A (zh
Inventor
朱亚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xiaomi Mobile Software Co Ltd
Original Assignee
Beijing Xiaomi Mobile Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Xiaomi Mobile Software Co Ltd filed Critical Beijing Xiaomi Mobile Software Co Ltd
Publication of CN114916254A publication Critical patent/CN114916254A/zh
Application granted granted Critical
Publication of CN114916254B publication Critical patent/CN114916254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本公开提出了一种定时提前量确定方法,该方案为根据定时提前量信息确定持续传输过程中每段传输的定时提前量。从而避免了在持续传输过程中使用现有定时提前量确定方法无法适应非地面网络传播时延快速变化而造成上行用户之间的干扰的问题。

Description

一种定时提前量确定方法及设备
技术领域
本公开涉及移动通信技术领域,特别是指一种定时提前量确定方法及设备。
背景技术
现今,物联网行业需求越来越大,其中基于蜂窝的窄带物联网(NB-IoT,NarrowBand Internet of Things)和增强机器类通信(eMTC,enhanced Machine-TypeCommunication)为物联网领域最具潜力的两项技术,而它们通常需要通过卫星连接才能提供更好的覆盖。非地面网络的传播时延比较大而卫星的快速运动更导致传播时延的快速变化。为了增强覆盖能力,NB-IoT/eMTC引入了重复传输机制。然而,在持续传输过程中使用现有的定时提前量确定方法并不能适应传播时延快速变换的场景,从而会造成上行用户之间的干扰。
发明内容
本公开提供了一种定时提前量确定方法和设备,能够避免在持续传输过程中所使用的现有定时提前量确定方法无法适应非地面网络传播时延快速变化而造成上行用户之间的干扰的问题。
本公开第一方面实施例提出了一种定时提前量确定方法,所述方法应用于终端,所述方法包括:接收与持续传输过程对应的定时提前量信息,其中所述定时提前量信息指示多个定时提前量的信息;以及根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量。
可选地,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值。所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:根据所述多个TA值的数量和所述持续传输过程的总时间,确定每个TA值对应的时间间隔;以及根据所述多个TA值和每个TA值对应的时间间隔,确定每段传输的定时提前量。
可选地,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔。所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:根据所述多个TA值和每个TA值对应的时间间隔,确定每段传输的定时提前量。
可选地,所述定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量;所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:根据所述初始TA值、所述调整时间间隔、第一调整增量,计算与所述持续传输过程对应的多个TA值;以及根据所述多个TA值和所述调整时间间隔,确定每段传输的定时提前量。
可选地,所述定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对所述初始TA值进行调整的增量,以及所述第二调整增量指示对所述初始调整时间间隔进行调整的增量;所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:根据所述初始调整时间间隔、所述第二调整增量以及所述持续传输过程的总时间,确定多个时间间隔;根据所述初始TA值、所述多个时间间隔的数量以及所述第一调整增量,计算与所述持续传输过程对应的多个TA值;以及根据所述多个TA值和所述多个时间间隔,确定每段传输的定时提前量。
可选地,所述方法还包括:对于每段传输,当根据本段传输的定时提前量、上一段传输的定时提前量以及传输时间确定本段传输的起始时间早于上一段传输的结束时间时,放弃本段传输的初始上行传输或者放弃上一段未结束的传输。具体放弃哪一段需要事先规定或者由基站指示。
可选地,所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:根据所述定时提前量信息和预配置保护间隔,确定每段传输的定时提前量,使得每段传输的起始时间不早于上一段传输的结束时间。
可选地,所述方法还包括:从基站接收所述预配置保护间隔的信息,包括所述预配置保护间隔的配置周期、起始偏移以及持续时间。
本公开第二方面实施例提出了一种定时提前量确定方法,所述方法应用于基站,所述方法包括:向终端发送与持续传输过程对应的定时提前量信息,以使得所述终端根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量,其中所述定时提前量信息指示多个定时提前量的信息。
可选地,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值。
可选地,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔。
可选地,所述定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对所述初始TA值进行调整的增量。
可选地,所述定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对所述初始TA值进行调整的增量,以及所述第二调整增量指示对所述初始调整时间间隔进行调整的增量。
可选地,所述方法还包括:向终端发送预配置保护间隔的信息,包括所述预配置保护间隔的配置周期、起始偏移以及持续时间,使得所述终端根据所述定时提前量信息和预配置保护间隔确定每段传输的定时提前量。
可选地,所述方法还包括:向终端发送冲突解决机制信息,所述冲突解决机制信息指示终端在发生本段传输的起始时间早于上一段传输的结束时间的冲突时间段内的传输。
本公开第三方面实施例提出了一种定时提前量确定设备,所述设备应用于终端,所述设备包括:接收模块,用于接收与持续传输过程对应的定时提前量信息,其中所述定时提前量信息指示多个定时提前量的信息;以及确定模块,用于根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量。
本公开第四方面实施例提出了一种定时提前量确定设备,所述方法应用于基站,所述设备包括:发送模块,用于向终端发送与持续传输过程对应的定时提前量信息,以使得所述终端根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量,其中所述定时提前量信息指示多个定时提前量的信息。
可选地,所述设备通过SIB信令、RRC信令、MAC CE信令或者DCI信令发送所述定时提前量信息。
本公开第五方面实施例提出了一种通信设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现上述第一方面实施例、或第二方面实施例所述的定时提前量确定方法。
本公开第六方面实施例提出了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现上述第一方面实施例、或第二方面实施例所述的定时提前量确定方法。
本公开实施例提供的一种的定时提前量确定方法及设备,通过根据定时提前量信息确定每段传输的定时提前量,能够适于传播时延的快速变化而对每段传输的定时提前量进行修正,从而能够避免在持续传输过程中由于传播时延的快速变化而造成的上行多用户之间的干扰。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,
其中:
图1为根据本公开实施例的一种定时提前量确定方法的流程图;
图2为根据本公开实施例的一种定时提前量确定方法的流程图;
图3为根据本公开实施例的一种定时提前量确定方法的流程图;
图4为根据本公开实施例的一种定时提前量确定方法的流程图;
图5为根据本公开实施例的一种定时提前量确定方法的流程图;
图6为根据本公开实施例的一种定时提前量确定方法的流程图;
图7为根据本公开实施例的另一种定时提前量确定方法的流程示意图;
图8为根据本公开实施例的另一种定时提前量确定方法的流程示意图;
图9为根据本公开实施例的另一种定时提前量确定方法的流程示意图;
图10为本公开实施例提供的一种定时提前量确定设备的结构示意图;
图11为本公开实施例提供的一种定时提前量确定设备的结构示意图;
图12为本公开实施例提供的一种定时提前量确定设备的结构示意图;
图13为本公开实施例提供的一种定时提前量确定设备的结构示意图;
图14为本公开实施例提供的一种定时提前量确定设备的结构示意图;
图15为本公开实施例提供的一种定时提前量确定设备的结构示意图;
图16为本公开实施例提供的另一种定时提前量确定设备的结构示意图;
图17为本公开实施例提供的一种通信设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本文所描述的技术不限于第五代移动通信(5th-generation,5G)系统以及后续演进通信系统,以及不限于LTE/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(TimeDivision Multiple Access,TDMA)、频分多址(Frequency Division MultipleAccess,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。
本发明实施例提供的终端可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(PersonalDigital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等。
非地面网络(Non-Terrestrial Network,NTN)指的是将卫星通信与5G相融合形成海陆空一体化通信网,以便为5G业务提供所需的关键性能,例如卫星可以为地面5G网络无法覆盖的偏远地区、飞机或轮船等提供经济可靠的网络服务,提高5G网络覆盖率;卫星可以为飞机、轮船、高铁等移动终端提供连续不间断的网络连接,增强5G网络的服务能力;卫星的广播/多播能力可以为网络边缘终端提供高效的数据分发服务能力。
现今,物联网行业需求越来越大,其中基于蜂窝的窄带物联网(NB-IoT,NarrowBand Internet of Things)和增强机器类通信(eMTC,enhanced Machine-TypeCommunication)为物联网领域最具潜力的两项技术,而它们通常需要通过卫星连接才能提供覆盖。非地面网络的传播时延比较大而卫星的快速运动更导致传播时延的快速变化。为了增强覆盖能力,NB-IoT/eMTC引入了重复传输机制。然而,在NB-IoT/eMTC的重复传输机制中,只在整个持续传输过程的初始时间进去定时提前量的确定。这种NB-IoT/eMTC上行同步机制,不能适应持续传输过程中传播时延的快速变化,容易造成上行多用户之间的干扰。
鉴于此,本公开提供了一种定时提前量确定方法和设备,根据指示的多个定时提前量或多个定时提前量的计算参数确定持续传输过程中的每段传输的定时提前量。
图1示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。在本实施例中,方法由终端执行,如图1所示,该定时提前量确定方法包括以下步骤:
S101,接收与持续传输过程对应的定时提前量TA(time advance)信息,其中所述定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数。
该定时提前量信息可以是非地面网络的网络设备根据卫星的变化,例如其运动轨迹、移动速度、方向等信息预先确定的信息。例如,根据卫星的运动轨迹可以知晓卫星在某个持续传输过程中移动情况,由此可以确定该移动情况对于持续传输过程中的传播时延的影响,从而可以确定定时提前量信息,该定时提前量信息可以指示多个定时提前量或多个定时提前量的计算参数,因此能够反映终端在每段传输时使用的定时提前量随着持续传输过程中的不同传播时延的变化。
S102,根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量。
在本公开的实施例中,通过获取与持续传输过程对应的定时提前量信息、并根据该定时提前量信息确定持续传输过程中每段传输的定时提前量,从而能够适于传播时延的快速变化而对每段传输的定时提前量进行修正,从而能够避免在持续传输过程中由于传播时延的快速变化而造成的上行多用户之间的干扰。
图2示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。在本实施例中,方法由终端执行,如图2所示,该定时提前量确定方法包括以下步骤:
S201,接收与持续传输过程对应的定时提前量信息,定时提前量信息包括与持续传输过程对应的多个定时提前TA值。
该定时提前量信息可以是非地面网络的网络设备根据卫星的变化,例如其运动轨迹、移动速度、方向等信息预先确定的信息。例如,根据卫星的运行轨迹,可以确定卫星在某个持续传输过程中以一定速度远离地球移动。在这种情况下,可以确定在该持续传输过程中,传播时延以一定变化率变大,相应地,则终端在持续传输过程中使用的定时提前量也应以一定变化率变大。在本实施例中,可以根据传播时延的变化情况,确定多个TA值,每个TA值指示一个定时提前量。在上述情况下,终端可以接收一组TA值,该组TA值可以是一组递增的TA值,例如为3、4、5、6、7…。然而,根据不同情况,该组TA值也可以是递减的。此外,该组TA值可以为一组等差值或非等差值,本实施例对此并不限制。
S202,根据多个TA值的数量和持续传输过程的总时间,确定每个TA值对应的时间间隔。
在接收到多个TA值之后,终端可以根据TA值的数量以及持续传输过程的总时间,确定每个TA值对应的时间间隔。例如,终端接收到的该组TA值包括6个值,而总时间假设为120μs(在此仅为清楚说明而假设该值,在实际情况中,该时间值可能更小或者更大),则表明每个TA值对应的时间间隔为20μs。
S203,根据多个TA值和每个TA值对应的时间间隔,确定每段传输的定时提前量。
在确定了每个TA值的对应时间间隔之后,可以确定每段传输的定时提前量。
如上所述示例,假定该组TA值为3、4、5、6、7、8,而每个TA值对应的时间间隔为20μs,则可以确定在0-20μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-20μs内的每段传输的定时提前量;20-40μs内进行的每段传输的TA值为4,根据该TA值4可以确定20-40μs内的每段传输的定时提前量;以此类推,可以分别确定40-60μs、60-80μs、80-100μs以及100μs-120μs内的每段传输所使用的的TA值分别为5、6、7、8,由此,可以确定每个时间间隔内的每段传输的定时时间量。
在本公开的实施例中,通过获取与持续传输过程对应的多个TA值、并根据该多个TA值直接确定每段传输对应的TA值,从而能够确定每段传输的定时提前量,因此持续传输过程中的每段传输的定时提前量并非固定不变的,从而能够避免在持续传输过程中由于固定定时提前量无法适应传播时延的快速变化而造成的上行多用户之间的干扰。
在上述过程的步骤S202中,根据多个TA值的数量和持续传输过程的总时间确定每个TA值对应的时间间隔,其中默认为每个TA值对应的时间间隔是相等的,即在整个持续传输过程中,以固定的时间间隔改变TA值。在一些实施例中,定时提前量信息还包括每个TA值对应的时间间隔。当定时提前量信息包括每个TA值对应的时间间隔时,上述过程中的步骤S202可以省略。定时提前量信息中所包括的每个TA值对应的时间间隔可以是相同的也可以是不同的,当为相同的时,表明以固定的时间间隔改变TA值,如上所示示例;当为不同的时,表明可以以不同的时间间隔改变TA值。例如,如上示例中的6个TA值对应的时间间隔可以分别为0-10μs、10-30μs、30-60μs、60-90μs、90-110μs、110μs-120μs。在这种情况下,可以确定在0-10μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-10μs内的每段传输的定时提前量;10-30μs内进行的每段传输的TA值为4,根据该TA值4可以确定10-30μs内的每段传输的定时提前量;30-60μs内进行的每段传输的TA值为5,根据该TA值5可以确定30-60μs内的每段传输的定时提前量;以此类推,可以分别确定60-90μs、90-110μs以及110μs-120μs内的每段传输所使用的的TA值分别为6、7、8。在该示例中,以不同的时间间隔改变TA值,这可以适应于例如卫星以变化的速度移动,例如卫星在0μs-10μs移动较快,而在30μs-60μs移动较慢,因此TA值在0-10μs的10μs内就发生变化增幅为1,而在30-60μs的30μs的时间内也发生变化增幅为1。
图3示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。在本实施例中,方法由终端执行,如图3所示,该定时提前量确定方法包括以下步骤:
S301,接收与持续传输过程对应的定时提前量信息,定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量。
该定时提前量信息可以是非地面网络的网络设备根据卫星的变化,例如其运动轨迹、移动速度、方向等信息预先确定的信息。例如,根据卫星的运行轨迹,可以确定卫星在某个持续传输过程中以一定速度远离地球移动。在这种情况下,可以确定在该持续传输过程中,传播时延以一定变化率变大,相应地,则终端在持续传输过程中使用的定时提前量也应以一定变化率变大。在本实施例中,可以根据传播时延的变化情况,确定初始定时提前TA值、调整时间间隔以及第一调整增量,该第一调整增量可以为正值也可以为负值,当为正值时,表明TA值为递增的,当为负值时,表明TA值为递减的。例如,终端可以接收初始TA值为3,调整时间间隔为20μs,第一调整增量为1。
S302,根据初始TA值、调整时间间隔、第一调整增量以及持续传输过程的总时间,计算与持续传输过程对应的多个TA值。
在接收到初始TA值、调整时间间隔、第一调整增量之后,终端可以根据调整时间间隔以及持续传输过程的总时间,确定与持续传输过程对应的TA值的数量,然后终端可以根据初始TA值以及第一调整增量,确定与持续传输过程对应的多个TA值。
如上示例,假设总时间为120μs,则根据调整时间间隔20μs,可以确定6个TA值,而根据初始TA值3以及第一调整增量1,可以确定该6个TA值分别为3、4、5、6、7、8。
S303,根据多个TA值和调整时间间隔,确定每段传输的定时提前量。
在确定了每个TA值之后,可以确定每段传输的定时提前量。
如上所述示例,确定6个TA值:3、4、5、6、7、8,而调整时间间隔为20μs,则可以确定在0-20μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-20μs内的每段传输的定时提前量;20-40μs内进行的每段传输的TA值为4,根据该TA值4可以确定20-40μs内的每段传输的定时提前量;以此类推,可以分别确定40-60μs、60-80μs、80-100μs以及100μs-120μs内的每段传输所使用的的TA值分别为5、6、7、8,由此,可以确定每个时间间隔内的每段传输的定时时间量。
在本公开的实施例中,通过获取与持续传输过程对应的初始TA值、调整时间间隔、第一调整增量并根据该初始TA值、调整时间间隔、第一调整增量确定每段传输对应的TA值,从而能够确定每段传输的定时提前量,相比于传输多个TA值,在本实施例中可以减少传输数据量。
图4示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。在本实施例中,方法由终端执行,如图4所示,该定时提前量确定方法包括以下步骤:
S401,接收与持续传输过程对应的定时提前量信息,定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量,所述第二调整增量指示对初始调整时间间隔进行调整的增量。
该定时提前量信息可以是非地面网络的网络设备根据卫星的变化,例如其运动轨迹、移动速度、方向等信息预先确定的信息。例如,根据卫星的运行轨迹,可以确定卫星在某个持续传输过程中以变化的速度远离地球移动。在这种情况下,可以确定在该持续传输过程中,传播时延以可变的变化率变大,相应地,则终端在持续传输过程中使用的定时提前量也应以可变的变化率变大。在本实施例中,可以根据传播时延的变化情况,确定初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,该第一调整增量可以为正值也可以为负值,当为正值时,表明TA值为递增的,当为负值时,表明TA值为递减的;该第二调整增量可以为正值也可以为负值,当为正值时,表示调整时间间隔递增,当为负值时,表明调整时间间隔递减。例如,终端可以接收初始TA值为3,初始调整时间间隔为10μs,第一调整增量为1以及第二调整增量为5μs。
S402,根据初始调整时间间隔、第二调整增量以及持续传输过程的总时间,计算在持续传输过程中的多个时间间隔。
在接收到初始调整时间间隔、第二调整增量之后,终端可以根据初始调整时间间隔、第二调整增量以及持续传输过程的总时间,确定与持续传输过程对应的多个时间间隔。
如上示例,假设总时间为120μs,则根据初始调整时间间隔10μs和第二调整增量5μs,可以确定6个时间间隔分别为0-10μs、10μs-25μs、25μs-45μs、45μs-70μs、70μs-100μs以及100μs-120μs,其中调整时间间隔分别为10μs、15μs、20μs、25μs、30μs,即调整时间间隔以第二调整增量5μs递增。由于100μs+35μs(30μs之后的下一调整时间间隔)超出总时间,因此最后时间间隔被设置为100μs-120μs。
S403,根据初始TA值、多个时间间隔的数量、以及第一调整增量,计算与持续传输过程对应的多个TA值。
在确定多个时间间隔之后,终端可以根据初始TA值、多个时间间隔的数量、以及第一调整增量,确定算与持续传输过程对应的多个TA值。
如上示例,由于确定了6个时间间隔,由此需要确定6个TA值,根据初始TA值3以及第一调整增量1,可以确定该6个TA值分别为3、4、5、6、7、8。
S404,根据多个TA值和多个时间间隔,确定每段传输的定时提前量。
在确定了每个TA值之后,可以确定每段传输的定时提前量。
如上所述示例,确定6个时间间隔分别为0-10μs、10μs-25μs、25μs-45μs、45μs-70μs、70μs-100μs以及100μs-120μs,而6个TA值分别为3、4、5、6、7、8,则可以确定在0-10μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-10μs内的每段传输的定时提前量;10-25μs内进行的每段传输的TA值为4,根据该TA值4可以确定10-25μs内的每段传输的定时提前量;以此类推,可以分别确定25-45μs、45-70μs、70-100μs以及100μs-120μs内的每段传输所使用的的TA值分别为5、6、7、8,由此,可以确定每个时间间隔内的每段传输的定时时间量。
在本公开的实施例中,通过获取与持续传输过程对应的初始TA值、初始调整时间间隔、第一调整增量以及第二调整增量并根据该初始TA值、初始调整时间间隔、第一调整增量以及第二调整增量确定每段传输对应的TA值,从而能够适应于传播时延以可变变换率发生变化的情况。
图5示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。本实施例基于以上参考图1-图4所述的任意一个实施例,在本实施例中,方法由终端执行,如图5所示,该定时提前量确定方法包括以下步骤:
S501,接收与持续传输过程对应的定时提前量信息,其中所述定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数。
S502,根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量。
S503,对于每段传输,当根据本段传输的定时提前量、上一段传输的定时提前量以及传输时间确定本段传输的起始时间早于上一段传输的结束时间时,放弃本段传输的初始上行信号(即应在重叠时间段传输的初始上行信号)的传输或者放弃上一段末尾上行信号(即尚未完成传输的上行信号)的传输。
由于持续传输过程中定时提前量出现了变化,这有可能导致信号冲突的情况,例如,假设需要进行6段传输,每段传输所需的传输时间为4μs,根据定时提前量信息确定每段传输的定时提前量为1μs、2μs、4μs、5μs、4μs、7μs,针对每段传输的同步时间点(即基站期望接收到终端发送的上行信号的时间点)分别为5μs、10μs、15μs、20μs、25μs、30μs,则每段传输的起始时间点分别为4μs、8μs、11μs、15μs、21μs、23μs,而每段传输的结束时间分别为8μs、12μs、15μs、19μs、25μs、27μs。其中,第三段传输的起始时间11μs早于第二段传输的结束时间12μs,以及第六段传输的起始时间23μs早于第五段传输的结束时间25μs。也就是说,当第二段传输还没结束时,第三段传输已经开始,以及当第五段传输还没有结束时,第六段传输已经开始。因此,第二段传输和第三段传输出现了信号冲突以及第五段传输和第六段传输发生了信号冲突。为了解决这种冲突,终端可以将引发冲突的后一段传输的初始信号丢弃,即放弃传输该部分初始信号。如上示例,在第三段传输中,放弃前一毫秒(11μs-12μs)的初始信号的传输,在第六段传输中,放弃前两毫秒(23μs-25μs)的初始信号的传输。或者,终端可以将引发冲突的前一段传输的末尾信号丢弃,即放弃传输该部分末尾信号。如上示例,在第二段传输中,放弃后一毫秒(11μs-12μs)的末尾信号的传输,在第五段传输中,放弃后两毫秒(23μs-25μs)的末尾信号的传输。具体实现方式可以预先设置或者由基站指示。例如,基站可以额外发送关于冲突解决机制的信息,即在该信息中指示放弃发生冲突的前一段传输的末尾信号的传输还是放弃发生冲突的后一段传输的初始信号的传输。
在本实施例中,当发生信号冲突时,通过放弃发送时间重叠的部分上行信号的传输来解决该冲突。
图6示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。本实施例基于以上参考图1-图4所述的任意一个实施例,在本实施例中,方法由终端执行,如图6所示,该定时提前量确定方法包括以下步骤:
S601,接收与持续传输过程对应的定时提前量信息,其中所述定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数。
S602,根据定时提前量信息和预配置保护间隔,确定每段传输的定时提前量,使得每段传输的起始时间不早于上一段传输的结束时间。
在一些实施例中,为了避免如上所述的信号冲突,可以通过设置保护间隔的方式实现。例如,可以在每段传输中设置保护间隔为2μs来避免信号冲突。在如上所示示例中,在保护间隔为2μs的情况下,每段传输的同步时间点(即基站期望接收到终端发送的上行信号的时间点)分别为5μs、12μs、19μs、26μs、33μs、40μs,则每段传输的起始时间点分别为4μs、10μs、15μs、21μs、29μs、33μs,而每段传输的结束时间分别为8μs、14μs、19μs、25μs、33μs、37μs。由于保护间隔的存在,解决了如上所述的冲突问题。
在本实施例中,保护间隔预配置在终端,但在其他实施例中,该保护间隔的信息也可以接收自基站,包括预配置保护间隔的配置周期、起始偏移以及持续时间。
在本实施例中,通过设置保护间隔,避免了信号冲突的发生。
图7示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。在本实施例中,方法由基站执行,如图7所示,该定时提前量确定方法包括以下步骤:
S701,向终端发送与持续传输过程对应的定时提前量信息,以使得终端根据所述定时提前量信息确定持续传输过程中的每段传输的定时提前量,其中所述定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数。
该定时提前量信息可以是非地面网络的网络设备根据卫星的变化,例如其运动轨迹、移动速度、方向等信息预先确定的信息。例如,根据卫星的运动轨迹可以知晓卫星在某个持续传输过程中移动情况,由此可以确定该移动情况对于持续传输过程中的传播时延的影响,从而可以确定定时提前量信息,该定时提前量信息可以指示多个定时提前量或多个定时提前量的计算参数,因此能够反映终端在每段传输时使用的定时提前量随着持续传输过程中的不同传播时延的变化。
在本公开的实施例中,通过向终端发送定时提前量信息使得终端可以根据该定时提前量信息确定持续传输过程中每段传输的定时提前量,从而能够适于传播时延的快速变化而对每段传输的定时提前量进行修正,从而能够避免在持续传输过程中由于传播时延的快速变化而造成的上行多用户之间的干扰。
在一些实施例中,定时提前量信息包括与持续传输过程对应的多个定时提前TA值。基站向终端发送该多个定时提前TA值,而终端在接收到该多个定时提前TA值后,终端可以根据该多个TA值以及持续传输过程的总时间确定每段传输的定时提前量。该多个TA值可以是一组递增的TA值,例如为3、4、5、6、7、8,而总时间假设为120μs,则终端可以确定在0-20μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-20μs内的每段传输的定时提前量;20-40μs内进行的每段传输的TA值为4,根据该TA值4可以确定20-40μs内的每段传输的定时提前量;以此类推,可以分别确定40-60μs、60-80μs、80-100μs以及100μs-120μs内的每段传输所使用的的TA值分别为5、6、7、8,由此,可以确定每个时间间隔内的每段传输的定时时间量。然而,根据不同情况,该组TA值也可以是递减的。此外,该组TA值可以为一组等差值或非等差值,本实施例对此并不限制。
在一些实施例中,定时提前量信息包括与持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔。基站向终端发送该多个定时提前TA值以及每个TA值对应的时间间隔,而终端在接收到该多个定时提前TA值以及每个TA值对应的时间间隔后,终端可以根据该多个TA值及其对应的时间间隔确定每段传输的定时提前量。例如,如上示例中的6个TA值对应的时间间隔可以分别为0-10μs、10-30μs、30-60μs、60-90μs、90-110μs、110μs-120μs。在这种情况下,终端可以确定在0-10μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-10μs内的每段传输的定时提前量;10-30μs内进行的每段传输的TA值为4,根据该TA值4可以确定10-30μs内的每段传输的定时提前量;30-60μs内进行的每段传输的TA值为5,根据该TA值5可以确定30-60μs内的每段传输的定时提前量;以此类推,可以分别确定60-90μs、90-110μs以及110μs-120μs内的每段传输所使用的的TA值分别为6、7、8。
在一些实施例中,定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量。基站向终端发送该初始TA值、调整时间间隔以及第一调整增量,而终端在接收到该初始TA值、调整时间间隔以及第一调整增量后,终端可以根据初始TA值、调整时间间隔、第一调整增量以及持续传输过程的总时间,确定每段传输的定时提前量。例如,初始TA值为3,调整时间间隔为20μs,第一调整增量为1,而总时间假设为120μs,则终端可以确定在0-20μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-20μs内的每段传输的定时提前量;20-40μs内进行的每段传输的TA值为4,根据该TA值4可以确定20-40μs内的每段传输的定时提前量;以此类推,可以分别确定40-60μs、60-80μs、80-100μs以及100μs-120μs内的每段传输所使用的的TA值分别为5、6、7、8,由此,可以确定每个时间间隔内的每段传输的定时时间量。
在一些实施例中,定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量,所述第二调整增量指示对初始调整时间间隔进行调整的增量。基站向终端发送该初始TA值、初始调整时间间隔、第一调整增量以及第二调整增量,而终端在接收到该初始TA值、初始调整时间间隔、第一调整增量以及第二调整增量后,终端可以根据初始TA值、初始调整时间间隔、第一调整增量、第二调整增量以及持续传输过程的总时间,确定每段传输的定时提前量。例如,初始TA值为3,初始调整时间间隔为10μs,第一调整增量为1以及第二调整增量为5μs,而总时间假设为120μs,则终端可以确定在0-10μs内进行的每段传输的TA值为3,根据该TA值3可以确定0-10μs内的每段传输的定时提前量;10-25μs内进行的每段传输的TA值为4,根据该TA值4可以确定10-25μs内的每段传输的定时提前量;以此类推,可以分别确定25-45μs、45-70μs、70-100μs以及100μs-120μs内的每段传输所使用的的TA值分别为5、6、7、8,由此,可以确定每个时间间隔内的每段传输的定时时间量。
图8示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。在本实施例中,方法由基站执行,如图8所示,该定时提前量确定方法包括以下步骤:
S801,向终端发送与持续传输过程对应的定时提前量信息以及预配置保护间隔的信息,以使得终端根据所述定时提前量信息以及预配置保护间隔的信息确定持续传输过程中的每段传输的定时提前量。定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数,预配置保护间隔的信息包括预配置保护间隔的配置周期、起始偏移以及持续时间。
在本实施例中,通过向终端发送定时提前量信息和预配置保护间隔的信息使得终端可以根据该定时提前量信息和预配置保护间隔的信息确定持续传输过程中每段传输的定时提前量,从而避免了信号冲突的发生。
图9示出了根据本公开实施例的一种定时提前量确定方法的流程示意图。在本实施例中,方法由基站执行,如图9所示,该定时提前量确定方法包括以下步骤:
S901,向终端发送与持续传输过程对应的定时提前量信息,以使得终端根据所述定时提前量信息确定持续传输过程中的每段传输的定时提前量,其中所述定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数。
该定时提前量信息可以是非地面网络的网络设备根据卫星的变化,例如其运动轨迹、移动速度、方向等信息预先确定的信息。例如,根据卫星的运动轨迹可以知晓卫星在某个持续传输过程中移动情况,由此可以确定该移动情况对于持续传输过程中的传播时延的影响,从而可以确定定时提前量信息,该定时提前量信息可以指示多个定时提前量或多个定时提前量的计算参数,因此能够反映终端在每段传输时使用的定时提前量随着持续传输过程中的不同传播时延的变化。
在本公开的实施例中,通过向终端发送定时提前量信息使得终端可以根据该定时提前量信息确定持续传输过程中每段传输的定时提前量,从而能够适于传播时延的快速变化而对每段传输的定时提前量进行修正,从而能够避免在持续传输过程中由于传播时延的快速变化而造成的上行多用户之间的干扰。
在一些实施例中,定时提前量信息包括与持续传输过程对应的多个定时提前TA值。
在一些实施例中,定时提前量信息包括与持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔。
在一些实施例中,定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量。
在一些实施例中,定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量,所述第二调整增量指示对初始调整时间间隔进行调整的增量。
S902,向终端发送冲突解决机制信息,冲突解决机制信息指示终端在发生本段传输的起始时间早于上一段传输的结束时间的冲突时间段内的传输。
由于持续传输过程中定时提前量出现了变化,这有可能导致信号冲突的情况,例如,假设需要进行6段传输,每段传输所需的传输时间为4μs,根据定时提前量信息确定每段传输的定时提前量为1μs、2μs、4μs、5μs、4μs、7μs,针对每段传输的同步时间点(即基站期望接收到终端发送的上行信号的时间点)分别为5μs、10μs、15μs、20μs、25μs、30μs,则每段传输的起始时间点分别为4μs、8μs、11μs、15μs、21μs、23μs,而每段传输的结束时间分别为8μs、12μs、15μs、19μs、25μs、27μs。其中,第三段传输的起始时间11μs早于第二段传输的结束时间12μs,以及第六段传输的起始时间23μs早于第五段传输的结束时间25μs。也就是说,当第二段传输还没结束时,第三段传输已经开始,以及当第五段传输还没有结束时,第六段传输已经开始。因此,第二段传输和第三段传输出现了信号冲突以及第五段传输和第六段传输发生了信号冲突。为了解决这种冲突,基站可以向终端发送冲突解决机制信息,冲突解决机制信息指示终端在发生本段传输的起始时间早于上一段传输的结束时间的冲突时间段内的传输。例如,该冲突解决机制可以事先规定或者指示终端放弃发生冲突的前一段传输的末尾信号的传输或是放弃发生冲突的后一段传输的初始信号的传输。
根据该冲突解决机制信息,终端可以将引发冲突的后一段传输的初始信号丢弃,即放弃传输该部分初始信号。如上示例,在第三段传输中,放弃前一毫秒(11μs-12μs)的初始信号的传输,在第六段传输中,放弃前两毫秒(23μs-25μs)的初始信号的传输。或者,终端可以将引发冲突的前一段传输的末尾信号丢弃,即放弃传输该部分末尾信号。如上示例,在第二段传输中,放弃后一毫秒(11μs-12μs)的末尾信号的传输,在第五段传输中,放弃后两毫秒(23μs-25μs)的末尾信号的传输。
在本实施例中,通过向终端发生冲突解决机制信息,使得终端在发生信号冲突时,通过放弃发送时间重叠的部分上行信号的传输来解决该冲突。
与上述几种实施例提供的定时提前量确定方法相对应,本公开还提供一种定时提前量确定设备,由于本公开实施例提供的定时提前量确定设备与上述几种实施例提供的定时提前量确定方法相对应,因此定时提前量确定方法的实施方式也适用于本实施例提供的定时提前量确定设备,在本实施例中不再详细描述。图10-图15是根据本公开提出的定时提前量确定设备的结构示意图。
图10为本公开实施例提供的一种定时提前量确定设备的结构示意图。该设备应用于终端。
如图10所示,定时提前量确定设备1000包括:
接收模块1001,用于接收与持续传输过程对应的定时提前量信息,其中所述定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数;以及
确定模块1002,用于根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量。
在本公开的实施例中,通过获取与持续传输过程对应的定时提前量信息并根据该定时提前量信息确定持续传输过程中每段传输的定时提前量,从而能够适于传播时延的快速变化而对每段传输的定时提前量进行修正,从而能够避免在持续传输过程中由于传播时延的快速变化而造成的上行多用户之间的干扰。
在本公开的实施例中,定时提前量信息包括与持续传输过程对应的多个定时提前TA值,如图11所示,该确定模块1002包括:
第一确定子模块10021,被配置为根据所述多个TA值的数量和所述持续传输过程的总时间,确定每个TA值对应的时间间隔;以及
第二确定子模块1022,被配置为根据所述多个TA值和每个TA值对应的时间间隔,确定每段传输的定时提前量。
在本公开的实施例中,定时提前量信息包括与持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔,如图12所示,该确定模块1002包括:
第三确定子模块10023,被配置为根据所述多个TA值和每个TA值对应的时间间隔,确定每段传输的定时提前量。
在一些实施例中,定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量,如图13所示,该确定模块1002包括:
第四确定子模块10024,被配置为根据所述初始TA值、所述调整时间间隔、第一调整增量以及所述持续传输过程的总时间,计算与所述持续传输过程对应的多个TA值;以及
第五确定子模块10025,被配置为根据所述多个TA值和所述调整时间间隔,确定每段传输的定时提前量。
在一些实施例中,定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对初始TA值进行调整的增量,所述第二调整增量指示对初始调整时间间隔进行整的增量,如图14所示,该确定模块1002包括:
第六确定子模块10026,被配置为根据所述初始调整时间间隔、所述第二调整增量以及所述持续传输过程的总时间,确定多个时间间隔;
第七确定子模块10027,被配置为根据所述初始TA值、所述多个时间间隔的数量以及所述第一调整增量,计算与所述持续传输过程对应的多个TA值;以及
第八确定子模块10028,被配置为根据所述多个TA值和所述多个时间间隔,确定每段传输的定时提前量。
在一些实施例中,如图15所示,该设备1000还包括:
传输模块1003,被配置为对于每段传输,当根据本段传输的定时提前量、上一段传输的定时提前量以及传输时间确定本段传输的起始时间早于上一段传输的结束时间时,放弃本段传输的初始上行信号。
在一些实施例中,该确定模块1002被配置为根据所述定时提前量信息和预配置保护间隔,确定每段传输的定时提前量,使得每段传输的起始时间不早于上一段传输的结束时间。
在一些实施例中,该接收模块1001还被配置为从基站接收所述预配置保护间隔的信息,包括所述预配置保护间隔的配置周期、起始偏移以及持续时间。
图16为本公开实施例提供的一种定时提前量确定设备的结构示意图。该设备应用于基站。
如图16所示,定时提前量确定设备1600包括:
发送模块1601,用于向终端发送与持续传输过程对应的定时提前量信息,以使得所述终端根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量,其中所述定时提前量信息指示多个定时提前量的信息,例如包括多个定时提前量的值或多个定时提前量的计算参数。
在本实施例中,通过向终端发送定时提前量信息和预配置保护间隔的信息使得终端可以根据该定时提前量信息和预配置保护间隔的信息确定持续传输过程中每段传输的定时提前量,从而避免了信号冲突的发生。
在一些实施例中,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值。
在一些实施例中,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔。
在一些实施例中,所述定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对初始TA值进行每次调整的增量。
在一些实施例中,所述定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对初始TA值进行每次调整的增量,所述第二调整增量指示对初始调整时间间隔进行调整的增量。
在一些实施例中,发送模块1601还用于向终端发送预配置保护间隔的信息,包括所述预配置保护间隔的配置周期、起始偏移以及持续时间,使得所述终端根据所述定时提前量信息和预配置保护间隔确定每段传输的定时提前量。
在一些实施例中,发送模块1601还用于向终端发送冲突解决机制信息,冲突解决机制信息指示终端在发生本段传输的起始时间早于上一段传输的结束时间的冲突时间段内的传输。
在一些实施例中,所述设备通过SIB信令、RRC信令、MAC CE信令或者DCI信令发送所述定时提前量信息。
根据本公开的实施例,本公开还提供了一种通信设备和一种计算机可读存储介质。
如图17所示,是根据本公开实施例的通信设备的框图。通信设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。通信设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图17所示,该通信设备包括:一个或多个处理器1710、存储器1720,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图17中以一个处理器1710为例。
存储器1720即为本公开所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本公开所提供的定时提前量确定方法。本公开的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本公开所提供的定时提前量确定方法。
存储器1720作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本公开实施例中的定时提前量确定方法对应的程序指令/模块。处理器1710通过运行存储在存储器1720中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的定时提前量确定方法。
存储器1720可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据等。此外,存储器1720可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1720可选包括相对于处理器1710远程设置的存储器,这些远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信设备还可以包括:输入装置1730和输出装置1740。处理器1710、存储器1720、输入装置1730和输出装置1740可以通过总线或者其他方式连接,图17中以通过总线连接为例。
输入装置1730可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1740可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (19)

1.一种定时提前量确定方法,其特征在于,所述方法应用于终端,所述方法包括:
接收与持续传输过程对应的定时提前量信息,其中所述定时提前量信息指示用于确定与所述持续传输过程中的各段传输对应的多个定时提前量的信息;以及
根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量;
所述方法还包括:
对于每段传输,当根据本段传输的定时提前量、上一段传输的定时提前量以及传输时间确定本段传输的起始时间早于上一段传输的结束时间时,放弃本段传输的初始上行信号的传输或者放弃上一段传输的末尾上行信号的传输。
2.如权利要求1所述的方法,其特征在于,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值;
所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:
根据所述多个TA值的数量和所述持续传输过程的总时间,确定每个TA值对应的时间间隔;以及
根据所述多个TA值和每个TA值对应的时间间隔,确定每段传输的定时提前量。
3.如权利要求1所述的方法,其特征在于,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔;
所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:
根据所述多个TA值和每个TA值对应的时间间隔,确定每段传输的定时提前量。
4.如权利要求1所述的方法,其特征在于,所述定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对所述初始TA值进行调整的增量;
所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:
根据所述初始TA值、所述调整时间间隔、第一调整增量以及所述持续传输过程的总时间,计算与所述持续传输过程对应的多个TA值;以及
根据所述多个TA值和所述调整时间间隔,确定每段传输的定时提前量。
5.如权利要求1所述的方法,其特征在于,所述定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对所述初始TA值进行调整的增量,以及所述第二调整增量指示对初始调整时间间隔进行调整的增量;
所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:
根据所述初始调整时间间隔、所述第二调整增量以及所述持续传输过程的总时间,确定多个时间间隔;
根据所述初始TA值、所述多个时间间隔的数量以及所述第一调整增量,计算与所述持续传输过程对应的多个TA值;以及
根据所述多个TA值和所述多个时间间隔,确定每段传输的定时提前量。
6.如权利要求1所述的方法,其特征在于,所述根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量包括:
根据所述定时提前量信息和预配置保护间隔,确定每段传输的定时提前量,使得每段传输的起始时间不早于上一段传输的结束时间。
7.如权利要求6所述的方法,其特征在于,还包括:
从基站接收所述预配置保护间隔的信息,包括所述预配置保护间隔的配置周期、起始偏移以及持续时间。
8.一种定时提前量确定方法,其特征在于,所述方法应用于基站,所述方法包括:
向终端发送与持续传输过程对应的定时提前量信息,以使得所述终端根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量,其中所述定时提前量信息指示用于确定与所述持续传输过程中的各段传输对应的多个定时提前量的信息,以及当所述终端根据每段传输的定时提前量以及传输时间确定本段传输的起始时间早于上一段传输的结束时间时放弃本段传输的初始上行信号的传输或者放弃上一段传输的末尾上行信号的传输。
9.如权利要求8所述的方法,其特征在于,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值。
10.如权利要求8所述的方法,其特征在于,所述定时提前量信息包括与所述持续传输过程对应的多个定时提前TA值以及每个TA值对应的时间间隔。
11.如权利要求8所述的方法,其特征在于,所述定时提前量信息包括初始定时提前TA值、调整时间间隔以及第一调整增量,其中所述第一调整增量指示对所述初始TA值进行调整的增量。
12.如权利要求8所述的方法,其特征在于,所述定时提前量信息包括初始定时提前TA值、初始调整时间间隔、第一调整增量以及第二调整增量,其中所述第一调整增量指示对所述初始TA值进行调整的增量,以及所述第二调整增量指示对所述初始调整时间间隔进行调整的增量。
13.如权利要求8所述的方法,其特征在于,还包括:
向终端发送预配置保护间隔的信息,包括所述预配置保护间隔的配置周期、起始偏移以及持续时间,使得所述终端根据所述定时提前量信息和预配置保护间隔确定每段传输的定时提前量。
14.如权利要求8所述的方法,其特征在于,还包括:
向终端发送冲突解决机制信息,所述冲突解决机制信息指示终端在发生本段传输的起始时间早于上一段传输的结束时间的冲突时间段内的传输。
15.一种定时提前量确定设备,其特征在于,所述设备应用于终端,所述设备包括:
接收模块,用于接收与持续传输过程对应的定时提前量信息,其中所述定时提前量信息指示用于确定与所述持续传输过程中的各段传输对应的多个定时提前量的信息;以及
确定模块,用于根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量;
传输模块,用于对于每段传输,当根据本段传输的定时提前量、上一段传输的定时提前量以及传输时间确定本段传输的起始时间早于上一段传输的结束时间时,放弃本段传输的初始上行信号的传输或者放弃上一段传输的末尾上行信号的传输。
16.一种定时提前量确定设备,其特征在于,所述设备应用于基站,所述设备包括:
发送模块,用于向终端发送与持续传输过程对应的定时提前量信息,以使得所述终端根据所述定时提前量信息确定所述持续传输过程中的每段传输的定时提前量,其中所述定时提前量信息指示用于确定与所述持续传输过程中的各段传输对应的多个定时提前量的信息,以及当所述终端根据每段传输的定时提前量以及传输时间确定本段传输的起始时间早于上一段传输的结束时间时放弃本段传输的初始上行信号的传输或者放弃上一段传输的末尾上行信号的传输。
17.如权利要求16所述的设备,其特征在于,
所述设备通过SIB信令、RRC信令、MAC CE信令或者DCI信令发送所述定时提前量信息。
18.一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-7中任一项、或8至14中任一项所述的方法。
19.一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-7中任一项、或8至14中任一项所述的方法。
CN202080003904.3A 2020-12-08 2020-12-09 一种定时提前量确定方法及设备 Active CN114916254B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/134656 2020-12-08
CN2020134656 2020-12-08
PCT/CN2020/134916 WO2022120638A1 (zh) 2020-12-08 2020-12-09 一种定时提前量确定方法及设备

Publications (2)

Publication Number Publication Date
CN114916254A CN114916254A (zh) 2022-08-16
CN114916254B true CN114916254B (zh) 2024-05-07

Family

ID=81972865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080003904.3A Active CN114916254B (zh) 2020-12-08 2020-12-09 一种定时提前量确定方法及设备

Country Status (2)

Country Link
CN (1) CN114916254B (zh)
WO (1) WO2022120638A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769295A (zh) * 2017-11-09 2019-05-17 夏普株式会社 时间提前方法、及对应的用户设备和基站
CN110418402A (zh) * 2019-07-16 2019-11-05 东南大学 基于星历广播辅助定位的用户随机接入方法及装置
CN110636601A (zh) * 2019-09-12 2019-12-31 成都天奥集团有限公司 一种低轨卫星通信系统上行定时终端自维护方法
CN111095820A (zh) * 2017-08-22 2020-05-01 弗劳恩霍夫应用研究促进协会 无线通信系统、基站和用户侧设备
CN111526576A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 定时提前的更新方法及设备
WO2020221127A1 (zh) * 2019-04-30 2020-11-05 中国移动通信有限公司研究院 定时提前确定方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8730854B2 (en) * 2009-08-20 2014-05-20 Qualcomm Incorporated Timing adjustments in a communication system
US11317444B2 (en) * 2017-11-03 2022-04-26 Qualcomm Incorporated Random access channel (RACH) design
WO2020188144A1 (en) * 2019-03-15 2020-09-24 Nokia Technologies Oy Timing advance validation and adjustment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095820A (zh) * 2017-08-22 2020-05-01 弗劳恩霍夫应用研究促进协会 无线通信系统、基站和用户侧设备
CN109769295A (zh) * 2017-11-09 2019-05-17 夏普株式会社 时间提前方法、及对应的用户设备和基站
CN111526576A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 定时提前的更新方法及设备
WO2020221127A1 (zh) * 2019-04-30 2020-11-05 中国移动通信有限公司研究院 定时提前确定方法及设备
CN110418402A (zh) * 2019-07-16 2019-11-05 东南大学 基于星历广播辅助定位的用户随机接入方法及装置
CN110636601A (zh) * 2019-09-12 2019-12-31 成都天奥集团有限公司 一种低轨卫星通信系统上行定时终端自维护方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THALES.RP-192504 "TR 38.821 v1.0.0".3GPP tsg_ran\tsg_ran.2019,(tsgr_86),全文. *
天地一体化信息网络的体系结构与协议分析;刘立祥;;重庆邮电大学学报(自然科学版)(01);全文 *

Also Published As

Publication number Publication date
CN114916254A (zh) 2022-08-16
WO2022120638A1 (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
CN107615679B (zh) 用于控制波束成形跟踪的方法和通信装置
JP2019017056A (ja) インダストリアル・インターネット・フィールド層ブロードバンドバス・アーキテクチャに基づく同期方法と装置
EP3965341A1 (en) Rate matching method, device and storage medium
CN112639501B (zh) 终端的离开角aod获取方法、装置和通信设备
CN114916254B (zh) 一种定时提前量确定方法及设备
CN113170469B (zh) 波束指示方法及装置
US20240057057A1 (en) Method and apparatus for determining uplink antenna panel, and communication device
KR102178315B1 (ko) 연속적인 신호 전송을 위한 방법 및 그 전자 장치
JP6880237B2 (ja) メッセージ復号方法、送信端末機器および受信端末機器
CN115039447B (zh) 一种天线切换配置的切换方法及设备
CN115004751A (zh) 一种邻小区测量方法及装置
KR20210093789A (ko) 무선 통신 시스템에서의 동기화 방법 및 장치
EP4271074A1 (en) Data retransmission determination method and device
CN112956154B (zh) 调度信息发送方法、调度信息接收方法及装置
CN115088318B (zh) 一种参考时间信息的使用方法及装置
CN112789945B (zh) 非连续接收方法及装置
CN113243092B (zh) 通信方法及装置
US20240049276A1 (en) Method for configuring candidate number of repeated transmissions
CN115245015B (zh) 上行信号发送方法、装置、设备及存储介质
CN115066920B (zh) 波束指示方法及装置以及波束确定方法及装置
CN112703701B (zh) 解调参考信号映射、装置、设备及其存储介质
US20240098726A1 (en) Signal transmission method
US11979898B2 (en) Wireless communication system, wireless communication method, management station device, base station device, and terminal station device
CN116391430A (zh) 一种传输配置信息的方法、装置以及可读存储介质
CN113473626A (zh) 一种无线自组织网络的多用户测距方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant