CN114914410B - 界面相互作用构建内建电场用于高性能锂离子存储 - Google Patents

界面相互作用构建内建电场用于高性能锂离子存储 Download PDF

Info

Publication number
CN114914410B
CN114914410B CN202210379842.7A CN202210379842A CN114914410B CN 114914410 B CN114914410 B CN 114914410B CN 202210379842 A CN202210379842 A CN 202210379842A CN 114914410 B CN114914410 B CN 114914410B
Authority
CN
China
Prior art keywords
lithium ion
built
electric field
interface interaction
gaznon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210379842.7A
Other languages
English (en)
Other versions
CN114914410A (zh
Inventor
王家海
孙长龙
陈辅周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202210379842.7A priority Critical patent/CN114914410B/zh
Publication of CN114914410A publication Critical patent/CN114914410A/zh
Application granted granted Critical
Publication of CN114914410B publication Critical patent/CN114914410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂离子电池存储技术领域,且公开了界面相互作用构建内建电场用于高性能锂离子存储,包括:S1样品合成,氧化石墨烯(GO)悬浮液是通过改进的Hummer制备方法,合成GaZnON@NG异质结构通常遵循以下步骤,用连续磁力搅拌器在Ga2(SO4)3和ZnSO4溶液中加入一定量的GO溶液,开发了界面相互作用和内建电场调节策略来构建氮掺杂石墨烯(NG)复合的GaZnON纳米颗粒(GaZnON@NG)简单易行的方法。先进的结构表征和密度泛函理论(DFT)分析揭示了强化学键(Ga–N/N–C)和GaZnON@NG的界面电荷转移。这种界面相互作用可以巧妙地调节界面电子状态,改善表面电子密度和电荷传输动力学,从而实现高效锂离子存储。

Description

界面相互作用构建内建电场用于高性能锂离子存储
技术领域
本发明涉及锂离子电池存储技术领域,具体为界面相互作用构建内建电场用于高性能锂离子存储。
背景技术
锂离子电池(LIB)被认为是高效的储能装置,尤其是清洁和可持续能源产生的电能,虽然实际能量密度足以使其在电动汽车中应用,但仍需进一步提高其能量/功率密度和循环稳定性,以扩展其在日常生活中的应用范围。但是,影响其应用前景的问题还包括成本、寿命和安全问题,这些问题大多与负极材料直接相关。因此,可以改性负极材料以提高能量/功率密度和循环稳定性,而目前商用石墨作负极的理论容量低,倍率性能较差,此外,石墨负极容易形成锂金属枝晶,这种枝晶可以穿透隔膜导致短路。因此,寻找合适且高效的负极活性材料已成为近年来研究的重点。为此,金属氮化物(例如Fe2N、Sn3N4、Ni3N、MoN、Ge3N4和Cu3N)因其较高的理论容量和能量密度而被作为替代负极材料得到广泛研究。然而,基于金属氮化物的负极在电化学反应过程中存在电荷传输缓慢和体积膨胀明显等问题。此外,传统金属氮化物负极发生的副反应也会导致库仑效率降低,导致容量衰减。因此,要实现高容量长寿命的电化学性能,需要探索具有快速电荷传输特性的负极材料。氮氧化物作为一种混合离子材料,由于其优异的化学/结构稳定性和低体积膨胀效应,展现出高的能量/功率密度,作为一种四元固溶体,GaZnON具有快速的电子迁移率和较低的电压窗口。因此,GaZnON比传统的金属氮化物具有更高的导电性和离子扩散性。此外,优良的结构和化学稳定性也有利于GaZnON在极端环境下作为LIB负极材料使用。因此,GaZnON基纳米材料作为一种具有潜在应用前景的负极材料引起人们的广泛关注。然而,由于循环容量较低,原始GaZnON的电化学性能仍然受到活性位点低的限制。此外,传统的氨化反应会导致GaZnON纳米颗粒形态和组分的不均匀。为解决上述问题,提高GaZnON负极的电化学性能,人们期望通过形态修饰和结构设计策略来提高GaZnON基负极的电化学性能,然而,这些策略并不能从本质上提高GaZnON基负极的离子扩散效率和电子导电性。此外,GaZnON和电解质之间缺乏界面相互作用会严重限制界面电荷扩散效率。界面工程作为一种可行的解决方案,它可以提高电极材料的比表面积,而GaZnON颗粒与石墨烯的复合可以产生界面相互作用和内建电场。然而,对于GaZnON基负极材料构建界面相互作用和内建电场还没有进行系统的研究。
发明内容
本发明的目的在于提供了界面相互作用构建内建电场用于高性能锂离子存储,解决了上述背景技术中的问题。
为实现上述目的,本发明提供如下技术方案:界面相互作用构建内建电场用于高性能锂离子存储,包括以下步骤:
S1样品合成,氧化石墨烯(GO)悬浮液是通过改进的Hummer制备方法,合成GaZnON@NG异质结构通常遵循以下步骤,用连续磁力搅拌器在制备的Ga2(SO4)3和ZnSO4溶液中加入一定量的GO溶液,在连续搅拌下,通过滴加氨(NH3·H2O)形成弱碱性溶液,氨水提供的OH-与Ga3+反应;
S2电池组装,通过组装CR2016型扣式电池进行研究,该电池组装在充氩手套箱中,水分和氧气浓度低于1ppm;
S3 GITT分析的细节,在GITT测量期间,恒定电流密度为0.1A g-1持续30分钟以获得闭路电压(CCV),再持续30分钟以收集准开路电压(QOCV),这种测量可以被认为是一个准静态过程,因此用来研究充放电过程中的反应电阻。
优选的,采用均匀沉淀法,通过GO表面官能团的吸附作用,将镓和锌的氢氧化物(GaZnOOH)沉积到GO片上,镓和锌的氢氧化物相对缓慢的沉淀速率有利于GO板上的异相成核。
优选的,冷冻干燥制备了复合材料(GaZnOOH/GO),干燥后的复合材料在氨气(NH3)气氛中以2℃的速率加热至1050℃。
优选的,将原始GaZnON和GaZnON@NG、80wt%的活性材料、10wt%的导电碳和10wt%的聚偏氟乙烯(PVDF)作为粘合剂混合在N-甲基-2-吡咯烷酮中,然后将充分混合的活性材料涂覆在铜箔上,然后在使用前在80℃下真空干燥。
优选的,活性物质的平均负载量约为1.9mg,直径为12mm的金属锂片用作正极,正极和负极由聚丙烯膜(Celgard 2320)进行分离,电解质溶液为碳酸乙烯酯/碳酸二甲酯/碳酸二乙酯(1:1:1vol%)中的LiPF6(1M),使用新威CT-3008W电池测量系统在不同电流密度下进行恒电流充放电试验。
优选的,截止电压为0.01~3.0V vs.Li+/Li,室温下,恒电流间歇滴定技术(GITT)也在新威电池测试仪上进行了测试,电池在0.2A g-1下放电5分钟,然后在0.01~2.8V的电压窗口内静置20分钟。
优选的,使用CHI660D电化学工作站在0.01~3.0V范围内,进行不同扫描速率下的循环伏安法(CV),电化学阻抗谱(EIS)测量频率范围为0.01Hz至1MHz,振幅扰动信号为5mV,无外加电压偏置。
优选的,为了排除SEI薄膜形成的影响,在首圈循环后进行GITT测量,根据菲克第二定律,通过GITT测量Li+固态扩散系数(DLi +)。
本发明提供了用于高性能锂离子存储的界面相互作用内建电场调节。该用于高性能锂离子存储的界面相互作用内建电场调节具备以下有益效果:
(1)本发明中:该用于界面相互作用构建内建电场用于高性能锂离子存储时,开发了界面相互作用和内建电场调节策略来构建氮掺杂石墨烯(NG)复合的GaZnON纳米颗粒(GaZnON@NG),先进的结构表征和密度泛函理论(DFT)分析揭示了强化学(Ga–N/N–C)和GaZnON@NG的界面电荷转移。这种界面相互作用可以巧妙地调节界面电子状态,改善表面电子密度和电荷传输动力学,从而实现高效锂离子存储;
(2)本发明中:该用于界面相互作用构建内建电场用于高性能锂离子存储时,GaZnON@NG异质结构负极在0.1A g-1电流密度下进行200次循环后,显示出1073.6mA h g-1的可逆存储容量。即使在5.0A g-1大电流密度下经2000圈循环后,可逆容量仍保持在338.6mA h g-1。对应的电化学动力学分析证实了该体系中赝电容贡献和增强的锂离子反应动力学;
(3)本发明中:该用于界面相互作用构建内建电场用于高性能锂离子存储时,对样品进行XRD和XPS分析后发现,可逆的锂离子插层机理是GaZnON@NG异质结构保持良好的结构稳定性和电化学性能的主要原因,DFT分析进一步表明GaZnON@NG异质结构负极具有较高的导电性和较低的锂离子吸附能及扩散能垒,这种界面交互策略可以为先进的储能应用和其他应用提供借鉴。
附图说明
图1为本发明原始纳米颗粒的SEM图;
图2为本发明样品的XRD图;
图3为本发明聚合物的结构图;
图4为本发明化学反应动力图;
图5为本发明电化学反应的非原位XRD图;
图6为本发明锂离子迁移途径结构示意图。
具体实施方式
如图1-6所示,本发明提供一种技术方案:界面相互作用构建内建电场用于高性能锂离子存储,包括以下步骤:
S1样品合成,氧化石墨烯(GO)悬浮液是通过改进的Hummer制备方法,合成GaZnON@NG异质结构通常遵循以下步骤,用连续磁力搅拌器在制备的Ga2(SO4)3和ZnSO4溶液中加入一定量的GO溶液,在连续搅拌下,通过滴加氨(NH3·H2O)形成弱碱性溶液,氨水提供的OH-离子与Ga3+反应;
S2电化学测量,原始GaZnON和GaZnON@NG的电化学行为通过组装CR2016型扣式电池进行研究,该电池组装在充氩手套箱中,水分和氧气浓度低于1ppm;
S3 GITT分析的细节,在GITT测量期间,恒定电流密度为0.1A g-1持续30分钟以获得闭路电压(CCV),再持续30分钟以收集准开路电压(QOCV),这种测量可以被认为是一个准静态过程,因此用来研究充放电过程中的反应电阻,采用均匀沉淀法,通过GO表面官能团的吸附作用,将镓和锌的氢氧化物(GaZnOOH)沉积到GO片上,镓和锌的氢氧化物相对缓慢的沉淀速率有利于GO板上的异相成核,冷冻干燥制备了复合材料(GaZnOOH/GO),干燥后的复合材料在氨气(NH3)气氛中以2℃的速率加热至1050℃,分别将原始GaZnON和GaZnON@NG、80wt%的活性材料、10wt%的导电碳和10wt%的聚偏氟乙烯(PVDF)作为粘合剂混合在N-甲基-2-吡咯烷酮中,然后将充分混合的活性材料涂覆在铜箔上,然后在使用前在80℃下真空干燥,活性物质的平均负载量约为1.9mg,直径为12mm的金属锂片用作正极,正极和负极由聚丙烯膜(Celgard 2320)进行分离,电解质溶液为碳酸乙烯酯/碳酸二甲酯/碳酸二乙酯(1:1:1vol%)中的LiPF6(1M),使用新威CT-3008W电池测量系统在不同电流密度下进行恒电流充放电试验,截止电压为0.01~3.0V vs.Li+/Li,室温下,恒电流间歇滴定技术(GITT)也在新威电池测试仪上进行了测试,电池在0.2A g-1下放电5分钟,然后在0.01~2.8V的电压窗口内静置20分钟,使用CHI660D电化学工作站在0.01~3.0V范围内进行不同扫描速率下的循环伏安法(CV)测试,电化学阻抗谱(EIS)测试频率范围为0.01Hz至1MHz,振幅扰动信号为5mV,无外加电压偏置,为了排除SEI薄膜形成的影响,在首圈循环后进行GITT测量,根据菲克第二定律,通过GITT测量Li+固态扩散系数(DLi +)。
该用于界面相互作用构建内建电场用于高性能锂离子存储时,通过扫描电子显微镜(SEM,Hitachi S-4800)对样品的形貌和微观结构进行了表征,然后进行能量色散光谱(EDS)元素扫描,使用(TEM和相应的HRTEM,进行形貌进行分析,利用XRD和拉曼光谱对晶体结构进行分析。XRD和XPS分析发现,良好的结构稳定性和可逆的锂离子插层机理是GaZnON@NG异质结构具有优异电化学性能的原因。,DFT分析进一步表明GaZnON@NG异质结构负极具有较高的导电性和较低的锂离子吸附能和扩散能垒。

Claims (8)

1.界面相互作用构建内建电场用于高性能锂离子存储,包括以下步骤:
S1样品合成,氧化石墨烯(GO)悬浮液是通过改进的Hummer制备方法,合成GaZnON@NG异质结构通常遵循以下步骤,用连续磁力搅拌器在制备的Ga2(SO4)3和ZnSO4溶液中加入一定量的GO溶液,在连续搅拌下,通过滴加氨水(NH3·H2O)形成弱碱性溶液,氨水用来提供OH-离子与Ga3+反应;
S2电化学测量,原始GaZnON和GaZnON@NG的电化学行为通过组装CR2016型扣式电池进行研究,该电池组装在充氩手套箱中,水分和氧气浓度低于1ppm;
S3 GITT分析的细节,在GITT测量期间,恒定电流密度为0.1Ag-1持续30分钟以获得闭路电压(CCV),再持续30分钟以收集准开路电压(QOCV),这种测量可以被认为是一个准静态过程,因此用来研究充放电过程中的反应电阻。
2.根据权利要求1所述的界面相互作用构建内建电场用于高性能锂离子存储,其特征在于:采用均匀沉淀法,通过GO表面官能团将镓和锌的氢氧化物GaZnOOH沉积到GO片上,镓和锌的氢氧化物相对缓慢的沉淀速率有利于GO片上的异相成核。
3.根据权利要求1所述的界面相互作用构建内建电场用于高性能锂离子存储,其特征在于:冷冻干燥制备了复合材料GaZnOOH@GO,干燥后的复合材料在氨气(NH3)气氛中以2℃的速率加热至1050℃。
4.根据权利要求1所述的界面相互作用构建内建电场用于高性能锂离子存储,其特征在于:将GaZnON@NG、80wt%的活性材料、10wt%的导电碳和10wt%的聚偏氟乙烯(PVDF)作为粘合剂混合在N-甲基-2-吡咯烷酮中,然后将充分混合的活性材料涂覆在铜箔上,然后在80℃下真空干燥。
5.根据权利要求4所述的界面相互作用构建内建电场用于高性能锂离子存储,其特征在于:活性物质的平均负载量约为1.9mg,直径为12mm的金属锂片用作正极,正极和负极由Celgard 2320聚丙烯膜进行分离,电解质溶液为碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯混合溶剂中的LiPF6,所述碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯混合溶剂体积比为1:1:1,所述LiPF6浓度为1mol/L,使用新威CT-3008W电池测量系统在不同电流密度下进行恒电流充放电试验。
6.根据权利要求5所述的界面相互作用构建内建电场用于高性能锂离子存储,其特征在于:截止电压为0.01~3.0V vs.Li+/Li,室温下,恒电流间歇滴定技术(GITT)也在新威电池测试仪上进行了测试,电池在0.2Ag-1下放电5分钟,然后在0.01~2.8V的电压窗口内静置20分钟。
7.根据权利要求1所述的界面相互作用构建内建电场用于高性能锂离子存储,其特征在于:使用CHI660D电化学工作站在0.01~3.0V范围内,使用不同扫描速率下进行循环伏安法(CV),电化学阻抗谱(EIS)测量频率范围为0.01Hz至1MHz,振幅扰动信号为5mV,无外加电压偏置。
8.根据权利要求7所述的界面相互作用构建内建电场用于高性能锂离子存储,其特征在于:为了排除SEI薄膜形成的影响,在首圈循环后进行GITT测量,根据菲克第二定律,通过GITT测量分析Li+固态扩散系数(DLi +)。
CN202210379842.7A 2022-04-12 2022-04-12 界面相互作用构建内建电场用于高性能锂离子存储 Active CN114914410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210379842.7A CN114914410B (zh) 2022-04-12 2022-04-12 界面相互作用构建内建电场用于高性能锂离子存储

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210379842.7A CN114914410B (zh) 2022-04-12 2022-04-12 界面相互作用构建内建电场用于高性能锂离子存储

Publications (2)

Publication Number Publication Date
CN114914410A CN114914410A (zh) 2022-08-16
CN114914410B true CN114914410B (zh) 2024-04-12

Family

ID=82764088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210379842.7A Active CN114914410B (zh) 2022-04-12 2022-04-12 界面相互作用构建内建电场用于高性能锂离子存储

Country Status (1)

Country Link
CN (1) CN114914410B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023921A1 (de) * 1995-12-22 1997-07-03 Boromissza Varga Eva Elektrolyte für bleibatterien sowie verfahren zu deren herstellung und anwendung
CN102376999A (zh) * 2010-08-20 2012-03-14 中国科学院大连化学物理研究所 一种耦合光(电)化学池和燃料电池的太阳能贮存系统
CN106537665A (zh) * 2014-07-10 2017-03-22 雷普索尔有限公司 用于锂电池的阴极
CN106654212A (zh) * 2016-12-29 2017-05-10 吉林大学 四氧化三钴/石墨烯复合材料(Co3O4/N‑RGO)的制备方法及应用
CN106935852A (zh) * 2017-04-14 2017-07-07 中国科学院半导体研究所 Si掺杂氮化镓/金属负极电池材料及其制备方法、锂电池
CN108550815A (zh) * 2018-04-18 2018-09-18 中航锂电技术研究院有限公司 一种锂离子电池用氮掺杂石墨烯支撑的碳包覆硅基复合负极材料的制备方法
CN110217773A (zh) * 2019-05-15 2019-09-10 广州大学 一种自掺杂生物基碳材料及其制备方法和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745449B1 (ko) * 2015-08-21 2017-06-12 한국과학기술원 다공성 그래핀과 금속산화물 나노입자의 층상 구조체를 이용한 초고출력, 초장수명 리튬이차전지 음극재료 및 그 제조방법
WO2018232097A1 (en) * 2017-06-14 2018-12-20 Ioxus, Inc. Systems and methods for preparing solid electrolyte interphases for electrochemical energy storage devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023921A1 (de) * 1995-12-22 1997-07-03 Boromissza Varga Eva Elektrolyte für bleibatterien sowie verfahren zu deren herstellung und anwendung
CN102376999A (zh) * 2010-08-20 2012-03-14 中国科学院大连化学物理研究所 一种耦合光(电)化学池和燃料电池的太阳能贮存系统
CN106537665A (zh) * 2014-07-10 2017-03-22 雷普索尔有限公司 用于锂电池的阴极
CN106654212A (zh) * 2016-12-29 2017-05-10 吉林大学 四氧化三钴/石墨烯复合材料(Co3O4/N‑RGO)的制备方法及应用
CN106935852A (zh) * 2017-04-14 2017-07-07 中国科学院半导体研究所 Si掺杂氮化镓/金属负极电池材料及其制备方法、锂电池
CN108550815A (zh) * 2018-04-18 2018-09-18 中航锂电技术研究院有限公司 一种锂离子电池用氮掺杂石墨烯支撑的碳包覆硅基复合负极材料的制备方法
CN110217773A (zh) * 2019-05-15 2019-09-10 广州大学 一种自掺杂生物基碳材料及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage;YingHan等;《Electrochimica Acta》;第2022卷(第408期);第139931页 *
Ni-doped InN/GaZnON composite catalyst for overall water splitting under visible light irradiation;Xuelan Hou等;《international journal of hydrogen energy 》;第45卷(第40期);第15448-15453页 *

Also Published As

Publication number Publication date
CN114914410A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
US8828608B2 (en) Secondary lithium batteries having novel anodes
Kim et al. Carbon nanotube-amorphous FePO 4 core–shell nanowires as cathode material for Li ion batteries
Rui et al. One-pot synthesis of carbon-coated VO 2 (B) nanobelts for high-rate lithium storage
Yoon et al. Polydopamine-assisted carbon nanotubes/Co3O4 composites for rechargeable Li-air batteries
TWI614211B (zh) 可高度分散之石墨烯組成物、其製備方法、及包含該可高度分散之石墨烯組成物的用於鋰離子二次電池之電極
Liu et al. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries
Chen et al. Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage
US10403885B2 (en) Active material for batteries
JP5155498B2 (ja) リチウム二次電池用正極活物質の製造方法
Rao et al. Polyacrylonitrile hard carbon as anode of high rate capability for lithium ion batteries
Lu et al. Facile synthesis of self-supported Mn 3 O 4@ C nanotube arrays constituting an ultrastable and high-rate anode for flexible Li-ion batteries
Cheng et al. Structural engineering of metal–organic framework derived tin sulfides for advanced Li/Na storage
KR20170035817A (ko) 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지
CN111211273A (zh) 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
Wang et al. A sodium ion intercalation material: a comparative study of amorphous and crystalline FePO 4
Hou et al. SnO 2 nanoparticles embedded in 3D nanoporous/solid copper current collectors for high-performance reversible lithium storage
JP2008285372A (ja) 単結晶LiMn2O4ナノワイヤーの製造方法及び単結晶LiMn2O4ナノワイヤーを用いたハイレートLiイオン電池
Pan et al. Electrochemical properties of all-solid-state lithium batteries with amorphous FeSx-based composite positive electrodes prepared via Mechanochemistry
Li et al. Carbon coated heterojunction CoSe 2/Sb 2 Se 3 nanospheres for high-efficiency sodium storage
Geng et al. Oxygen-doped carbon host with enhanced bonding and electron attraction abilities for efficient and stable SnO2/carbon composite battery anode
US20180277846A1 (en) Cathode material for lithium-ion secondary battery and manufacturing method thereof, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20150083382A (ko) 리튬 이차 전지용 음극, 및 이를 포함하는 리튬 이차 전지
Fu et al. High reversible silicon/graphene nanocomposite anode for lithium-ion batteries
Sarkar et al. Layer-type palladium phosphosulphide and its reduced graphene oxide composite as electrode materials for metal-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant