CN114895698A - 一种时变状态约束下四旋翼无人机轨迹跟踪控制方法 - Google Patents

一种时变状态约束下四旋翼无人机轨迹跟踪控制方法 Download PDF

Info

Publication number
CN114895698A
CN114895698A CN202210673116.6A CN202210673116A CN114895698A CN 114895698 A CN114895698 A CN 114895698A CN 202210673116 A CN202210673116 A CN 202210673116A CN 114895698 A CN114895698 A CN 114895698A
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
quad
rotor
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210673116.6A
Other languages
English (en)
Inventor
刘敏
黄敏思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute Of Software
Original Assignee
Guangzhou Institute Of Software
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute Of Software filed Critical Guangzhou Institute Of Software
Priority to CN202210673116.6A priority Critical patent/CN114895698A/zh
Publication of CN114895698A publication Critical patent/CN114895698A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种时变状态约束下四旋翼无人机轨迹跟踪控制方法,所述方法包括:1)建立四旋翼无人机位姿动力学方程;2)通过非线性变换得到无人机位置动力学等价模型;3)设计神经网络系统对位置系统中出现的不确定量Δ1和Δ2进行估计;4)设计无人机位置虚拟控制率αp;5)设计无人机位置控制率vp;6)设计无人机的期望姿态轨迹;7)设计神经网络系统对位置系统中出现的不确定量Δ3进行估计;8)设计无人机的姿态控制率va。本发明可以实现干扰和模型不确定存在情况下,四旋翼无人机轨迹跟踪且姿态稳定,并且在整个飞行任务过程中无人机一直处于时变状态约束范围之内。

Description

一种时变状态约束下四旋翼无人机轨迹跟踪控制方法
技术领域
本发明涉及无人机控制的技术领域,尤其涉及一种时变状态约束下四旋翼无人机轨迹跟踪控制方法。
背景技术
无人机作为一种成本低、可靠性高、机动能力强的无人系统,已经在军用和民用领域发挥了巨大的作用,并将在各个领域得到更为广泛和深入的应用。
轨迹跟踪控制是无人机应用中的核心技术难点之一,实际任务中如侦查、监视、集群攻击、巡检、测绘和林火检测等往往需要预先设计飞行轨迹或实时进行轨迹规划,无人机沿着期望轨迹飞行进而实现预定任务。但当无人机工作于复杂环境时,如存在障碍区,禁飞区、强电磁干扰区以及高温区等复杂环境时,通常要求无人机在安全通道内飞行,超出安全通道外会导致无人机受到极大安全威胁,在这种情况下往往通过对无人机的状态进行约束进而保证其处于安全通道之内,并且考虑到一般情况,其安全通道是时变的,因而研究状态约束下四旋翼无人机轨迹跟踪控制十分必要。另外考虑到环境因素以及自身参数不确定等对无人机存在干扰将导致无人机的控制性能下滑进而出现无人机飞出安全通道之外的情况,在进行轨迹跟踪控制器设计时需进一步考虑环境干扰和参数不确定性的影响。
发明内容
本发明提出一种时变状态约束下四旋翼无人机轨迹跟踪控制方法,所述方法可以实现干扰和模型不确定存在情况下,四旋翼无人机轨迹跟踪且姿态稳定,并且在整个飞行任务过程中无人机一直处于时变状态约束范围之内。
本发明实施例的第一方面提供了一种时变状态约束下四旋翼无人机轨迹跟踪控制方法,所述方法包括:
1)建立四旋翼无人机位姿动力学方程;
2)通过非线性变换得到无人机位置动力学等价模型;
3)设计神经网络系统对位置系统中出现的不确定量Δ1和Δ2进行估计;
4)设计无人机位置虚拟控制率αp
5)设计无人机位置控制率vp
6)设计无人机的期望姿态轨迹;
7)设计神经网络系统对位置系统中出现的不确定量Δ3进行估计;
8)设计无人机的姿态控制率va
在第一方面的一种可能的实现方式中,所述建立四旋翼无人机位姿动力学方程,具体为:
Figure BDA0003695412900000021
Figure BDA0003695412900000022
Figure BDA0003695412900000023
Figure BDA0003695412900000024
Δa=Δa,da,e
其中,ζp=[x y z]T为四旋翼无人机位置向量。
Figure BDA0003695412900000025
为ζp的二阶导数,A为无人机空气阻力系数矩阵,Δp为位置模型不确定项,m为无人机质量,g为重力加速度,四旋翼无人机四个电机产生的推力值分别为F1、F2、F3和F4,总推力U1=F1+F2+F3+F4,CIb为无人机本体系到惯性系的旋转矩阵,
Figure BDA0003695412900000026
为四旋翼无人机的绝对姿态角。
在第一方面的一种可能的实现方式中,所述通过非线性变换得到无人机位置动力学等价模型,具体为:
Figure BDA0003695412900000031
h1=diag(hx1(x,xL,xU),hy1(y,yL,yU),hz1(z,zL,zU))
h2=[hx1(x,xL,xU),hy1(y,yL,yU),hz1(z,zL,zU)]T
其中:
Figure BDA0003695412900000032
Figure BDA0003695412900000033
Figure BDA0003695412900000034
Figure BDA0003695412900000035
Figure BDA0003695412900000036
Figure BDA0003695412900000037
其中,
Figure BDA0003695412900000038
为ζp的一阶导数。xL、yL和zL分别为x、y和z的下界,xU、yU和zU分别为x、y和z的下界。
Figure BDA0003695412900000039
Figure BDA00036954129000000310
分别为xL、yL和zL的一阶导数。
在第一方面的一种可能的实现方式中,所述设计神经网络系统对位置系统中出现的不确定量Δ1和Δ2进行估计,具体为:
令Δ1=-h1σp,Δ2=-Δp
利用RBF神经网络系统ΘTS对系统中出现的不确定量Δ1和Δ2进行估计;
Δ1,i=Θ1,i *TS1,i1,i
Δ2,i=Θ2,i *TS2,i2,i
其中,S1,i和S2,i为高斯基函数。ρ1,i和ρ2,i为神经网络最小逼近偏差;Θ1,i *和Θ2,i *是神经网络的理想权值。
在第一方面的一种可能的实现方式中,所述设计无人机位置虚拟控制率αp,具体为:
定义跟踪误差为εp1=ξpdp,
Figure BDA0003695412900000041
ξpd为期望位置轨迹。
Figure BDA0003695412900000042
为αp通过一阶滤波器得到的估计值;
所述一阶滤波器为:
Figure BDA0003695412900000043
其中,ε为滤波常数;
设计无人机位置虚拟控制率αp
Figure BDA0003695412900000044
Figure BDA0003695412900000045
其中,K1为正定对称矩阵,
Figure BDA0003695412900000046
Figure BDA0003695412900000047
为W1,i的估计。a1为正数。
在第一方面的一种可能的实现方式中,所述设计无人机位置控制率vp,具体为:
设计自适应率为:
Figure BDA0003695412900000048
Figure BDA0003695412900000049
其中,γ1,i和γ2,i均为正数;
设计位置控制率vp为:
Figure BDA0003695412900000051
其中,K2为正定对称矩阵,
Figure BDA0003695412900000052
Figure BDA0003695412900000053
为W2,i的估计。a2为正数。
在第一方面的一种可能的实现方式中,所述设计无人机的期望姿态轨迹,具体为:
令vp=[vp1 vp2 vp3]T,由于
Figure BDA0003695412900000054
则:
Figure BDA0003695412900000055
Figure BDA0003695412900000056
Figure BDA0003695412900000057
根据期望偏航角ψd以及上式可以得到U1、期望俯仰角和期望滚转角为:
Figure BDA0003695412900000058
Figure BDA0003695412900000059
Figure BDA00036954129000000510
为保证四旋翼无人机安全,四旋翼无人机通常有最大倾斜角限制,令该角度为κ,给出的指令也不宜超过该限制,对U1、期望俯仰角和期望滚转角的公式进行如下修正:
Figure BDA0003695412900000061
Figure BDA0003695412900000062
设计如下一阶滤波器:
Figure BDA0003695412900000063
Figure BDA0003695412900000064
可以得到
Figure BDA0003695412900000065
以及
Figure BDA0003695412900000066
可以得到四旋翼无人机的期望角速度为:
Figure BDA0003695412900000067
在第一方面的一种可能的实现方式中,所述设计神经网络系统对位置系统中出现的不确定量Δ3进行估计,具体为:
假设姿态动力学系统参数偏差有界,未知外部干扰有界且
Figure BDA0003695412900000068
有界,令,
Figure BDA0003695412900000069
CIb,d期望姿态对应旋转矩阵;
利用神经网络系统ΘTS对系统中出现的不确定量Δ3进行估计:
Δ3,i=Θ3,i *TS3,i3,i
其中,S3,i为高斯基函数。ρ3,i为神经网络最小逼近偏差。Θ3,i *是神经网络的理想权值。
在第一方面的一种可能的实现方式中,所述设计无人机的姿态控制率va,具体为:
定义姿态角速度偏差为:
Figure BDA00036954129000000610
定义姿态偏差为:
Figure BDA00036954129000000611
其中,
Figure BDA00036954129000000612
为叉乘的逆运算;
设计姿态控制率为:
Figure BDA0003695412900000071
其中,K3和K4为正定对角矩阵,
Figure BDA0003695412900000072
Figure BDA0003695412900000073
为W3,i的估计。a3为正数。
相比于现有技术,本发明实施例提供的一种时变状态约束下四旋翼无人机轨迹跟踪控制方法及装置,其有益效果在于:本发明针对四旋翼无人机执行任务过程中需处于安全通道内的特殊需求设计了控制方案,首先将模型进行非线性变换得到无人机位置等价模型,并在该模型基础上及进行控制器设计,通过神经网络系统对四旋翼无人机位置系统中的不确定性进行估计,并采用动态面控制思想设计了控制器,该控制器能够保证无人机执行任务过程中满足时变状态约束。通过神经网络系统对四旋翼无人机姿态系统中的不确定性进行估计,并在此基础上设计了无人机姿态控制器,保证了无人机在执行任务过程中姿态的稳定。
附图说明
图1是本发明一实施例提供的一种时变状态约束下四旋翼无人机轨迹跟踪控制方法的流程示意图;
图2是本发明一实施例提供的无人机的结构示意图;
图3是本发明一实施例提供的无人机期望轨迹的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了高效且稳定地控制无人机飞行,避免在使用过程中因操控不当而造成坠机或碰撞,在执行上述检测时需要先确定检测的起点和目的地,然后根据目的地的坐标涉及对应的飞行路径,将飞行路径的数据导入其控制器中,使控制器控制无人机按照飞行路径飞行到达目的地,以完成检测任务。
但目前常用的飞行控制方法有如下技术问题:当无人机工作在复杂的检测环境时(如存在障碍区,禁飞区、强电磁干扰区以及高温区等环境),要求无人机在安全通道内飞行,一旦超出安全通道,可能会增加无人机坠机或损坏的风险。但在实际飞行过程中,可能受到各种不稳定因素(如风或雨)而导致无人机偏离飞行路径超出安全通道,进而增加了无人机的飞行风险。
为了解决上述问题,下面将通过以下具体的实施例对本申请实施例提供的一种时变状态约束下四旋翼无人机轨迹跟踪控制方法进行详细介绍和说明。
参照图1,示出了本发明一实施例提供的一种时变状态约束下四旋翼无人机轨迹跟踪控制方法的流程示意图。
在一实施例中,所述方法可以适用于四旋翼的无人机。
具体地,参照图2,示出了本发明一实施例提供的无人机的结构示意图。
其中,作为示例的,所述时变状态约束下四旋翼无人机轨迹跟踪控制方法,可以包括:
S1、建立四旋翼无人机位姿动力学方程。
在一实施例中,所述建立四旋翼无人机位姿动力学方程,具体为:
Figure BDA0003695412900000081
Figure BDA0003695412900000082
Figure BDA0003695412900000091
Figure BDA0003695412900000092
Δa=Δa,da,e
其中,ζp=[x y z]T为四旋翼无人机位置向量。
Figure BDA0003695412900000093
为ζp的二阶导数,A为无人机空气阻力系数矩阵,Δp为位置模型不确定项,m为无人机质量,g为重力加速度,四旋翼无人机四个电机产生的推力值分别为F1、F2、F3和F4,总推力U1=F1+F2+F3+F4,CIb为无人机本体系到惯性系的旋转矩阵,
Figure BDA0003695412900000094
为四旋翼无人机的绝对姿态角。
S2、通过非线性变换得到无人机位置动力学等价模型。
在一实施例中,所述通过非线性变换得到无人机位置动力学等价模型,具体为:
Figure BDA0003695412900000095
h1=diag(hx1(x,xL,xU),hy1(y,yL,yU),hz1(z,zL,zU))
h2=[hx1(x,xL,xU),hy1(y,yL,yU),hz1(z,zL,zU)]T
其中:
Figure BDA0003695412900000096
Figure BDA0003695412900000097
Figure BDA0003695412900000098
Figure BDA0003695412900000099
Figure BDA00036954129000000910
Figure BDA00036954129000000911
其中,
Figure BDA0003695412900000101
为ζp的一阶导数。xL、yL和zL分别为x、y和z的下界,xU、yU和zU分别为x、y和z的下界。
Figure BDA0003695412900000102
Figure BDA0003695412900000103
分别为xL、yL和zL的一阶导数
S3、设计神经网络系统对位置系统中出现的不确定量Δ1和Δ2进行估计。
在一实施例中,所述设计神经网络系统对位置系统中出现的不确定量Δ1和Δ2进行估计,具体为:
令Δ1=-h1σp,Δ2=-Δp
利用RBF神经网络系统ΘTS对系统中出现的不确定量Δ1和Δ2进行估计;
Δ1,i=Θ1,i *TS1,i1,i
Δ2,i=Θ2,i *TS2,i2,i
其中,S1,i和S2,i为高斯基函数。ρ1,i和ρ2,i为神经网络最小逼近偏差;Θ1,i *和Θ2,i *是神经网络的理想权值。
S4、设计无人机位置虚拟控制率αp
在一实施例中,所述设计无人机位置虚拟控制率αp,具体为:
定义跟踪误差为εp1=ξpdp,
Figure BDA0003695412900000104
ξpd为期望位置轨迹。
Figure BDA0003695412900000105
为αp通过一阶滤波器得到的估计值;
所述一阶滤波器为:
Figure BDA0003695412900000106
其中,ε为滤波常数;
设计无人机位置虚拟控制率αp
Figure BDA0003695412900000111
Figure BDA0003695412900000112
其中,K1为正定对称矩阵,
Figure BDA0003695412900000113
Figure BDA0003695412900000114
为W1,i的估计。a1为正数。
S5、设计无人机位置控制率vp
在一实施例中,所述设计无人机位置控制率vp,具体为:
设计自适应率为:
Figure BDA0003695412900000115
Figure BDA0003695412900000116
其中,γ1,i和γ2,i均为正数;
设计位置控制率vp为:
Figure BDA0003695412900000117
其中,K2为正定对称矩阵,
Figure BDA0003695412900000118
Figure BDA0003695412900000119
为W2,i的估计。a2为正数。
S6、设计无人机的期望姿态轨迹。
在一实施例中,所述设计无人机的期望姿态轨迹,具体为:
令vp=[vp1 vp2 vp3]T,由于
Figure BDA0003695412900000121
则:
Figure BDA0003695412900000122
Figure BDA0003695412900000123
Figure BDA0003695412900000124
根据期望偏航角ψd以及上式可以得到U1、期望俯仰角和期望滚转角为:
Figure BDA0003695412900000125
Figure BDA0003695412900000126
Figure BDA0003695412900000127
为保证四旋翼无人机安全,四旋翼无人机通常有最大倾斜角限制,令该角度为κ,给出的指令也不宜超过该限制,对U1、期望俯仰角和期望滚转角的公式进行如下修正:
Figure BDA0003695412900000128
Figure BDA0003695412900000129
设计如下一阶滤波器:
Figure BDA00036954129000001210
Figure BDA00036954129000001211
可以得到
Figure BDA00036954129000001212
以及
Figure BDA00036954129000001213
可以得到四旋翼无人机的期望角速度为:
Figure BDA00036954129000001214
S7、设计神经网络系统对位置系统中出现的不确定量Δ3进行估计。
在一实施例中,所述设计神经网络系统对位置系统中出现的不确定量Δ3进行估计,具体为:
假设姿态动力学系统参数偏差有界,未知外部干扰有界且
Figure BDA0003695412900000131
有界,令,
Figure BDA0003695412900000132
CIb,d期望姿态对应旋转矩阵;
利用神经网络系统ΘTS对系统中出现的不确定量Δ3进行估计:
Δ3,i=Θ3,i *TS3,i3,i
其中,S3,i为高斯基函数。ρ3,i为神经网络最小逼近偏差。Θ3,i *是神经网络的理想权值
S8、设计无人机的姿态控制率va
在一实施例中,所述设计无人机的姿态控制率va,具体为:
定义姿态角速度偏差为:
Figure BDA0003695412900000133
定义姿态偏差为:
Figure BDA0003695412900000134
其中,
Figure BDA0003695412900000135
为叉乘的逆运算;
设计姿态控制率为:
Figure BDA0003695412900000136
其中,K3和K4为正定对角矩阵,
Figure BDA0003695412900000137
Figure BDA0003695412900000138
为W3,i的估计。a3为正数。
在本实施例中,本发明实施例提供了一种基于飞行变化参数的无人机跟踪控制方法,其有益效果在于:本发明针对四旋翼无人机执行任务过程中需处于安全通道内的特殊需求设计了控制方案,首先将模型进行非线性变换得到无人机位置等价模型,并在该模型基础上及进行控制器设计,通过神经网络系统对四旋翼无人机位置系统中的不确定性进行估计,并采用动态面控制思想设计了控制器,该控制器能够保证无人机执行任务过程中满足时变状态约束。通过神经网络系统对四旋翼无人机姿态系统中的不确定性进行估计,并在此基础上设计了无人机姿态控制器,保证了无人机在执行任务过程中姿态的稳定
进一步的,本申请实施例还提供了一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述实施例所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法。
进一步的,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上述实施例所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

1.一种时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述方法包括:
1)建立四旋翼无人机位姿动力学方程;
2)通过非线性变换得到无人机位置动力学等价模型;
3)设计神经网络系统对位置系统中出现的不确定量Δ1和Δ2进行估计;
4)设计无人机位置虚拟控制率αp
5)设计无人机位置控制率vp
6)设计无人机的期望姿态轨迹;
7)设计神经网络系统对位置系统中出现的不确定量Δ3进行估计;
8)设计无人机的姿态控制率va
2.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述建立四旋翼无人机位姿动力学方程,具体为:
Figure FDA0003695412890000011
Figure FDA0003695412890000012
Figure FDA0003695412890000013
Figure FDA0003695412890000015
Δa=Δa,da,e
其中,ζp=[x y z]T为四旋翼无人机位置向量。
Figure FDA0003695412890000016
为ζp的二阶导数,A为无人机空气阻力系数矩阵,Δp为位置模型不确定项,m为无人机质量,g为重力加速度,四旋翼无人机四个电机产生的推力值分别为F1、F2、F3和F4,总推力U1=F1+F2+F3+F4,CIb为无人机本体系到惯性系的旋转矩阵,
Figure FDA0003695412890000014
为四旋翼无人机的绝对姿态角。
3.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述通过非线性变换得到无人机位置动力学等价模型,具体为:
Figure FDA0003695412890000021
h1=diag(hx1(x,xL,xU),hy1(y,yL,yU),hz1(z,zL,zU))
h2=[hx1(x,xL,xU),hy1(y,yL,yU),hz1(z,zL,zU)]T
其中:
Figure FDA0003695412890000022
Figure FDA0003695412890000023
Figure FDA0003695412890000024
Figure FDA0003695412890000025
Figure FDA0003695412890000026
Figure FDA0003695412890000027
其中,
Figure FDA0003695412890000028
为ζp的一阶导数。xL、yL和zL分别为x、y和z的下界,xU、yU和zU分别为x、y和z的下界。
Figure FDA0003695412890000029
Figure FDA00036954128900000210
分别为xL、yL和zL的一阶导数。
4.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述设计神经网络系统对位置系统中出现的不确定量Δ1和Δ2进行估计,具体为:
令Δ1=-h1σp,Δ2=-Δp
利用RBF神经网络系统ΘTS对系统中出现的不确定量Δ1和Δ2进行估计;
Δ1,i=Θ1,i *TS1,i1,i
Δ2,i=Θ2,i *TS2,i2,i
其中,S1,i和S2,i为高斯基函数。ρ1,i和ρ2,i为神经网络最小逼近偏差;Θ1,i *和Θ2,i *是神经网络的理想权值。
5.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述设计无人机位置虚拟控制率αp,具体为:
定义跟踪误差为
Figure FDA0003695412890000031
ξpd为期望位置轨迹。
Figure FDA0003695412890000032
为αp通过一阶滤波器得到的估计值;
所述一阶滤波器为:
Figure FDA0003695412890000033
其中,ε为滤波常数;
设计无人机位置虚拟控制率αp
Figure FDA0003695412890000034
Figure FDA0003695412890000035
其中,K1为正定对称矩阵,
Figure FDA0003695412890000036
Figure FDA0003695412890000037
为W1,i的估计。a1为正数。
6.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述设计无人机位置控制率vp,具体为:
设计自适应率为:
Figure FDA0003695412890000041
Figure FDA0003695412890000042
其中,γ1,i和γ2,i均为正数;
设计位置控制率vp为:
Figure FDA0003695412890000043
其中,K2为正定对称矩阵,
Figure FDA0003695412890000044
Figure FDA0003695412890000045
为W2,i的估计。a2为正数。
7.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述设计无人机的期望姿态轨迹,具体为:
令vp=[vp1 vp2 vp3]T,由于
Figure FDA0003695412890000046
则:
Figure FDA0003695412890000047
Figure FDA0003695412890000048
Figure FDA0003695412890000049
根据期望偏航角ψd以及上式可以得到U1、期望俯仰角和期望滚转角为:
Figure FDA0003695412890000051
Figure FDA0003695412890000052
Figure FDA0003695412890000053
为保证四旋翼无人机安全,四旋翼无人机通常有最大倾斜角限制,令该角度为κ,给出的指令也不宜超过该限制,对U1、期望俯仰角和期望滚转角的公式进行如下修正:
Figure FDA0003695412890000054
Figure FDA0003695412890000055
设计如下一阶滤波器:
Figure FDA0003695412890000056
Figure FDA0003695412890000057
可以得到
Figure FDA0003695412890000058
以及
Figure FDA0003695412890000059
可以得到四旋翼无人机的期望角速度为:
Figure FDA00036954128900000510
8.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述设计神经网络系统对位置系统中出现的不确定量Δ3进行估计,具体为:
假设姿态动力学系统参数偏差有界,未知外部干扰有界且
Figure FDA00036954128900000511
有界,令,
Figure FDA00036954128900000512
CIb,d期望姿态对应旋转矩阵;
利用神经网络系统ΘTS对系统中出现的不确定量Δ3进行估计:
Δ3,i=Θ3,i *TS3,i3,i
其中,S3,i为高斯基函数。ρ3,i为神经网络最小逼近偏差。Θ3,i *是神经网络的理想权值。
9.根据权利要求1所述的时变状态约束下四旋翼无人机轨迹跟踪控制方法,其特征在于,所述设计无人机的姿态控制率va,具体为:
定义姿态角速度偏差为:
Figure FDA0003695412890000061
定义姿态偏差为:
Figure FDA0003695412890000062
其中,∨为叉乘的逆运算;
设计姿态控制率为:
Figure FDA0003695412890000063
其中,K3和K4为正定对角矩阵,
Figure FDA0003695412890000064
Figure FDA0003695412890000065
为W3,i的估计。a3为正数。
CN202210673116.6A 2022-06-15 2022-06-15 一种时变状态约束下四旋翼无人机轨迹跟踪控制方法 Pending CN114895698A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210673116.6A CN114895698A (zh) 2022-06-15 2022-06-15 一种时变状态约束下四旋翼无人机轨迹跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210673116.6A CN114895698A (zh) 2022-06-15 2022-06-15 一种时变状态约束下四旋翼无人机轨迹跟踪控制方法

Publications (1)

Publication Number Publication Date
CN114895698A true CN114895698A (zh) 2022-08-12

Family

ID=82728958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210673116.6A Pending CN114895698A (zh) 2022-06-15 2022-06-15 一种时变状态约束下四旋翼无人机轨迹跟踪控制方法

Country Status (1)

Country Link
CN (1) CN114895698A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116909199A (zh) * 2023-09-11 2023-10-20 华东交通大学 一种基于连杆配置的可重构无人机的控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116909199A (zh) * 2023-09-11 2023-10-20 华东交通大学 一种基于连杆配置的可重构无人机的控制方法
CN116909199B (zh) * 2023-09-11 2023-12-22 华东交通大学 一种基于连杆配置的可重构无人机的控制方法

Similar Documents

Publication Publication Date Title
CN108803317B (zh) 自适应多变量四旋翼无人机有限时间容错控制方法
Jasim et al. A robust controller for multi rotor UAVs
US11900824B2 (en) Predictive aircraft flight envelope protection system
Lai et al. Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier
CN110347170B (zh) 可重复使用运载器再入段鲁棒容错制导控制系统及工作方法
Doukhi et al. Neural network-based robust adaptive certainty equivalent controller for quadrotor UAV with unknown disturbances
Zhuang et al. Robust adaptive sliding mode attitude control for aircraft systems based on back-stepping method
US8131405B2 (en) Method and apparatuses for controlling high wing loaded parafoils
Muhammad et al. Airship aerodynamic model estimation using unscented Kalman filter
Imado et al. High-g barrel roll maneuvers against proportional navigation from optimal control viewpoint
CN107817818B (zh) 一种模型不确定飞艇航迹跟踪有限时间控制方法
CN114895698A (zh) 一种时变状态约束下四旋翼无人机轨迹跟踪控制方法
Rezende et al. Robust quadcopter control with artificial vector fields
Yang et al. Anti‐swing control and trajectory planning of quadrotor suspended payload system with variable length cable
Padhi et al. Neuro-adaptive augmented dynamic inversion based PIGC design for reactive obstacle avoidance of UAVs
Mustafa Abro et al. Performance evaluation of different control methods for an underactuated quadrotor unmanned aerial vehicle (QUAV) with position estimator and disturbance observer
US11592839B2 (en) Non-binary collaborative recovery system
Yoshitani Flight trajectory control based on required acceleration for fixed-wing aircraft
Kim et al. Vision‐assisted deep stall landing for a fixed‐wing UAV
EP3844587A1 (en) Piecewise recovery system
Sun et al. Trajectory-tracking control law design for unmanned aerial vehicles with an autopilot in the loop
Yeh et al. Adaptive fuzzy sliding-mode control for a mini-UAV with propellers
CN111651860B (zh) 一种可重复使用运载器再入段的预测校正鲁棒制导方法
US11273928B2 (en) Time available before aircraft auto-recovery begins
Fethalla et al. Robust tracking control for a quadrotor UAV

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination