CN114896867B - Shock insulation structure and design method thereof - Google Patents
Shock insulation structure and design method thereof Download PDFInfo
- Publication number
- CN114896867B CN114896867B CN202210421958.2A CN202210421958A CN114896867B CN 114896867 B CN114896867 B CN 114896867B CN 202210421958 A CN202210421958 A CN 202210421958A CN 114896867 B CN114896867 B CN 114896867B
- Authority
- CN
- China
- Prior art keywords
- concrete
- low
- metamaterial
- steel cylinder
- seismic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013461 design Methods 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 30
- 230000035939 shock Effects 0.000 title abstract description 5
- 238000009413 insulation Methods 0.000 title abstract 3
- 238000002955 isolation Methods 0.000 claims abstract description 64
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 25
- 239000010959 steel Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 11
- 230000004888 barrier function Effects 0.000 claims description 27
- 238000013136 deep learning model Methods 0.000 claims description 13
- 238000013135 deep learning Methods 0.000 claims description 10
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 238000013016 damping Methods 0.000 abstract description 7
- 238000012549 training Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/21—Design, administration or maintenance of databases
- G06F16/211—Schema design and management
- G06F16/212—Schema design and management with details for data modelling support
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
技术领域technical field
本发明涉及土木工程隔震技术领域,更具体地说,本发明涉及一种隔震结构及其设计方法。The invention relates to the technical field of earthquake isolation in civil engineering, and more specifically, the invention relates to an earthquake isolation structure and a design method thereof.
背景技术Background technique
地震的能力是由地震波携带,其频率范围在0.1-20Hz,而传统的隔震屏障难以实现低频地震波的隔震。The ability of earthquakes is carried by seismic waves, and its frequency ranges from 0.1-20Hz, while traditional isolation barriers are difficult to achieve isolation of low-frequency seismic waves.
为解决传统隔震屏障难以隔离低频地震波的不足,本发明结合负泊松比超材料具有很好阻尼、吸能特性及局部共振型地震超材料可实现低频隔震的特点,发明了一种新型地震超材料耗能器且由一种新型地震超材料耗能器组合成能够实现超低频带隙的隔震屏障。基于深度学习方法,通过分析具体的工程隔震带隙要求实现本发明所述隔震屏障的逆向设计方法。本发明能够在工程隔震领域中实现超低频地震波的隔离,同时提出的设计方法针对具体工程能够提高隔震屏障设计的针对性和效率。In order to solve the problem that traditional seismic isolation barriers are difficult to isolate low-frequency seismic waves, the present invention combines the characteristics of negative Poisson's ratio metamaterials with good damping and energy absorption characteristics and local resonance seismic metamaterials to achieve low-frequency seismic isolation, and invents a new The seismic metamaterial energy dissipator is combined with a new type of seismic metamaterial energy dissipator to form a shock isolation barrier capable of realizing an ultra-low frequency band gap. Based on the deep learning method, the reverse design method of the seismic isolation barrier of the present invention is realized by analyzing the specific engineering seismic isolation band gap requirements. The invention can realize the isolation of ultra-low frequency seismic waves in the field of engineering seismic isolation, and at the same time, the proposed design method can improve the pertinence and efficiency of seismic isolation barrier design for specific projects.
发明内容Contents of the invention
为了克服现有技术的上述缺陷,本发明的实施例提供一种隔震结构及其设计方法,通过利用负泊松比超材料具有很好阻尼、吸能特性及局部共振型地震超材料可实现低频隔震的特点,发明了一种负泊松比局部共振型共振器,并将其周期性排列形成地震超材料隔震屏障,该隔震屏障可得到低频带隙,实现低频地震波的隔离,以解决上述背景技术中提出的问题。In order to overcome the above-mentioned defects of the prior art, an embodiment of the present invention provides a seismic isolation structure and its design method, which can be realized by using negative Poisson’s ratio metamaterials with good damping and energy absorption characteristics and local resonance seismic metamaterials. Due to the characteristics of low-frequency isolation, a negative Poisson's ratio local resonance resonator was invented, and it was periodically arranged to form a seismic metamaterial isolation barrier. The isolation barrier can obtain a low-frequency band gap and realize the isolation of low-frequency seismic waves. To solve the problems raised in the background technology above.
为实现上述目的,本发明提供如下技术方案:一种隔震结构,包括混凝土箱、混凝土帽、低刚度橡胶轴承、钢圆柱体和超材料包络层。To achieve the above object, the present invention provides the following technical solutions: a shock-isolation structure, including a concrete box, a concrete cap, a low-rigidity rubber bearing, a steel cylinder and a metamaterial envelope.
在一个优选地实施方式中,所述混凝土箱为四面空心方柱结构,所述混凝土箱的顶部和底部均预留回字形台槽,所述四面空心方柱结构由四块形状相同的矩形平板按照长边连接而成,矩形平板由混凝土浇筑而成,其总质量的大小作为主要设计参数,作用为保护负泊松比局部共振型共振器,混凝土箱影响隔震单元的隔震效率,所述设计参数由隔震屏障的逆向设计方法决定。In a preferred embodiment, the concrete box is a four-sided hollow square column structure, and the top and bottom of the concrete box are reserved with back-shaped platform grooves. The four-sided hollow square column structure is composed of four rectangular flat plates with the same shape. According to the connection of the long sides, the rectangular slab is made of concrete pouring, and its total mass is used as the main design parameter to protect the negative Poisson’s ratio local resonance resonator. The concrete box affects the isolation efficiency of the isolation unit. The above design parameters are determined by the inverse design method of the seismic barrier.
在一个优选地实施方式中,所述混凝土帽包括两块上下设置且形状相同的立方体平板,立方体平板由混凝土浇筑而成,位于上方的立方体平板尺寸与混凝土箱的顶部的预留回字形台槽尺寸相同,位于下方的立方体平板尺寸与混凝土箱的底部预留回字形台槽尺寸相同,所述混凝土箱与混凝土帽构成一个整体,其质量的大小作为设计参数,影响隔震屏障的频率带隙宽度及范围,由隔震屏障的逆向设计方法决定。In a preferred embodiment, the concrete cap includes two cubic slabs arranged up and down and of the same shape. The cube slabs are poured from concrete. The dimensions are the same, and the size of the cube plate located below is the same as the size of the back-shaped platform groove reserved at the bottom of the concrete box. The concrete box and the concrete cap form a whole, and its mass is used as a design parameter to affect the frequency band gap of the seismic isolation barrier. The width and scope are determined by the reverse design method of the seismic isolation barrier.
在一个优选地实施方式中,所述低刚度橡胶轴承为两块圆柱体形式的低刚度弹性橡胶块,所述低刚度橡胶轴承位于钢圆柱体与混凝土帽之间,所述混凝土帽和钢圆柱体通过低刚度橡胶轴承连接,起到调节负泊松比局部共振型共振器固有共振频率的目的。In a preferred embodiment, the low-stiffness rubber bearing is two low-stiffness elastic rubber blocks in the form of cylinders, the low-stiffness rubber bearing is located between the steel cylinder and the concrete cap, and the concrete cap and the steel cylinder The body is connected by a low-stiffness rubber bearing to adjust the natural resonance frequency of the negative Poisson's ratio local resonance type resonator.
在一个优选地实施方式中,所述钢圆柱体的直径与低刚度橡胶轴承的直径相同,钢圆柱体的顶面和底面分别与上下端的低刚度橡胶轴承连接,其作为负泊松比局部共振型共振器的有效质量,可调节频率带隙的上下限值。In a preferred embodiment, the diameter of the steel cylinder is the same as that of the low-stiffness rubber bearing, and the top and bottom surfaces of the steel cylinder are respectively connected to the low-stiffness rubber bearings at the upper and lower ends, which act as a negative Poisson's ratio local resonance The effective mass of the type resonator can adjust the upper and lower limits of the frequency band gap.
在一个优选地实施方式中,所述超材料包络层均匀包裹在钢圆柱体的侧面,超材料包络层采用负泊松比材料制成,负泊松超材料具有较好的吸能及阻尼特性,可起到增加局部共振器阻尼及吸能的作用。超材料本身弹性模量、负泊松比和质量密度作为所述隔震单元单元的设计参数,可根据实际工程由基于深度神经的逆向设计方法提出逆向设计方法决定。In a preferred embodiment, the metamaterial envelope is evenly wrapped on the side of the steel cylinder, and the metamaterial envelope is made of a negative Poisson's ratio material, and the negative Poisson's ratio material has better energy absorption and The damping characteristic can play the role of increasing the damping and energy absorption of the local resonator. The elastic modulus, negative Poisson's ratio and mass density of the metamaterial itself are used as the design parameters of the seismic isolation unit, which can be determined by the reverse design method based on the deep neural reverse design method according to the actual engineering.
在一个优选地实施方式中,还包括一种对抗型深度神经网络逆向设计方法,包括参数解码器和对抗型深度学习逆向设计方法,可以实现在实际工程中针对目标频率带隙计算出需要的设计参数,实现新型隔震屏障各参数的精准逆向设计。In a preferred embodiment, it also includes an adversarial deep neural network reverse design method, including a parameter decoder and an adversarial deep learning reverse design method, which can calculate the required design for the target frequency band gap in actual engineering parameters to realize the precise reverse design of each parameter of the new seismic isolation barrier.
在一个优选地实施方式中,所述参数解码器为隔震屏障的设计参数与其衰减域带隙线性或非线性映射,能够将设计参数解码成隔震带隙频率,具体可以表现为方程模型映射或机器学习模型映射。该映射由大量数据的统计学经验公式或机器学习模型的分类器或感知器组成。In a preferred embodiment, the parameter decoder is a linear or nonlinear mapping between the design parameters of the seismic barrier and its attenuation domain bandgap, and can decode the design parameters into the seismic isolation bandgap frequency, which can be specifically expressed as an equation model mapping Or machine learning model mapping. This mapping consists of statistical empirical formulas for large amounts of data or classifiers or perceptrons for machine learning models.
在一个优选地实施方式中,所述对抗型深度学习逆向设计方法包括对抗型深度学习模型,其输入层为目标设计带隙,中间层为输出模型参数,鉴别器为参数解码器,在较高精度的参数解码器监督下,对抗型深度学习逆向设计方法可以较精确地生成目标带隙的隔震屏障设计参数,在较高精度的参数解码器监督下,对抗型深度学习逆向设计方法可以较精确地生成目标带隙的隔震屏障设计参数。In a preferred embodiment, the adversarial deep learning reverse design method includes an adversarial deep learning model, the input layer is the target design bandgap, the middle layer is the output model parameter, and the discriminator is a parameter decoder. Under the supervision of a high-precision parameter decoder, the adversarial deep learning reverse design method can more accurately generate the design parameters of the seismic barrier with the target band gap. Under the supervision of a higher-precision parameter decoder, the adversarial deep learning reverse design method can be more accurate Accurately generate seismic isolation barrier design parameters for the target bandgap.
本发明的技术效果和优点:Technical effect and advantage of the present invention:
1、通过本发明设计的隔震结构及设计方法,与现有技术相比,利用负泊松比超材料具有很好阻尼、吸能特性及局部共振型地震超材料可实现低频隔震的特点,发明了一种负泊松比局部共振型共振器,并将其周期性排列形成地震超材料隔震屏障,该隔震屏障可得到低频带隙,实现低频地震波的隔离;1. Through the seismic isolation structure and design method designed by the present invention, compared with the prior art, the use of negative Poisson's ratio metamaterials has good damping and energy absorption characteristics and local resonance seismic metamaterials can realize the characteristics of low frequency seismic isolation , invented a negative Poisson's ratio local resonance resonator, and arranged it periodically to form a seismic metamaterial isolation barrier, which can obtain a low-frequency band gap and realize the isolation of low-frequency seismic waves;
2、基于所述的对应数据库建立对抗型深度学习模型,并将解码器作为监督模块,结合实际工程的超低频目标隔震需求,将目标衰减域带隙的上下限输入至深度学习模型中,输出设计参数经过解码器解码,对比目标设计参数的误差作为训练误差用作监督训练此深度学习模型中,当误差收敛至0时,模型收敛时即得到指定频率带隙的设计参数取值,与现有技术相比,将深度学习的方法应用到周期性超材料超低频带隙隔震屏障的逆向设计中,基于高精度的预训练参数解码器构建的对抗型深度学习模型,可针对基于目标隔震带隙实现对实际目标工程隔震频率隔震带隙的精准设计,提高实际工程设计的效率。2. Establish an adversarial deep learning model based on the corresponding database, use the decoder as a supervisory module, and input the upper and lower limits of the band gap of the target attenuation domain into the deep learning model in combination with the ultra-low frequency target isolation requirements of the actual project, The output design parameters are decoded by the decoder, and the error compared with the target design parameters is used as the training error for supervised training. In this deep learning model, when the error converges to 0, the design parameter value of the specified frequency bandgap is obtained when the model converges, which is the same as Compared with the existing technology, the deep learning method is applied to the reverse design of the periodic metamaterial ultra-low frequency bandgap seismic isolation barrier. The adversarial deep learning model based on the high-precision pre-training parameter decoder can target the The seismic isolation band gap realizes the precise design of the seismic isolation band gap of the actual target engineering isolation frequency, and improves the efficiency of actual engineering design.
附图说明Description of drawings
图1为本发明的一种隔震结构的布置形式示意图;Fig. 1 is the layout form schematic diagram of a kind of seismic isolation structure of the present invention;
图2为本发明的一种隔震结构的结构示意图;Fig. 2 is the structural representation of a kind of seismic isolation structure of the present invention;
图3为本发明隔震结构的逆向设计方法深度学习模型训练流程示意图。Fig. 3 is a schematic diagram of the deep learning model training process of the reverse design method of the seismic isolation structure of the present invention.
图4为本发明隔震结构中混凝土帽大样示意图;Fig. 4 is the large sample schematic diagram of the concrete cap in the seismic isolation structure of the present invention;
图5为本发明隔震结构中混凝土箱和混凝土帽拆分示意图;Fig. 5 is the split schematic diagram of concrete box and concrete cap in the seismic isolation structure of the present invention;
图6为本发明实施例1通过深度学习模型得到的隔震结构频散曲线图示意图。Fig. 6 is a schematic diagram of the dispersion curve of the isolation structure obtained through the deep learning model in
附图标记为:1、混凝土箱;2、混凝土帽;3、低刚度橡胶轴承;4、钢圆柱体;5、超材料包络层。Reference signs are: 1. concrete box; 2. concrete cap; 3. low-rigidity rubber bearing; 4. steel cylinder; 5. supermaterial envelope.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
实施例1Example 1
如附图1-6所示的一种隔震结构,本实施例中隔震动结构为新型地震超材料耗能器,具体为负泊松比局部共振型共振器,包括混凝土箱1、混凝土帽2、低刚度橡胶轴承3、钢圆柱体4及超材料包络层5。As a kind of seismic isolation structure shown in accompanying drawing 1-6, the vibration isolation structure in this embodiment is a new type of seismic metamaterial energy dissipator, specifically a negative Poisson's ratio local resonance type resonator, including a
混凝土箱1的厚度为0.1m,混凝土帽2尺寸为长:宽:高=1.7m:1.7m:0.3m,所述低刚度橡胶轴承3和钢圆柱体4的横截面半径均为r=0.5m,其中低刚度橡胶轴承3的厚度为Tc为0.1m,并且钢圆柱体4高为1.7m,包裹在钢圆柱体4上的超材料包络层5中负泊松比材料厚度Tn为0.1m,本实施例中负泊松比材料如图5所示。The thickness of the
将负泊松比材料的泊松比v、弹性模量E、质量密度ρ,混凝土箱总重量Mb和隔震屏障中新型地震超材料耗能器的间距a、b作为设计参数。The Poisson's ratio v, elastic modulus E, mass density ρ of the negative Poisson's ratio material, the total weight of the concrete box Mb and the spacing a and b of the new seismic metamaterial energy dissipator in the isolation barrier are used as design parameters.
基于所述的逆向设计方法,首先将各设计参数可选取的取值范围交叉取值建立适当数量的数值分析模型,得到不同参数取值与隔震屏障的衰减带隙对应数据库。Based on the above-mentioned reverse design method, first, an appropriate number of numerical analysis models are established by intersecting the selectable value ranges of each design parameter, and a database corresponding to different parameter values and the attenuation band gap of the seismic isolation barrier is obtained.
基于所述的对应数据库构造依据一定的映射关系构造解码器,本实例使用神经网络训练解码器。基于数据库数据输入并训练神经网络即可得到解码器,该解码器接受设计参数的输入,返回隔震带隙的输出。Based on the corresponding database construction described above, a decoder is constructed according to a certain mapping relationship. In this example, a neural network is used to train the decoder. Based on the database data input and training the neural network, a decoder can be obtained, which accepts the input of design parameters and returns the output of the isolation band gap.
基于所述的对应数据库建立对抗型深度学习模型,并将解码器作为监督模块,结合实际工程的超低频目标隔震需求,将目标衰减域带隙的上下限输入至深度学习模型中,输出设计参数用作监督训练此深度学习模型,当模型收敛时即得到指定频率带隙的设计参数取值。所述的深度学习模型结构参照图3所示。An adversarial deep learning model is established based on the corresponding database, and the decoder is used as a supervisory module. Combined with the ultra-low frequency target isolation requirements of the actual project, the upper and lower limits of the band gap of the target attenuation domain are input into the deep learning model, and the output design The parameters are used to supervise the training of this deep learning model, and when the model converges, the design parameter values of the specified frequency bandgap are obtained. The structure of the deep learning model is shown in FIG. 3 .
基于对抗型深度学习模型,输入某实际工程的目标超低频频率范围3-6Hz,得到设计参数分别为:负泊松比材料泊松比v为-0.7,弹性模量E为2.5×104pa,质量密度ρ为120kg/m3,通过控制负泊松比材料配比调节设计参数。混凝土箱总重量Mb为11kN,单层隔震单元之间的间距为a=0.7m,不同层隔震单元之间的间距为b=0.5m。Based on the adversarial deep learning model, input the target ultra-low frequency range of 3-6Hz in an actual project, and obtain the design parameters: Poisson's ratio v of negative Poisson's ratio material is -0.7, and elastic modulus E is 2.5×10 4 pa , the mass density ρ is 120kg/m 3 , and the design parameters are adjusted by controlling the ratio of negative Poisson's ratio materials. The total weight M b of the concrete box is 11kN, the distance between single-layer seismic isolation units is a=0.7m, and the distance between different layers of seismic-isolation units is b=0.5m.
对得到的设计参数进行数值模拟,结果如图6所示,附图6是对所述新型地震超材料耗能器构建的隔震屏障进行数值模拟仿真,基于所述对抗型深度学习网络模型得到的材料参数和周期阵列参数设置参数化扫描进行计算得到的新型地震超材料耗能器频散曲线。Numerical simulation of the obtained design parameters is carried out, and the results are shown in Figure 6. Figure 6 is a numerical simulation of the seismic isolation barrier constructed by the new seismic metamaterial energy dissipator. Based on the adversarial deep learning network model, the Dispersion curves of new seismic metamaterial dissipators obtained through parametric scanning of material parameters and periodic array parameter settings.
参照图6,灰色区域是新型地震超材料耗能器所作用的隔震带隙,带隙的范围1.6-7.8Hz,图中的点划线表示剪切波波速,实线表示瑞利波的波速,实线的左边部分表示对建筑物有害的面波的范围,右边部分表示体波的部分通常地震波的频率在0.1-20Hz之间,所以该结构能够有效的针对超低频地震波波的衰减,根据设计参数周期性布设所述的新型地震超材料耗能器,参照图1,进而构成本发明一种新型地震超材料隔震屏障,说明本发明对低频地震波的衰减非常有效。Referring to Figure 6, the gray area is the seismic isolation bandgap of the new seismic metamaterial dissipator, and the range of the bandgap is 1.6-7.8Hz. The dotted line in the figure indicates the velocity of the shear wave, and the solid line indicates the velocity of the Rayleigh wave. Wave velocity, the left part of the solid line represents the range of surface waves harmful to buildings, and the right part represents the body wave. Usually the frequency of seismic waves is between 0.1-20Hz, so this structure can effectively attenuate ultra-low frequency seismic waves. According to the design parameters, the novel seismic metamaterial energy dissipator is periodically laid out. Referring to FIG. 1, a novel seismic metamaterial shock-isolation barrier of the present invention is formed, which shows that the present invention is very effective in attenuating low-frequency seismic waves.
实施例2Example 2
本实施例提供另一种隔震结构,本实施例中隔震动结构为新型地震超材料耗能器,具体为负泊松比局部共振型共振器,包括混凝土箱1、混凝土帽2、低刚度橡胶轴承3、钢圆柱体4及超材料包络层5;This embodiment provides another kind of seismic isolation structure. The vibration isolation structure in this embodiment is a new type of seismic metamaterial energy dissipator, specifically a negative Poisson's ratio local resonance type resonator, including a
空心的混凝土箱1用于放置新型地震超材料耗能器内部所有构件;混凝土帽2用于混凝土箱1的上下封顶,并将外界震动传递至钢圆柱体4;钢圆柱体4用于支撑两个混凝土帽2;低刚度橡胶轴承3用于连接混凝土帽2和钢圆柱体4,并传递震动作用且吸收一部分地震能量;超材料包络层5采用负泊松比材料,用于吸收和阻尼震动波能量。本发明能够提高超低频率地震波的隔振能力,且基于逆向设计方法针对实际带隙需求实现隔震屏障的逆向设计。The hollow
本发明工作原理:当地震波传播到所述的隔震屏障中时,其衰减域带隙为1.6-7.8Hz,囊括了大部分的超低频地震波,面波被隔震屏障所吸收或转化为向下传播的体波,进而实现了对低频地震波衰减的能力。逆向设计方法的工作原理为,基于数值模拟得到的各参数与输出带隙的对应关系数据库,使用深度学习的方法拟合该对应关系,实现输入目标频率带隙输出设计参数的功能。The working principle of the present invention: when the seismic wave propagates into the seismic isolation barrier, the band gap in the attenuation domain is 1.6-7.8 Hz, including most of the ultra-low frequency seismic waves, and the surface wave is absorbed by the seismic isolation barrier or converted into The body wave propagating downwards realizes the ability to attenuate low-frequency seismic waves. The working principle of the reverse design method is to use the deep learning method to fit the corresponding relationship database based on the corresponding relationship between each parameter and the output bandgap obtained by numerical simulation, and realize the function of inputting the target frequency bandgap and outputting the design parameters.
综上所述,本发明提供的一种新型地震超材料隔震屏障及其逆向设计方法,在地震发生时能够产生超宽低频率带隙,有效抑制低频共振现象,进而达到衰减低频地震波目的。同时实现了针对不同的工况进行快速完成隔震屏障的参数设计能力。In summary, the present invention provides a new type of seismic metamaterial isolation barrier and its reverse design method, which can generate an ultra-wide low-frequency band gap when an earthquake occurs, effectively suppress low-frequency resonance phenomena, and then achieve the purpose of attenuating low-frequency seismic waves. At the same time, it realizes the ability to quickly complete the parameter design of the seismic isolation barrier for different working conditions.
最后应说明的几点是:首先,在本申请的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变,则相对位置关系可能发生改变;The last few points should be explained: First, in the description of this application, it should be explained that, unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, which can be mechanical connection Or electrical connection, it can also be the internal communication of two components, it can be directly connected, "up", "down", "left", "right", etc. are only used to indicate the relative positional relationship, when the absolute position of the object being described Change, the relative positional relationship may change;
其次:本发明公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计,在不冲突情况下,本发明同一实施例及不同实施例可以相互组合;Secondly: in the drawings of the disclosed embodiments of the present invention, only the structures related to the disclosed embodiments are involved, other structures can refer to the usual design, and the same embodiment and different embodiments of the present invention can be combined with each other if there is no conflict;
最后:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally: the above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention within the scope of protection.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210421958.2A CN114896867B (en) | 2022-04-21 | 2022-04-21 | Shock insulation structure and design method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210421958.2A CN114896867B (en) | 2022-04-21 | 2022-04-21 | Shock insulation structure and design method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114896867A CN114896867A (en) | 2022-08-12 |
CN114896867B true CN114896867B (en) | 2023-05-12 |
Family
ID=82718281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210421958.2A Active CN114896867B (en) | 2022-04-21 | 2022-04-21 | Shock insulation structure and design method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114896867B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115680194B (en) * | 2022-10-13 | 2024-07-16 | 广州大学 | A metamaterial steel tube concrete column with low-frequency vibration reduction characteristics |
CN115787926A (en) * | 2022-10-26 | 2023-03-14 | 广州大学 | Metamaterial steel tube concrete column with vibration and vibration double-control characteristics |
CN115823158B (en) * | 2022-11-19 | 2024-05-31 | 福州大学 | Orthogonal wire mesh structure with negative poisson ratio and adjustable band gap and preparation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015145337A1 (en) * | 2014-03-24 | 2015-10-01 | Chiappini Massimo | Composite foundations for seismic protection of building constructions |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9139972B2 (en) * | 2012-12-17 | 2015-09-22 | University Of Houston | Periodic material-based seismic isolation system |
CN110273438A (en) * | 2019-06-28 | 2019-09-24 | 华东交通大学 | A kind of step type vibration isolation ditch barrier and preparation method thereof |
CN113833794B (en) * | 2021-09-24 | 2023-03-10 | 昆明理工大学 | A Vibration Isolation Base with Posson's Ratio Honeycomb Structure |
-
2022
- 2022-04-21 CN CN202210421958.2A patent/CN114896867B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015145337A1 (en) * | 2014-03-24 | 2015-10-01 | Chiappini Massimo | Composite foundations for seismic protection of building constructions |
Also Published As
Publication number | Publication date |
---|---|
CN114896867A (en) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114896867B (en) | Shock insulation structure and design method thereof | |
CN108385735B (en) | A partially buried gradient surface wave barrier structure and its manufacturing method | |
CN109635327B (en) | Building Vibration Reduction Method and Evaluation Method of Vibration Reduction Effect of Rail Transit Vibration | |
Liu et al. | Double-resonator based metaconcrete composite slabs and vibration attenuation mechanism | |
CN111206623A (en) | Diamond seismic metamaterial with low-frequency damping characteristic | |
Persson et al. | Effect of structural design on traffic-induced building vibrations | |
CN110953292B (en) | A local resonant elastic metamaterial plate-like structure with ultra-low frequency vibration reduction characteristics | |
Xiong et al. | A study on low-frequency vibration mitigation by using the metamaterial-tailored composite concrete-filled steel tube column | |
CN112663682B (en) | Square earthquake metasoma structure with cross-shaped cavity | |
Li et al. | Composite wave attenuation mechanism of periodic layered metastructure with embedded rubber-mass resonators | |
Choi et al. | Low-frequency vibration and noise control in sandwiched composite locally resonant metamaterials-embedded plate structures | |
CN113684866A (en) | A Low Frequency Wide Bandgap Seismic Metaplate Structure Containing Depleted Uranium | |
CN218176217U (en) | A Tac-Tac-Combined Steel Seismic Metamaterial Structure | |
Gao et al. | Research on the band gaps of the two-dimensional Sierpinski fractal phononic crystals | |
Sun et al. | Meta-arch structure: designed reinforcement cage to enhance vibration isolation performance | |
Zhao et al. | Low-Frequency Surface Wave Attenuation of Multi Point Mass Resonance Metamaterials | |
CN111364526B (en) | A three-dimensional face-centered cubic seismic metamaterial with low-frequency shock absorption properties | |
CN117216932B (en) | Method and system for designing punching elastic super-structure | |
CN118531844A (en) | Three-dimensional periodic foundation shock insulation structure using waste rubber as base material | |
CN210104543U (en) | A particle damper for vibration reduction under human-induced vibration | |
CN113802713B (en) | Fence type shock insulation structure and design method thereof | |
CN218373990U (en) | A CRS nested three-dimensional periodic seismic isolation foundation | |
CN211288587U (en) | A local resonance elastic metamaterial plate-like structure with ultra-low frequency vibration damping properties | |
CN211898582U (en) | A three-dimensional face-centered cubic seismic metamaterial with low-frequency damping properties | |
CN115288313A (en) | Superstructure vibration isolation beam and assembly method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |